Future Experiments Session Summary

Mark Hartz, Ornella Palamara, Federico Sanchez

10th International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region Osaka University, Osaka Japan November 16-21, 2016

- Fermilab SBN Program: MicroBooNE A. Schukraft-
- Fermilab SBN Program: SBND C. Adams
- CAPTAIN-MINERvA M. Kordosky
- DUNE Near Detectors X. Tian
- WAGASCI and ND280 Upgrades A. Minamino -
- Intermediate WC Detectors at J-PARC M. Scott -
- SK-Gd and ANNIE *L. Marti*

Magnetized,

LAr

Segmented, HPTPC NDs

-WC, WC-Gd

Fermilab SBN Program, MicroBooNE

MicroBooNE: First LArTPC detector in the SBN program up and running!

Primary physics goals:

- Resolving the nature of the lowenergy e-like event excess observed by MiniBooNE.
- Measuring neutrino-argon cross sections in the QE and RES range.

11/20/15

Anne Schukraft, Fermilab

2

First CC inclusive study in MicroBooNE

MicroBooNE Construction and Operation

First fully automated reconstruction & selection

- Reconstruct events in 2D & 3D
- Select neutrino-like topology
- Aiming for: minimum reconstruction effort, and high purity, but not high efficiency

MicroBooNE preliminary 1.86e18 POT (BNB)

36e18 POT (BNB)	Fully automated selection	
Number of events	Optical + 3D-based	Optical + 2D-based
Non-beam background (expected from off-beam measurements)	4.6 ± 2.6	385 ± 24
Total observed (during beam)	18	463

Clear excess of selected events over background.

SBND Design

Short Baseline Near Detector Design is mature, assembly starting soon.

November 2	20,	2015	
------------	-----	------	--

Corey Adams, Yale University Nuint15, Osaka

7

Future Experiments Summary

Slide 4

Reducing Uncertainties

8

Slide 8

Very High Statistics Neutrino Interaction Samples

Charged Current Zero Pion Expectations (GENIE estimate, rounded)			
	1 Month	1 Year	3 Years
CC + Np	97,000	1,170,00	3,500,000
CC + 0p	22,000	260,000	790,000
CC + 1p	56,000	667,000	2,000,000
CC + 2p	10,000	120,000	360,000
CC +>3p	10,000	120,000	370,000
	1 Month	1 Year	3 Years

Hyperon Production Expectations (CC + NC) (GENIE Expectations)

12,000

37,000

	1 Month	1 Year	3 Years
Λ^0 Production	200	2,600	8,000
Σ^+ Production	125	1,500	4,500

Charged Current Coherent Pion Expectations (GENIE estimate, rounded)

	1 Month	1 Year	3 Years
CC Coherent	500	6,300	19,000

CC v

1,000

CAPTAIN-MINERVA

- Integrate the CAPTAIN detector with MINERvA to study neutrino-argon interactions in the medium-energy NuMI beam
- CAPTAIN will serve as the vertex detector, and outgoing particles will be tracked in MINERvA.
- The MINOS Near Detector will continue to be used as the downstream muon spectrometer.

Nov 20, 2015

Mike Kordosky, W^m & Mary

6

How does it complement?

Compared to MicroBooNE

BNB measures at second oscillation maximum (L=1300km) complementary to CAPTAIN-MINERvA's measurements at 1st oscillation maximum

MicroBooNE interactions will mostly be quasi-elastic (~60%); approximately 68% of interactions in CAPTAIN-MINERvA will have a pion in the final state - gives us an opportunity to study events with higher particle multiplicities

Mike Kordosky, W^m & Mary

Acceptance for CC events

Muon reconstruction by MINOS or MINERvA ►

- Consider solid angle, minimum number of planes to form a track, etc.
- 64% of CC events will have muon reconstructed by MINOS or MINERvA (23% MINOS + 41% MINERvA)
- For remaining CC interactions, CAPTAIN will have some ability to tag muons that miss MINERvA or MINOS by looking for MIP-like tracks

~10-15% of CC interactions will have the hadronic energy contained in CAPTAIN and have a muon reconstructed by MINOS or MINERvA.

MINERvA will be used as a hadronic calorimeter for events where final state particles exit CAPTAIN.

x1020 POT	CC interact
	argon with
neutrino mode	reconstr
iton fiducial volume	(MINOS or M

tions on h muon ucted MINERVA) CC interactions on argon with muon reconstructed by MINOS

interaction channel	Events w/ reco µ track	Events w/ reco µ track and charge
CCQE-like	460k	390k
CC1π±	980k	480k
CC1π0	780k	300k

Results presented here show neutrino mode; we hope to run for 2 years and acquire 6x10²⁰ POT in neutrino mode plus 6x10²⁰ POT in antineutrino mode.

LAr Timelines

• MicroBooNE - now operating and collecting data

• SBND

- Construction January 2016
- Assembly Summer 2016
- Operation 2018
- CAPTAIN-MINERvA
 - Surface commissioning of CAPTAIN at Fermilab 2017
 - Neutrino data 2018

High Resolution Fine-Grain Tracker (Reference Design)

- $\sim 3.5 \text{ m} \times 3.5 \text{ m} \times 6.5 \text{ m} \text{ STT}$ ($ho \simeq 0.1 \text{ g/cm}^3$)
- 4π ECAL in a dipole magnetic field (B = 0.4 T)
- 4π MuID (RPC) in dipole and up/downstream
- Pressurized 40 Ar target $\simeq \times 10$ FD statistics and 40 Ca target
- Trasition Radiation : e^{\pm}
- dE/dx : π^{\pm} , K^{\pm} and proton
- Magnet : + .vs. -
- MuID : μ
 ⇒ Absolute flux measurement

Radiator (Target) Mass	7 tons
Other Nuclear Target Mass	1-2 tons
Vertex Resolution	0.1 mm
Angular Resolution	2 mrad
E Resolution	$6\%/\sqrt{E}$
	(4% at 3 GeV)
E_{μ} Resolution	3.5%
$ u_{\mu}/ar{ u}_{\mu}$ ID	Yes
$\nu_e/\bar{\nu}_e$ ID	Yes
π^- .vs. π^+ ID	Yes
π^+ .vs. proton .vs. ${\sf K}^+$	Yes
$NC\pi^0/CCe$ Rejection	0.1%
$NC\gamma/CCe$ Rejection	0.2%
$CC\mu/CCe$ Rejection	0.01%

Xinchun Tian (USC, Columbia)

DUNE ND@NuInt 2015

- The international ArgonCube collaboration has submitted an Lol to CERN SPSC
- Novel implementation of LAR TPC technology
 - Modularity and scalability
 - Pixelized charge readout
- Potential applicability for DUNE ND
 - LAr
 - Modularity and pixels : high rate capability
 - Can be magnetized : compatible with 0.4 T field

High Pressure Argon Gas TPC, George Christodoulou, Liverpool

Basic design of the HP TPC for DUNE

DUNE ND@NuInt 2015

Nulnt15

WAGASCI concept

- Plastic scinti. tracker with 3D grid-like structure
 - x + grid + y + grid + … layers

- 4π angular acceptance

- H₂O(signal):CH(BG) = 79:21

WAGASCI (J-PARC T59)

- An approved test experiment by J-PARC PAC (T59).
- Goal: measure H_2O/CH charged-current cross-section ratio with 4π acceptance and 3% accuracy.

WAGASCI in ND280 magnet

Side-TPCs enable excellent charge/particle identification and momentum measurement for large angle tracks.

16

Emulsion detector (J-PARC T60)

We are planning next exposure as Detector Run from next Jan.

ν exposure : 2016 middle of Jan. \rightarrow May or Jun. • Iron target (total~60kg : 500 μ m seg.) • High statistics (3-6k ν_{μ} events) • ν_{e} detection (20-40 ν_{e} CC events)

Emulsion film Production for T60 extension

An intermediate detector

- Large (kiloton scale) water Cherenkov (WC) detector 1-2 km from beam target
 - Water target
 - 4π coverage
 - Same signal and background modes as far detector
 - Smaller near → far extrapolation systematic than T2K near detector

20/11/15

Future Experiments Summary

21

Mono-energetic beams

How can we use them?

- Provides more information on neutrino interactions
- Clear separation between quasi-elastic (QE) and non-QE events
- Measure quatities of interest (neutron multiplicities, cross sections):
 - As function of true neutrino energy
 - In same detector \rightarrow highly correlated flux and detector systematics

Gadolinium doping

- Can be used by both TITUS and NuPRISM studied at TITUS so far
- Neutrons capture on Gd
 - 49,000b capture cross section
 - 8 MeV gamma cascade, 4-5 MeV visible
 - 0.1% doping → 90% neutrons capture on Gd

- Tag presence of neutron in final state statistically separate neutrino CCQE interactions from others
 - v_μ CCQE: v_μ + n → μ⁻ + p 0 neutrons- ν_μ CCQE: ν_μ + p → μ⁺ + n 1 neutron
 - CCnQE backgrounds often produce neutrons

(TITUS) Gadolinium doping

- Neutrino energy resolution assuming CCQE kinematics in TITUS
 - 0 neutrons \rightarrow higher CCQE purity
 - Improved energy resolution
 - Also improves anti-neutrino selection
- If NEUT model is correct, combination of MRD + Gd gives 96% pure v_{μ} and \overline{v}_{μ} samples at T2HK neutrino flux peak

Work to measure and model neutron multiplicities is needed

SK-Gd (Sorry, no slides from speaker yet)

- EGADS experiment has demonstrated a water-Cherenkov detector with Gd loading (water purity, optical properties, material compatibility, neutron capture detection efficiency)
- The plan to load Gd in Super-K (SK-Gd) has been approved by the Super-K collaboration
 - Diffuse supernova background: ~few clean events per year
 - Supernova burst: improved pointing, detect Si-burning phase
 - Atmospheric neutrino background reduction for nucleon decay searches
 - Neutrino/antineutrino statistical separation for atmospheric neutrinos

ANNIE

- Gd loaded WC detector in the Booster beam (SciBooNE hall)
- Developing the LAPPD technology for event reconstruction in WC detector with a small fiducial volume
- Will measure neutron rates in ~GeV neutrino interactions
 - Same energy range of low energy atmospheric neutrinos
 - Measurement will improve modeling for nucleon decay atmospheric neutrino background rejection

Conclusions

- Cross section measurements on Ar with multi-ton detectors coming soon
 - MicroBooNE operating and taking data
 - SBND, CAPTAIN-MINERvA data in 2018
- Near detector concepts are being developed for DUNE, T2K extension, Hyper-K
 - DUNE: measurements on Ar with high pile-up are challenging
 - T2K ND280 upgrades: higher H₂O content (WAGASCI, WbLS), 4π coverage (WAGASCI, HPTPC), low energy track reconstruction (HPTPC, Emulsion)
 - Intermediate WC detector: off-axis spanning detector (NuPRISM) and Gd doping (NuPRISM, TITUS)
- Gd loaded WC detectors
 - SK-Gd is approved by the Super-K collaboration
 - ANNIE will measure neutron rates with accelerator neutrinos