Measurements of π Absorption and Charge Exchange Cross Sections on nuclear targets DUET Experiment (π^+ -¹²C)

HAdron Reconstruction Performance Studies In CH On Reduced Detector Elder Pinzon (York U.) for the DUET Collaboration

> **Nulnt I 5** Osaka, Japan

Elder Pinzon | NuInt15 | Nov 19

Pions in v Interactions

Neutrino flavour and energy reconstruction is fundamental for oscillation and cross section analyses

Pions in v Interactions

Neutrino flavour and energy reconstruction is fundamental for oscillation and cross section analyses

Effect of π FSI/SI

4. Π Reconstruction @ SK

"Identifying CC1 π at SK", S. Berkman, CAP 2014

2. Selections based on Final State Topologies

- T2K Near Detector selection to constrain Oscillation Analysis [PRD 91, 072010 (2015]

Elder Pinzon | NuInt15 | Nov 19

Elder Pinzon | Nuint15 | Nov 19

Elder Pinzon | NuInt15 | Nov 19

 π^+ -12CABS+CX

Elder Pinzon | NuInt15 | Nov 19

DUET Experiment

Measure π⁺ Absorption cross section with ~10% accuracy and Charge Exchange with ~20% accuracy

Elder Pinzon | Nuint15 | Nov 19

Use TRIUMF

MII beam line

Detector setup: **DUET**

TRIUMF MII Beam line

- TRIUMF Cyclotron produces 500 MeV/c primary proton beam
- Secondary beam line with momentum tunable in the range from 150 MeV/c to 375MeV/c delivers e, μ , p and π .
- Beam PID from Time Of Flight (TOF) counters.
- Above 225 MeV/c use Cherenkov detector to select pions.

Detector setup: DUET

Main Components:

Piano: 5 cm³ scintillating fiber tracker (Full active target) + Nal crystals

Piano Fibers

 I6 horizontal and I6 vertical layers with 32 CH fibers each (I.5mm x I.5mm x 60cm)

- Read by 16 MAPMTs (from K2K) and digitized by FADCs
- Provides precise tracking and dQ/dx measurements of particles in the final state
- Full Geant4 simulation
 - Includes TiO₂ fiber
 coating and support
 structure

Combined ABS+CX Selection using Piano

Phys. Rev. C **92**, 035205 (2015)

Elder Pinzon | NuInt15 | Nov 19

Event Selection: No π^+ in final state

Event Selection: Data/MC comparisons

Event Selection: Data/MC comparisons

- For 238MeV/c π⁺ data set, the efficiency is 79.8% and the purity is 76.8%.
- ~7000 events selected on each momentum data set after all cuts are applied.

Uncertainties

	p_{π} at the fiber tracker [MeV/c						
	201.6	216.6	237.2	265.5	295.1		
Systematic errors							
Beam profile	0.9	1.2	1.0	0.6	1.2		
Beam momentum	1.6	1.7	0.7	0.8	1.4		
Fiducial Volume	1.1	3.9	1.4	1.2	1.3		
Charge distribution	2.4	2.2	2.6	2.6	2.9		
Crosstalk probability	0.3	0.3	0.3	0.2	0.4		
Layer alignment	0.5	0.8	1.1	1.0	1.4		
Hit efficiency	0.3	0.3	0.2	0.4	0.3		
Muon contamination	0.5	0.8	0.9	0.3	0.2		
Target material	0.8	0.9	0.9	0.8	1.0		
Physics models (selection efficiency)	2.8	4.9	2.9	4.8	3.7		
(background prediction) +	2.8	1.8	2.4	2.3	3.3		
-	6.1	3.7	3.6	1.5	1.9		
Subtotal +	5.2	7.3	5.2	6.3	6.4		
_	7.5	8.0	5.9	6.0	5.8		
Statistical error (data)	1.7	3.1	1.7	1.8	1.7		
Statistical error (MC)	0.1	0.1	0.1	0.1	0.1		
Total +	5.5	8.0	5.5	6.6	6.7		
_	7.7	8.6	6.2	6.3	6.1		

Dominant systematic error is background estimation.

Error is estimated from Data/MC comparisons of a BG enhanced sample

Abs+CX Cross Section Result

Elder Pinzon | NuInt15 | Nov 19

Extracting the Charge Exchange cross section

Detector setup: DUET

Main Components:

Piano: 5 cm³ scintillating fiber tracker (Full active target) + **Nal crystals**

Elder Pinzon | Nulnt15 | Nov 19

CX Event Selection: Using Nal Crystals

10

10

Selection Criteria:

- 0 or 1 3D Piano tracks
- 2. Nal Hit Energy10 MeV in Nal Crystals
- Reject if Piano track points to Nal 3. Crystal
- π^0 Angular distribution reweighted to **FLUKA**
- Confirmed momentum dependence of CX photon angle

M. Ikeda, ICCR

Detector setup: DUET

Main Components:

Piano: 5 cm³ scintillating fiber tracker (Full active target) + Nal crystals

Cembalos

- 8 horizontal and 8 vertical scintillating layers with 32 polystyrene bars each
 1/6 x 1/6 of FGD
- Light from scintillation bar + Wave Length Shifting fibers read out by MPPCs
- ~I.5mm Lead layers interspersed to increase photon conversion
- Also used for FGD reconstruction studies: "Harpsichord" Hagpsi UCHord
 - HAdron Reconstruction Performance
 Studies In CH On Reduced Detector

CX Event Selection: Using Cembalos

Position of most upstream hit in Cembalos [mm]

Elder Pinzon | NuInt15 | Nov 19

The **first two layers** are

remove charged background

used as a **veto cut** in order to

CX Event Selection: Neutron Rejection

Selection: Abs+CX+Veto

- **Neutrons** will also mostly make hits after the first two layers
- Use number of hits and total charge deposited to remove most of background

~100 events in data sample (~20 for 216.6 MeV/c)

CX Event Selection: Data/MC

- Data event rate clearly higher than Geant4 Monte Carlo
- Indication of mis-modeling of nucleon ejection multiplicity and/ or momentum

Selection: AbsCXVetoHitsDiag

CX Analysis Systematics

I. π⁺ Beam Systematics

- Profile and Momentum
- Muon Contamination
- 2. PIAnO detector systematics
 - Fiducial volume, target material, charge simulation, alignment
- 3. Cembalos Detector Systematics
 - Alignment and charge simulation
- 4. CX Physics Systematics
 - \succ π^0 kinematics
 - ABS an CX Nucleon ejection
 - Selection Background

Cembalos Detector Systematics

I. Detector Alignment (5~8%)

 ±5mm shifts of the (x,y,z) position of Cembalos in the Monte Carlo

2. Charge Simulation (3~5%)

- Charge calibration tuning was conducted previously using through going muon sample (peaked around 40 p.e.)
- A stopping proton control sample was developed for higher charger deposition
- Systematic is calculated from 10000 toy MC where charge in event is varied following a Gaussian (μ =1, σ =0.2)

3. Hit inefficiency (1~2%)

- Missing hits in the middle of Cembalos reconstructed tracks are counted and compared between Data/MC
- Systematic is calculated from 10000 toy MC where hits are randomly deleted following the Data/MC difference

Physics Model Systematics

1. π^0 Kinematics

- Large difference between models (FLUKA angular distribution closest to data)
- Reweighting scheme was investigated
 → 10~15% effect (large/not trusted)

2. Nucleon Ejection

- Largest background are neutrons from ABS.
- Very large differences among models!

Thin target π^+ -C simulations

(Hard to run full DUET simulation using each generator)

"Efficiencies" Scheme

New approach : π^0 and nucleon kinematics dependant selection efficiencies

 \rightarrow Apply to interactions from thin target simulations (i.e., directly to the "model")

Sample Signal Event

- Signal event will be selected if:
 - π^0 is selected $\rightarrow \epsilon_{sel}(\pi^0)$
 - Ejected proton is NOT misreconstructed in Piano as a pionlike track $\rightarrow \epsilon_{rej}$ (p misreco)
 - Ejected nucleons (proton or neutron) fire the veto cut $\rightarrow \epsilon_{rej}$ (p/n fires veto)

• Sample Background Event

- Background event will be selected if:
 - Neutron is selected $\rightarrow \epsilon_{sel}(n)$
 - − π^+ is mis-reconstructed as proton → $\epsilon_{rej}(\pi^+ \text{ misreco})$
 - Ejected proton is NOT misreconstructed in Piano as a pion-like track $\rightarrow \epsilon_{rej}$ (p misreco)
 - Ejected nucleons (proton or neutron) or π^+ fire the veto cut $\rightarrow \epsilon_{rej}(\pi^+/p/n)$ fires veto)

Selection and Rejection Efficiencies

- Binned in Momentum and Angle
- Calculated using the full Geant4 DUET simulation

Elder Pinzon | NuInt15 | Nov 19

Example: 200 MeV/c

Applying to thin target

$\sigma(ABS + CX)$	$(ABS + CX) = \sigma(ABS + CX)_{pred} \times \frac{N_{data} - N_{BG}^{pred}}{N_{sig}^{pred}} \times \frac{1 - R_{TiO}^{data}}{1 - R_{TiO}^{MC}} \times \frac{1}{1 - f_{\mu}}$								(Model-G4)/ G4 *100
	Model	p_{π^+} (MeV)	Incident	σ_{CX}^{pred} (mb)	N_{sig}^{pred}	N_{BG}^{pred}	σ_{CX} (mb)	Δ_{G4}	
	DUET	200	1.387e + 07	34.3	60.4	8.7	59.1	2.0	
	Geant4	200	8.000e + 08	36.7	63.3	6.1	58.0	0.0	
¥	FLUKA	200	8.000e + 07	55.5	122.2	6.3	45.3	(-21.9)	
5.4	NEUT	200	4.000e + 08	50.5	83.0	4.5	61.8	0.7	7
Difference	DUET	225	1.027e + 07	34.9	15.8	2.4	42.5	2.2	1
between DUET	Geant4	225	8.000e + 08	37.5	16.5	2.0	41.6	0.0	1
and Geant4	FLUKA	225	8.000e + 07	59.5	32.5	1.5	34.4	-17.2	· \
	NEUT	225	8.000e + 08	55.7	24.2	1.5	43.5	4.6	
gives an idea of	DUET	250	1.130e + 07	36.8	75.9	11.1	68.2	4.3	₩ 6% ~ 22%
validity of	Geant4	250	8.000e + 08	39.6	80.0	9.7	65.4	0.0	Not
scheme	FLUKA	250	8.000e + 07	61.7	149.4	5.8	56.1	-14.1	
••••••	NEUT	250	8.000e + 08	57.5	111.7	6.1	69.8	6.8	included as
	DUET	275	1.253e + 07	41.3	87.1	10.5	72.4	1.4	// systematic
	Geant4	275	8.000e + 08	44.7	88.8	9.6	71.4	0.0	
	FLUKA	275	8.000e + 07	62.4	143.5	5.0	63.7	-10.8	1
	NEUT	275	8.000e + 08	57.9	129.4	6.9	64.8	-9.3	/
	DUET	300	1.407e + 07	41.6	119.4	12.8	56.5	2.5	/
	Geant4	300	8.000e + 08	45.1	122.5	12.7	55.1	0.0	
	FLUKA	300	8.000e+07	58.5	176.2	5.6	52.0	-5.7	
	NEUT	300	8.000e + 08	58.3	170.3	8.4	52.7	-4.5	

Uncertainties

			CX					ABS		
π^+ Momentum [MeV/c]	201.6	216.6	237.2	265.5	295.1	201.6	216.6	237.2	265.5	295.1
Beam Systematics										
Beam profile	3.5	4.9	6.2	4.2	2.0	2.2	2.7	3.8	2.9	2.5
Beam momentum	4.1	1.6	3.5	4.1	2.8	1.5	2.3	1.9	2.5	3.0
Muon Contamination	0.5	0.8	0.9	0.3	0.2	0.5	0.8	0.9	0.3	0.2
Piavo Systematics										
Fiducial Volume	3.6	2.3	4.3	3.9	4.5	1.1	5.4	4.1	3.8	3.4
Charge distribution	3.3	4.1	3.3	2.4	3.0	4.3	3.2	4.1	4.1	4.4
Crosstalk probability	3.9	4.9	4.4	2.5	2.2	1.9	2.0	2.7	1.7	1.3
Layer alignment	1.3	3.6	2.9	0.9	1.1	1.0	2.3	2.8	1.7	2.4
Hit efficiency	1.0	2.1	2.1	2.5	2.6	1.1	1.3	1.5	2.0	1.0
Target Material	2.0	2.0	2.9	2.9	2.9	1.2	1.2	1.2	1.2	1.3
Harpsichord Systematics										
Harpsichord Charge	1.7	1.6	3.7	3.1	6.7	1.3	1.1	2.0	1.7	2.5
Harpsichord Hit Inefficiency	1.6	2.1	1.1	1.3	2.0	1.2	1.1	1.1	1.0	0.9
Harpsichord Alignment	7.7	7.9	8.3	5.7	4.6	0.7	1.0	0.7	0.7	1.0
Physics Systematics										
Ashery	6.1	6.9	7.9	9.4	10.6	2.1	1.6	3.2	4.3	4.1
Multiple Interactions	1.1	1.9	1.7	1.5	1.8	1.1	1.9	1.7	1.5	1.8
Pion Decay Background	1.9	2.8	1.2	0.6	0.9	1.9	2.8	1.2	0.6	0.9
Statistical error	11.0	26.0	9.4	8.9	8.8	3.9	6.2	3.9	4.2	3.6
Total error	17.9	30.3	19.4	17.0	18.0	8.0	11.0	10.5	9.8	9.8

Preliminary Result

- Preliminary
- Plan is to also release covariance matrix
- Large discrepancy with Nal Crystals result
 - Different polar angle coverage
 - Uses FLUKA π⁰ Angular Distribution
 - Investigating

Preliminary Result

- Preliminary
- Plan is to also release covariance matrix
- Large discrepancy with Nal Crystals result
 - Different polar angle coverage
 - Uses FLUKA π⁰ Angular Distribution
 - Investigating
- Cannot be fully explained by Geant4-FLUKA difference

π[±]-Argon measurements

- Liquid Argon detectors are an option for future long baseline experiments
 - π^{\pm} -Ar measurements are necessary
- LArIAT shows promising π[±] interaction reconstruction capabilities
 - ArgoNEUT cryostat + LArTPC + improvements @ Fermilab Test Beam Facility (0.2~2GeV/c)
- Developing pion identification algorithms
- Total and Reactive cross sections already being prepared!

LArIAT TPC readout Run 5979; Spill 58; Event 0; 2015-05-29 00:49:49

[[]http://lariat.fnal.gov/eventgallery.html]

Improving FSI/SI Uncertainties

- NEUT FSI model simulates pion interaction by stepping through the nuclear medium (cascade)
 - The interaction probability in each step is defined by the microscopic Scattering, ABS and CX cross sections
- The microscopic cross sections are tuned so that the resulting Scat, ABS and CX cross sections agree with external data
 - $\pm I\sigma$ from fit are propagated to T2K's Near and Far Detectors observables through reweighting for uncertainty estimation
- Will add DUET data for tuning

Improving FSI/SI Uncertainties

- NEUT FSI model simulates pion interaction by stepping through the nuclear medium (cascade)
 - The interaction probability in each step is defined by the microscopic Scattering, ABS and CX cross sections
- The microscopic cross sections are tuned so that the resulting Scat, ABS and CX cross sections agree with external data
 - $\pm I \sigma$ from fit are propagated to T2K's Near and Far Detectors observables through reweighting for uncertainty estimation
- Will add DUET data for tuning

- SI uncertainty for T2K's Near Detector is estimated using Geant4
- Preparing a Geant4 to NEUT interface for pion inelastic interactions
- Consistent treatment of FSI and SI across T2K detectors

Final Remarks

- DUET measures π^+ -¹²C interaction cross-sections using the M11 pion beam line at TRIUMF
 - Also took data with water target (π -¹⁶O)
- Results for a combined Absorption + Charge Exchange cross section are consistent with previous results and have much smaller errors (~20% → ~7%)
 Phys. Rev. C 92, 035205
- Work for a separate charge exchange measurement is ongoing
 - Preliminary results with full systematics
 - Investigating possible differential CX measurement
- LArIAT will measure π-Ar cross sections!
- This will feed into a better model of pion Final State Interactions and Secondary Interactions
 - Reduce systematics for current and future neutrino experiments

36

[Backup]

Elder Pinzon | Nuint15 | Nov 19

DUET Collaboration

K. Ieki,¹ E. S. Pinzon Guerra,² S. Berkman,³ S. Bhadra,² C. Cao,³ P. de Perio,⁴ Y. Hayato,⁵ M. Ikeda,⁵
Y. Kanazawa,⁶ J. Kim,³ P. Kitching,⁷ K. Mahn,⁸ T. Nakaya,¹ M. Nicholson,⁷ K. Olchanski,⁷ S. Rettie,^{3,7} H. A. Tanaka,³ S. Tobayama,³ M. J. Wilking,⁹ T. Yamauchi,¹ S. Yen,⁷ and M. Yokoyama⁶ (DUET Collaboration)
¹Kyoto University, Department of Physics, Kyoto, Japan
²York University, Department of Physics and Astronomy, Toronto, Ontario, Canada
³University of British Columbia, Department of Physics and Astronomy, Vancouver, British Columbia, Canada
⁴University of Toronto, Department of Physics, Toronto, Ontario, Canada
⁵University of Tokyo, Institute for Cosmic Ray Research, Kamioka Observatory, Kamioka, Japan
⁶University of Tokyo, Department of Physics, Tokyo, Japan
⁷TRIUMF, Vancouver, British Columbia, Canada
⁸Michigan State University, Department of Physics and Astronomy, East Lansing, Michigan, USA
⁹State University of New York at Stony Brook, Department of Physics and Astronomy, Stony Brook, New York, USA

Analysis Outline

FSI effect

Elder Pinzon | Nuint15 | Nov 19

DUET Experiment

(a) Pia ν o and Harpsichord in configuration 1. The angular distribution of photons can be measured using the NaI detectors.

(b) Piavo and Harpsichord in configuration 2. Lead layers are added to Harpsichord to increase photon conversion.

Beam particle fraction

Elder Pinzon | Nuint15 | Nov 19

Cherenkov Counter

- TOF is not enough to separate pions and muons above 200MeV/c
- Different β for e, μ , $\pi \rightarrow$ Detected light will be different due to different light yield and angle

Piano

- Scintillating light are read out by MAPMT×16
- Fiber×1024 ch, Nal×16ch
- Fiber main volume: 48mm×48mm×48mm

dE/dx Distributions

Used for PID in Piano's fibers

Elder Pinzon | Nuint15 | Nov 19

Harpsichord

- Harpsichord
 - I/6 X I/6 scale FGD
 - Same numbers of layers, electronics as FGD

- Cembalos
 - Added lead layers between XY scintillator modules
 - Increased photon conversion

Cembalos Simulation Validation

800 700

600 500

400

300

200

100 0 0.6 MC: 261501 entrie

0.7

0.8

0.9

Tuned single PE height of

pulses in

MPPCs

) 1 1.1 1.2 Single PE Pulse Height (PE)

- Cembalos GEANT4 simulation is based on the FGD (from T2K):
 - Only geometrical and calibration-related modifications
 - Need to validate simulation
- Use muons (MIPs) traversing the detector as control sample
- Tune MC and electronics simulation parameters to match Data vs. MC deposited charge distributions

Cembalos photon direction Reconstruction

- Reconstruct CX photon direction from Piano vertex and position of hit clusters in Cembalos
- Good resolution (<5°)

- Unify Nal Crystals and Cembalos analyses
 - Reduce model dependence

Previous experiments

p-theta for π^0 's

GEANT4 (QGSP-BERT) and NEUT
 Initial 250 MeV/c π⁺

55

p-theta for CX Photons

GEANT4

p- θ distribution for photons

Proton selection (Control sample)

- Selection:
 - Good incident pi+
 - TOF + Cherenkov
 - Straight incoming Piano track
 - Vertex in FV
 - Not low scattering pi+
 - Reconstructed proton track in Piano
 - Hits in Harpsichord

- From MC:
 - 88.4% proton hitting Harpsichord
 - 5.2% pion hitting Harpsichord
 - 4.2% neither proton nor pion hitting Harpsichord
 - 2.1% both proton and pion hitting Harpsichord

Not stacked, just plotted on top of each other