Fermilab SBN program: MicroBooNE

Anne Schukraft, Fermilab on behalf of the MicroBooNE collaboration

NuInt2015, Osaka, Japan

MicroBooNE: First LArTPC detector in the SBN program up and running!

Primary physics goals:

- Resolving the nature of the lowenergy e-like event excess observed by MiniBooNE.
- Measuring neutrino-argon cross sections in the QE and RES range.

(Booster Neutrino Beamline at Fermilab)

Cross section data on liquid-argon

Argon: target material for many future detectors

Need more experimental data to learn about nuclear effects and neutrino energy reconstruction

BNB ν_{μ} interactions in MicroBooNE

Energy range: 200 MeV – 2 GeV (QE & RES)

Practicing our first analyses on MC data using fully-automated event reconstruction

MicroBooNE as-designed MC preliminary

Simulation for MicroBooNE	MC events/	Stat.	Rel. stat.	Sys.	Rel. sys.
as designed	variable	unc.	unc.	unc.	unc.
Predicted no. of events	7968	89.3	1.1%	-	-
Cosmic only events	3401	-	-	58.3	1.7% 💮
Cosmics in BNB events	261	-	-	130.5	50% eg
NC events	156	-	-	78	50% g
ν_e and $\bar{\nu}_e$ events	22	-	-	22	100% 🗄
$ar u_\mu { m events}$	12	-	-	2.4	$20\% \stackrel{\odot}{\succ}$
Total background	3852	-	-	164.3	4.3% ਰਿ
$\nu_{\mu} \text{ CC events}$	4116	89.3	2.3%	164.3	4.0%
$\Phi_{ u_{\mu}}$	$3.10 imes 10^{10} m \ cm^{-2}$	-	-		12%
$N_{ m target}$	$4.76 imes 10^{31}$	-	-		2% ⁹ 40
ϵ	0.326	-	-		5% 💆

(for $\approx 3 \text{ months}$)

Practicing our first analyses on MC data using fully-automated event reconstruction

MicroBooNE as-designed MC preliminary

	Simulation for MicroBooNE	MC events/	Stat.	Rel. stat.	Sys.	Rel. sys.
	as designed	variable	unc.	unc.	unc.	unc.
	Predicted no of events	7968	89.3	1.1%	-	-
	Cosmic only events	3401	We ar	e on the s	surface:	S C
	Cosmics in BNB events	261	a lot o	ofbackgro	ound fro	ate m
	NO events	156	cosm	ic muon t	racks	
	ν_e and $\bar{\nu}_e$ events	22	-	-	22	Sti &oor
	$ar{ u}_{\mu} ext{ events}$	12	-	-	2.4	$20\% \stackrel{\odot}{\scriptscriptstyle m b}$
	Total background	3852	-	-	164.3	4.3% _b
<	$ u_{\mu} \text{ CC events} $	4116	89.3	2.3%	164.3	4.0%
	$\Psi_{ u_{\mu}}$	$3.10 \times 10^{10} \text{ cm}^{-2}$	-	-		12% j
	$N_{ m target}$	$4.76 imes 10^{31}$	-	-		2% U
	ϵ	0.326	-	-		5% 💆

(for $\approx 3 \text{ months}$)

Practicing our first analyses on MC data using fully-automated event reconstruction

MicroBooNE as-designed MC preliminary

Simulation for MicroBooNE	MC events/	Stat.	Rel. stat.	Sys.	Rel. sys.
as designed	variable	unc.	unc.	unc.	unc.
Predicted no. of events	7968	89.3	1.1%	-	-
Cosmic only events	3401	-	-	58.3	1.7% ്റ്റ
Cosmics in BNB events	261	-	-	130.5	50% eg
NC events	156	-	-	78	50% g
ν_e and $\bar{\nu}_e$ events	22	-	-	22	100% 🗄
$ar u_\mu$ events	12	-	-	2.4	$20\% \stackrel{\odot}{\scriptscriptstyle m b}$
Total background	3852	-	-	164.3	4.3% le
ν_{μ} CC events	4116	89.3	2.3%	164.3	4.0%
$\Phi_{ u_{\mu}}$	$3.10 imes 10^{10} m \ cm^{-2}$	-	-		12% j
$N_{ m target}$	4.76×10^{31}	Effici	$\Delta n \alpha \tau * \Delta \alpha$	ontan	
ϵ	0.326	Conte	vined even	te only	
	$(for \approx 3 months)$)		.05 UIIIY	1101.0

Practicing our first analyses on MC data using fully-automated event reconstruction

MicroBooNE as-designed MC preliminary

Anne Schukraft, Fermilab

(for an analysis threshold of 400 MeV)

CC Oπ in MicroBooNE

$NC \pi^0$ in MicroBooNE

Why is this interesting?

- Background for v_e appearance search
- Calibration with π^0 mass peak
- Very different pion absorption in Ar vs C first chance to measure these effects!

ArgoNeuT

Ar

 ν_{μ}

	NC single π^0		After Eff.
≈ 3 months	886	O(10%) eff	89
≈ 6 months	1771		177
≈ 3 years	11688		1169

ν_u

 $\sim \gamma$

 Z^{0}

Expecting low efficiency: The fraction of events with both photons from the π^0 decay contained in the fiducial volume and above detection threshold is rather low

R&D in MicroBooNE

TPC construction: 2013

TPC construction: 2013

PMT system installation: Dec 2013

TPC construction: 2013

PMT system installation: Dec 2013

TPC insertion: Dec 23rd, 2013

MicroBooNE's home in the beam line: The LAr Test Facility

TPC constr

day! June 23rd, 2014

Foamed in! July 2014

MicroBooNE's home in the beam line: The LAr Test Facility

Cabled up! Sept. 2014

MicroBooNE constr

All electronics in! Dec. 10, 2014

Cabled up! Sept. 2014

TPC construction: 2013

PMT system installation: Dec 2013

TPC insertion: Dec 23rd, 2013

Moving day! June 23rd, 2014

 $\ensuremath{\mathsf{MicroBooNE's}}$ home in the beam line: The LAr Test Facility

Foamed in! July 2014

Cabled up! Sept. 2014

All electronics in! Dec. 10, 2014

Argon purity

Liquid-argon drift electron lifetime after a two week filtration process.

First cosmic tracks!

Run 1147 Event 0. August 6th 2015 16:59

µBooNE

At cathode voltage -58 kV

Cosmic muons in 3D

Beam on!

Week

We are receiving Booster Neutrino Beam (BNB) since Oct 15, 2015!

Very stable data taking:

The neutrinos are coming

- Not every beam spill will produce a neutrino interaction in the detector. Most events contain only cosmic induced tracks.
- Cosmic muon tracks come randomly. Neutrinos come during the beam spill window.

Duration of a readout event: 4.8 ms

Duration of a beam spill: 1.6 µs

The neutrinos are coming

- Not every beam spill will produce a neutrino interaction in the detector. Most events contain only cosmic induced tracks.
- Cosmic muon tracks come randomly. Neutrinos come during the beam spill window.

Duration of a readout event: 4.8 ms

Duration of a beam spill: 1.6 µs

Timing of scintillation light signals detected with the PMT light system.

The neutrinos are coming

- Not every beam spill will produce a neutrino interaction in the detector. Most recorded events contain only cosmic muon tracks.
- Cosmic muon tracks come randomly. Neutrinos come during the beam spill window.

4

Time with respect to BNB Signal Time [μ s]

Duration of a readout event: 4.8 ms

Duration of a beam spill: 1.6 µs

Timing of scintillation light signals detected with the PMT light system.

per 0.3 μ s Background

Cosmic

with respect to

Fractional Flash Count

1.30

1.25

1.20

1.15

1.10

1.05

1.00

0.95

0.90└─ 0

2

8

10

6

Measured Cosmic Rate (Beam-Off)

Data (Beam-On, 1.62e18 POT)

μBooNJ

Preliminary

First fully automated reconstruction & selection

- Reconstruct events in 2D & 3D
- Select neutrino-like topology
- Aiming for: minimum reconstruction effort, and high purity, but not high efficiency

MicroBooNE preliminary 1.86e18 POT (BNB)

6e18 POT (BNB)	Fully automated selection			
Number of events	Optical + 3D-based	Optical + 2D-based		
Non-beam background (expected from off-beam measurements)	4.6 ± 2.6	385 ± 24		
Total observed (during beam)	18	463		

Clear excess of selected events over background.

(collection plane view)

Run 3469 Event 53223, October 21st, 2015

(collection plane view)

(collection plane view)

Run 3470 Event 61421, October 21st, 2015

(collection plane view)

Run 3493 Event 41075, October 23rd, 2015

Run 3493 Event 41075, October 23rd, 2015

75 cm

Same event in all three anode plane views.

 WBOONE

 BOONE

 BOONE

(induction plane view (U))

(induction plane view (V))

Summary

- MicroBooNE sucessfully started operation and is observing beautiful neutrino interactions.
- We have started work on several cross section channels and are getting prepared for our first data.
- We will be able to produce interesting physics results using the data accumulated during the first few months.