Shallow-and-Deep Inelastic Scattering

Shunzo Kumano, Jorge G. Morfin and Roberto Petti

Summary Talk NuInt15 – Osaka, Japan November, 2015

Challenges

- Increasing awareness that SIS and DIS interactions can give significant backgrounds and contributions to the systematics on the scale of the 1% goals in neutrino oscillation experiments.
- In the SIS region the duality based Bodek-Yang model has been fine for giving average strengths of SIS interactions up to now.
- For more detailed studies of systematics from single-and-multi-pion production above the Delta we need models that give us a description of these higher-W resonances, the valleys between them and the non-resonant continuum contribution as well.
- In the DIS region the nPDFs derived from l[±] and D-Y are in reasonable agreement but errors seem underestimated
 - there are indications that the nuclear parton distributions describing v-A scattering are different than the nPDFs from e-A scattering.
- Clarification and further study of the entire SIS-DIS region is needed.

PYTHIA Hadronization Program for Neutrino experiments – Teppei Katori

C. Bronner Kavli IPMU(WPI), Tokyo University

SIS-DIS region in the generators

Different models as a function of W Combination of resonances and DIS continuous parametrization

 Use GRV98 + Bodek-Yang corrections for cross-sections of the DIS components

GENIE	1.7 0	GeV/c²	2.3 (GeV/c²	3 Ge	eV/c²	W
Resona + DIS back ("AGKY r	nces ground nodel")	DIS Id ("AGKY	w W model")	Linear tra to PYTHI	ansition A 6	PYTHIA 6	

NuWro	1.3	GeV/c²	1.6 (GeV/c ²	W
	RES	Linear transitio	n	DIS (uses PYT fragmentation	HIA 6 routines)

Charged hadron multiplicities Neutrinos on proton

 Average charged hadron multiplicity observed to be a linear fonction of log(W²) in bubble chamber data

(K. Kuzmin and V. Naumov argue for a quadratic function at low W in PRC 88, 065501 (2013))

All generators seem to underestimate both average and dispersion of the charged hadron multiplicities

Tuning charged hadron multiplicities Tuning PYTHIA

Tuned PYTHIA parameters using expertise from members of the HERMES collaboration

Allows to properly reproduce average charged hadron multiplicities when tested in GENIE:

Comparisons for different targets and energies

Now moving to the comparisons on different targets at fixed energies:

- CH at 2 GeV (6 bound protons, 6 bound neutrons, 1 free proton)
- Ar at 2.5 GeV (18 bound protons, 22 bound neutrons, 0 free protons)
- H₂O at 4 GeV (8 bound protons, 8 bound neutrons, 2 free protons)
- Fe at 6 GeV (26 bound protons, 30 bound neutrons, 0 free protons)
- <u>5 different comparisons for each:</u>
- W distribution computed as $W^2 = (P_v + P_{nuc} P_{\mu})^2$
- Q^2 distribution computed as $Q^2 = (P_v P_u)^2$
- **n**_{ch}: charged hadron multiplicities
- \mathbf{n}_{π} : pion (charged + neutral) multiplicities
- $\mathbf{n}_{\pi 0}$: neutral pion multiplicities

Except for the W distributions, a cut W>1.7 GeV is applied All plots are normalized by area

W distributions Ar, E_v =2.5 GeV

Main differences are presence or absence of certain resonances Won't affect comparisons at W>1.7 GeV

Artem Chukanov¹, Roberto Petti²

¹Joint institute for nuclear research, Dubna ²University of South Carolina, USA

NuInt15, Osaka, 19^{th} of November 2015

NOMAD neutrino event generation library

- LEPTO 6.1
- JETSET 7.4 (string fragmentation)
- GEANT 3 (tracing particles)
- DPMJET II (intranuclear reinteractions)

Default JETSET parameters - strange particles production yields. ν_{μ} CC interactions

Hadrons	MC (%)	Data (%)	$\mathrm{MC}/\mathrm{Data}$
$\overline{K^0_S}$	11.4	8.99 ± 0.08	1.27 ± 0.01
Λ^0	9.0	6.21 ± 0.08	1.46 ± 0.02
$ar{\Lambda}^0$	0.73	0.52 ± 0.02	1.41 ± 0.08
$\rho^{0}(770)$		19.50 ± 1.90	
$f_0(980)$		1.80 ± 0.40	
$f_2(1270)$		3.80 ± 0.90	
Fraction			
$\frac{N(K^{\star+} \rightarrow K^0_S \pi^+)}{N(K^0_S)}$	31.0	14.1 ± 0.9	2.20 ± 0.04
$\frac{N(K^{\star-} \rightarrow K^0_S \pi^-)}{N(K^0_S)}$	13.5	8.9 ± 0.08	1.5 ± 0.4
$\frac{N(\Sigma^{\star +} \to \Lambda \pi^+)}{N(\Lambda)}$	16.9	4.4 ± 1.0	3.8 ± 1.3

The agreement between MC and Data is poor

	interactions				
Hadrons	NOMAD (%)	GENIE (%)	GENIE/NOMAD		
K^0_S	5.31	4.38	0.82		
Λ^{0}	4.88	4.67	0.96		
$ar{\Lambda}^0$	0.28	0.14	0.5		
$\rho^0(770)$	14.27	14.76	1.03		
$f_0(980)$	1.39	1.56	1.12		
$f_2(1270)$	2.75	3.57	1.30		
D^0	1.99	4.15	2.09		
K^+	8.17	7.54	0.92		
K^{-}	3.63	3.42	0.94		
Fraction					
$\frac{N(K^{\star+} \to K^0_S \pi^+)}{N(K^0_S)} -$	18.19	17.32	0.95		
$\frac{N(K^{\star-} \rightarrow \tilde{K}^0_S \pi^-)}{N(K^0_S)} -$	7.13	7.13	1.00		
$\frac{N(\Sigma^{\star +} \to \Lambda \pi^+)}{N(\Lambda)}$	3.47	5.49	1.58		

C I

Agreement is much better. Other hidden switches in GENIE

• / 1

.

Summary

- a tuning of JETSET parameters has been perform with NOMAD data
- the default GENIE-2.8.4 fragmentation parameters disagree with NOMAD results
- the use of the tuned JETSET parameters in GENIE improves the agreement with NOMAD
- additional studies with **GENIE** event generator are required

NOMAD data offer an excellent tool for the optimization and development of existing event generators!

Nuclear effects in deep inelastic scattering and transition region

Shunzo Kumano

High Energy Accelerator Research Organization (KEK) J-PARC Center (J-PARC) Graduate University for Advanced Studies (SOKENDAI) http://research.kek.jp/people/kumanos/

10th International workshop on Neutrino-nucleus interactions in the few-GeV region, 16-21 November 2015, Suita Campus of Osaka University, Japan http://indico.ipmu.jp/indico/conferenceDisplay.py?ovw=True&confId=46

Nuclear effects in deep inelastic scattering and transition region

Recent global analyses on nuclear PDFs

HKN07

I may miss some papers.

- M. Hirai, S. Kumano, and T. -H. Nagai, Phys. Rev. C 76 (2007) 065207.
- Charged-lepton DIS, DY.

EPS09

- K. J. Eskola, H. Paukkunen, and C. A. Salgado, JHEP 04 (2009) 065.
- Charged-lepton DIS, DY, π^0 production in *dAu*.

CTEQ

• I. Schienbein, J. Y. Yu, C. Keppel, J. G. Morfin, F. I. Olness, J. F. Owens, Phys. Rev. D 77 (2008) 054013; D80 (2009) 094004;

K. Kovarik *et al.*, PRL 106 (2011) 122301; PoS DIS2013 (2013) 274; PoS DIS2014 (2014) 047; arXiv:1509.00792.

• Neutrino DIS, Charged-lepton DIS, DY.

DSZS12

- D. de Florian, R. Sassot, P. Zurita, M. Stratmann, Phys. Rev. D85 (2012) 074028.
- Charged-lepton DIS, DY, RHIC-π

See also L. Frankfurt, V. Guzey, and M. Strikman, Phys. Rev. D 71 (2005) 054001; Phys. Lett. B687 (2010) 167; Phys. Rept. 512 (2012) 255; arXiv:1310.5879. S. A. Kulagin and R. Petti, Phys. Rev. D 76 (2007) 094023; C 82 (2010) 054614; C 90 (2014) 045204.

A. Bodek and U.-K. Yang, arXiv:1011.6592.

nCTEQ Results

Nuclear correction factors (Q = 10 GeV)

$$R_i(Pb) = \frac{f_i^{p/Pb}(x,Q)}{f_i^p(x,Q)}$$

- different solution for d-valence & u-valence compared to EPS09 & DSSZ
- sea quark nuclear correction factors similar to EPS09
- nuclear correction factors depend largely on underlying proton baseline

Nuclear effects in deep inelastic scattering and transition region

Nuclear effects in deep inelastic scattering and transition region

Neutrino DIS \Leftrightarrow Charged DIS issue

According to their analysis, the issue does not exist!?

Update of HKN nuclear PDFs

M. Hirai (NIT) Collaborators: S. Kumano(KEK), K. Saito (TUS)

nPDFs [HKN07: Nucl. Phys. C76,065207 (2007)] http://research.kek.jp/people/kumanos/nuclp.html

Update of HKN nuclear PDFs

nPDFs from neutrino DIS

Discrepancy of nuclear effect?

- K. Schienbein, et. al [PRD77,054013(2008)]
 - Using (anti-)neutrino DIS data
 - Shallow EMC effect
 - Moving the anti-shadowing peak for small-x
- DSSZ12 [PRD85,0704028 (2012)]
 - Combined data set with lepton & neutrino DIS
 - Using $F_2 \& xF_3$ data, not x-sect !
 - Showing same effect ... ?
- Paukkunen, Salgado [JHEP07,032,(2010)]

;

Update of HKN nuclear PDFs

An issue of global analysis (χ^2 analysis)

- Assuming the same model when using data sets simultaneously
- Information fall ?
 - larger # of v-DIS data of Fe, Pb targets
 - 100 (NC-DIS,DY) v.s. 5000 (CC-DIS)
 - Large error data become numerical noise in total χ^2
 - Weight dependence ?
 - Obtained intermediate model which has possibility to reproduce these data sets

Are nuclear effects different?

- Attributing to structure and dynamics in a nucleus, base on strong interaction
- EW probe dependent?
- To answer the equation, test of significance for data set needs

Kovarik, et. al, PRL106,122301(20' $\chi^2 = \chi^2_{IA-DIS} + W^* \chi^2_{VA-DIS}$

What about Neutrinos? nCTEQ Analysis

Good reason to consider nuclear effects are DIFFERENT in ν - A.

- ▼ Presence of axial-vector current.
- ▼ Different nuclear effects for valance and sea --> for example different shadowing for xF₃ compared to F₂.

F₂ Structure Function Ratios: v-Iron

F_2 Structure Function Ratios: $\overline{\nu}$ -Iron

Comparison of the F_2 Structure Function in Iron as Measured by Charged Lepton and Neutrino Probes

- "CJ12min fit" Phys.Rev. D 87 094012 (2013)
- "MaGHiC" Intl. Journ. Mod. Phys. E 23 1430013 (2014)
- Difference between Charged lepton and neutrino data at $x < \sim 0.15$
- Neutrino data seems to be in agreement with CJ -CJ has no nuclear effects taken in to account.

H.Haider et al. in a field theoretical model have studied medium effects in nuclear structure functions F_i^{EM} (i=1,2) and F_j^{Weak} (j=1,2,3)

Others Do NOT Find this Difference between $|^{\pm}$ and v

- The analyses of K. Eskola et al. and D. de Florian et al. do not find this difference between [±]–A and v–A scattering.
- They do not use the full covariant error matrix rather adding statistical and systematic errors in quadrature.
- They do not use the full double differential cross section rather they use the extracted structure functions which involve assumptions:
 - ▼ Assume a value for $\Delta x F_3$ (= $F_3^{\nu} F_3^{\nu}$) from theory.
 - Assume a value for $R = F_L / F_T$.
- If nCTEQ makes these same assumptions, than a combined solution of [±]–A and v–A scattering can be found.

Neutrino-nucleus deep inelastic scattering with MINERvA

Joel A. Mousseau University of Michigan / University of Florida 10th International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region 11/19/15

•X dependent ratios directly translate to x dependent nuclear effects.

•Currently, our simulation assumes the *same* x-dependent nuclear effects for C, Fe and Pb tuned to e⁻ scattering.

•The shape of the data at low x, especially with lead is consistent with additional nuclear shadowing.

•The intermediate x range of (0.3 < x < 0.75) shows good agreement between data and simulation.

We Now Have A New DIS Player - What does MINERvA see? DIS Cross Section Ratios – $d\sigma/dx$

The shape of the data at low x, especially with lead is consistent with additional nuclear shadowing. at an
 <x> (0.07) & <Q² > (2)
 GeV²) - where negligible shadowing is expected with l[±].

Shadowing - continued

- Why low x?
- The lifetime of the hadronic fluctuation has to be sufficient to allow for these multiple diffractive scatters:

$$t_c = 2E_{had} / (Q^2 + m^2)$$

- For a given Q² need large E_{had} to yield sufficient t_c which implies small x.
- ◆ m is larger for the vector current than the axial vector current → for a given Q² you need more E_{had} for the vector current than the axial vector current to have sufficient t_c .
- This implies you can have shadowing at higher x with neutrinos than with charged leptons

Backup

- Generator comparison: run the different generators at different fixed energies for different targets and compare the ouputs
- Focus on charged current interactions
 Assume SIS/DIS region = W>1.7 GeV
 All interactions from muon neutrinos and anti-neutrinos
- Comparisons will be mainly multiplicities (charged hadrons, pions and neutral pions) and some kinematical variables (W, Q2, leading pion momentum)
- Also have a look at particle content for the "custom models" used by generators to model DIS interactions where PYTHIA cannot be used
- Start by describing how the generators treat the transition and DIS regions

PYTHIA Hadronization Program for Neutrino experiments – Teppei Katori

AGKY, EPJC63(2009)1 TK and Mandalia,JPhysG42(2015)115004 1. GENIE hadronization model	(AGKY model)	(Series)	 Introduction Hadronization PYTHIA tuning PYTHIA8
Cross section W ² <2.9 GeV ² : RES W ² >2.9 GeV ² : DIS Hadronization (AGKY model)	PYTHIA hadronization - It is used only for hig - It may be important f especially PINGU. OR	h W (W ² >5.3Ge or future experi CA. Hyper-K. D	eV ²) ments, UNE

W²<5.3GeV² : KNO scaling based model

2.3GeV²<W²<9.0GeV² : transition

9.0GeV²<W² : PYTHIA6

W distributions Ar, E_v =2.5 GeV

Main differences are presence or absence of certain resonances Won't affect comparisons at W>1.7 GeV

Relative agreement between NEUT and NuWro GENIE predicts more charged hadrons than others

Similar pattern, difference between NEUT and NuWro slightly smaller

Comparison of tuned NOMAD event generator with GENIE at event generator level for CNGS beam. ν_{μ} CC interactions

Hadrons	NOMAD (%)	GENIE (%)	GENIE/NOMAD
$\overline{K^0_S}$	5.31	6.46	1.21
Λ^{0}	4.88	7.63	1.56
$ar{\Lambda}^0$	0.28	0.25	0.89
$\rho^{0}(770)$	14.27	19.30	1.35
$f_0(980)$	1.39	0	-
$f_2(1270)$	2.75	0	-
D^0	1.99	4.11	2.07
K^+	8.17	11.91	1.46
K^-	3.63	4.88	1.34
Fraction			
$\frac{N(K^{\star+} \to K^0_S \pi^+)}{N(K^0_S)}$	18.19	25.97	1.42
$\frac{N(K^{\star-}\to K^0_S\pi^-)}{N(K^0_S)}$	7.13	9.09	1.27
$\frac{N(\Sigma^{\star +} \to \Lambda \pi^{+})}{N(\Lambda)}$	3.47	13.4	3.86

$Q^2 \rightarrow 0$ region: Theoretical background

$$F_{T,L} = \frac{\gamma}{\pi} Q^2 \sigma_{T,L}, \quad \gamma = \frac{|\vec{q}|}{q_0} = \sqrt{1 + \frac{Q^2}{v^2}}$$

$$\sigma_{T,L} = \text{Total } v \text{ cross section}$$

$$\sim \sum_f (2\pi)^4 \delta(p+q-p_f) |\langle f | \varepsilon_{T,L} \cdot J(0) | p \rangle|^2$$

$$F_{T,L} = \text{transverse, longitudinal cross section}$$
Vector current conservation: $q_\mu W^{\mu\nu} = 0$

$$\Rightarrow F_L^V \sim Q^2 F_T^V \text{ as } Q^2 \rightarrow 0$$
PCAC (Partially Conserved Axial-vector Current):
 $\partial_\mu A^\mu(x) = f_\pi m_\pi^2 \pi(x), \quad A^\mu = \text{Axial-vector current},$
 $f_\pi = \text{Pion-decay constant}, \quad \pi = \text{Pion field}$
 $\Rightarrow F_L^A \sim \frac{f_\pi^2}{\pi} \sigma_\pi \text{ as } Q^2 \rightarrow 0,$
Pion-scattering cross section: σ_π

$Q^2 \rightarrow 0$ region: Practical description

 $F_{1,2,3}^{\nu_A}(x,Q^2\to 0)$

(1) FLUKA, G. Battistoni *et al.*, Acta Phys. Pol. B 40 (2009) 2431

$$F_{2,3}(x,Q^2) = \frac{2Q^2}{Q_0^2 + Q^2} F_{2,3}(x,Q_0^2)$$

(2) A. Bodek and U.-K. Yang, arXiv:1011.6592 charged-lepton:

$$F_{2}^{e/\mu}(x,Q^{2} < 0.8 \text{ GeV}^{2}) = K_{valence}^{vector}(Q^{2})F_{2,L0}^{valance}(\xi_{w},Q^{2} = 0.8 \text{ GeV}^{2}) + K_{sea}^{vector}(Q^{2})F_{2,L0}^{sea}(\xi_{w},Q^{2} = 0.8 \text{ GeV}^{2}) K_{valence}^{vector}(Q^{2}) = \frac{Q^{2}}{Q^{2} + C_{s}}, K_{sea}^{vector}(Q^{2}) = \left[1 - G_{D}^{2}(Q^{2})\right]\frac{Q^{2} + C_{v2}}{Q^{2} + C_{v1}} G_{D}(Q^{2}) = \frac{1}{(1 + Q^{2}/0.71)^{2}}, \xi_{w} = \frac{2x(Q^{2} + M_{f}^{2} + B)}{Q^{2}\left[1 + \sqrt{1 + 4M^{2}x^{2}/Q^{2}}\right] + 2Ax}$$

neutrino:

Separate $F_i^{\nu}(x, Q^2)$ into vector and axial-vector parts.

 $F_i^{\nu}(x,Q^2)_{\text{vector}} \rightarrow Q^2 \rightarrow 0 \quad (Q^2 \rightarrow 0)$ as the charged-lepton case. $F_i^{\nu}(x,Q^2)_{\text{axial-vector}} \neq 0 \quad (Q^2 \rightarrow 0)$ due to PCAC.

Actual expressions are slightly complicated (see the original paper).

Charged-lepton Nuclear Parton Distribution Functions

Functional form of initial distributions at Q_0^2

- Definition of NPDF (as initial condition of the DGLAP eq.) $-f_i^A(x) = \frac{1}{A} \left(Z f_i^{p/A}(x) + (A - Z) f_i^{n/A}(x) \right), \left[f_i^{N/A}(x) : \text{PDF of bound nucleon in the nucleus} \right]$
 - Assuming isospin symmetry: $u \equiv d^n = u^p$, $d \equiv u^n = d^p$
- **Functional forms**
 - HKN07 ($Q_0^2 = 1 \text{ GeV}^2$)

'13

 $f_i^A(x) = w_i(x, A, Z) \frac{1}{A} \left(Z f_a^p(x) + (A - Z) f_a^n(x) \right), w_i(x, A, Z) = 1 + \left(1 - \frac{1}{A^{1/3}} \right) \frac{a_i + b_i x + c_i x^2 + d_i x^3}{(1 - x)^{0.1}}$

 $- EPS09 (Q_0^2 = 1.69 \text{ GeV}^2)$ $f_i^{N/A}(x) = R_i^A(x) f_i^{CTEQ6.IM}(x, Q_0^2), R_i^A(x) = \begin{cases} a_0 + (a_1 + a_2 x)[exp(-x) - exp(-x_a)] & (x \le x_a : \text{shadowing}) \\ b_0 + b_1 x + b_2 x^2 + b_3 x^3 & (x_a \le x \le x_e : \text{antishadowing}) \\ c_0 + (c_1 - c_2 x)(1 - x)^{-\beta} & (x_e \le x \le 1 : \text{EMC}\&\text{Fermi}) \end{cases}$ $- \text{nCTEQ15 (Q_0^2 = 1.69 \text{ GeV}^2)}$

$$xf_{i}^{N/A}(x) = \begin{cases} A_{0}x^{A_{1}}(1-x)^{A_{2}}e^{A_{3}x}(1+e^{A_{4}}x)^{A_{5}} & :i = u_{v}, d_{v}, g, \overline{u} + \overline{d}, s, \overline{s} \\ A_{0}x^{A_{1}}(1-x)^{A_{2}} + (1+A_{3}x)(1-x)^{A_{4}} & :i = \overline{d} / \overline{u} \end{cases}$$

$$- \text{DSSZ}(Q_{0}^{2}=0.4 \text{ GeV}^{2})_{x} f_{i}^{N/A}(x_{N}) = \int_{x}^{A} \frac{dy}{y} W_{i}(y,A,Z) f_{i}^{N}\left(\frac{x_{N}}{y},Q_{0}^{2}\right), \begin{cases} W_{v}(y,A,Z) = \left[a_{v} \,\delta(1-\cdot_{v}-y) + (1-a_{v}) \,\delta(1-_{v}-y)\right] + n_{v}\left(\frac{y}{A}\right)^{\alpha_{v}} \left(1-\frac{y}{A}\right)^{\beta_{v}} + n_{s}\left(\frac{y}{A}\right)^{\alpha_{s}} \left(1-\frac{y}{A}\right)^{\beta_{s}}, \\ W_{s,g}(y,A,Z) = A \,\delta(1-y) + \frac{a_{s,g}}{N_{s,g}}\left(\frac{y}{A}\right)^{\alpha_{s,g}} \left(1-\frac{y}{A}\right)^{\beta_{s,g}} \end{cases}$$

Kinematics of the neutrino DIS experiment

- Kinematic in Lab frame
 - $X = Q^2/2 < M_N > v$
 - $v = E_{had}$: energy of outgoing hadron
 - $y=E_{had}/(E_{had}+E_{l})$
 - $Q^2=2 < M_N > xyE_v$, $(E_v = E_{had} + E_l)$
 - $W = \langle M_N \rangle^2 + Q^2 (1-x)/x$
- Q²> 4 GeV², W>3.5 GeV

Experiment	Target	Beam energy (GeV)	# of data ∨ &⊽
NuTeV	Fe	35-340	2604
CHORUS	Pb	25-130	1204
CDHSW	Fe	23-187	1602

Neutrino: CTEQ vs. Other nPDF sets

- CTEQ uses the double differential cross sections NOT the structure functions F₂ and xF₃ that require additional theoretical assumptions to extract.
- CTEQ uses the full NuTeV covariant error matrix rather than adding systematics and statistical errors in quadrature.

Use 8 Neutrino data sets

- NuTeV cross section data: ν Fe, ν Fe
- ▼ NuTeV dimuon off Fe data
- **v** CHORUS cross section data: νPb , νPb
- ▼ CCF*R* dimuon off Fe data

MINERvA Nuclear Targets

Inclusive Ratios: $d\sigma / dx$

•Data are presented as differential cross-section ratios in reconstructed x: we do not correct for detector smearing.

•We observe an *excess* in the data at large x, and a *deficit* at low x, which grows with the size of the nucleus.

- The low x events are at a low Q² (0.5 (GeV/c)²), where the theory complicated.
- High x events are a mixture between quasi-elastic and resonant.

DIS Ratios: $\sigma(E_v)$

- •Ratios of the heavy nuclei (Fe, Pb) to lighter CH are evidence of nuclear effects.
- •There is a general trend of the data being below the MC at high energy.
- •This trend is larger in the lead than in the iron.

Alternative x-Dependent Effects

- Our data currently lacks statistical precision to differentiate between different effects, particularly on the edges of the distribution.
- But the models themselves show significant disagreements from each other, especially in the EMC region (0.3 < x < 0.7).
- This is strong motivation to accumulate and analyze additional medium energy neutrino and anti-neutrino data, which will be able to resolve these discrepancies.
- Additionally, better observe these differences in shadowing between $e^{\text{-}}$ and $\nu_{_{\!\!\!\!\mu}}$

Shadowing in Neutrino Interactions Difference expected compared to $l^{\pm} A$

Nuclear Shadowing in Electro-Weak Interactions - Kopeliovich, JGM and Schmidt arXiv:1208.6541

- Several theoretical models successfully describe the shadowing effects observed in charged-lepton nucleus scattering.
- Most are based on hadronic fluctuations of the γ (or W/Z for neutrinos)
- These fluctuations then undergo multiple diffractive scattering off leading nucleons in the the nucleus.
- The multiple scatters interfere destructively leading to no flux making it to downstream nucleons resulting in a depletion of cross section at low values of x.

- No summary from the talk itself however,
- The obvious summary is that this is a very informative and useful comparison of existing generators in their treatments of the higher W part of SIS and the DIS kinematic regimes.

Tuning NOMAD event generator - ν_{μ} CC even

Reweighting for the cross-sections Events selection: $Q^2 > 0.8 \ GeV^2$, $E_{had} > 3GeV$

Analizing the following variables:

- Transverse size of the hadronic system
- Momentum and angle distributions of hadrons
- Primary tracks multiplicity
- Particles and resonances yields: Λ^0 , $\bar{\Lambda}^0$, K_S^0 , $K^{\star\pm}$, $\Sigma^{\star\pm}$, D^0 , $D^{\star 0}$, ρ^0 , f_0 , f_2 , di-muon events
- Formation length