Hyper-K Systematics

Nulnt2015 Raj Shah (RAL & Oxford) On behalf of the Hyper-K collaboration Hyper-K

Raj Shah - NuInt 2015

T2K

50 kT (22.5 FV) 330 kW Beam power

Hyper-K systematics

Systematics

Stronger focusing horns Gd Doping Water based ND (Friday - K. Yamamoto, M. Scott)

Statistics

1 Megaton (0.5 FV) >1 MW Beam power

Raj Shah - Nulnt 2015

Predicted event rate

 ν - mode

anti v - mode

Raj Shah - Nulnt 2015

Sensitivity to CP violation

Sensitivity to exclude maximal mixing

δср

 ν - mode

anti ν - mode

Raj Shah - Nulnt 2015

Official HK sensitivity

Based on (2013) T2K model and ND constraints

PTEP 2015, 053C02		Flux & ND-constrained cross section		d ND-in cros	ND-independent cross section		Far detector		etor	Total	
-	ν mode	Appearance Disappearance		3.0 2.8		$\begin{array}{c} 1.2 \\ 1.5 \end{array}$			$\begin{array}{c} 0.7 \\ 1.0 \end{array}$		3.3 3.3
-	$\overline{\nu}$ mode	Appearance Disappearance		5.6 4.2		$\begin{array}{c} 2.0\\ 1.4 \end{array}$			$\begin{array}{c} 1.7\\ 1.1 \end{array}$		$\begin{array}{c} 6.2 \\ 4.5 \end{array}$

- Correlated ND-SK flux and x-sec <u>0 correlation between</u> running modes
- Reduction in ND-independent x-sec errors water ND
- Reduced HK detector errors stronger constraint from control samples

CPV sensitivity

Updated sensitivity study coming soon!

Raj Shah - NuInt 2015

Sources of Error

Flux

HK Detector

Interaction

ND Detector

Hyper-K systematics

Systematic studies

- Motivate requirements from ND constraint
- Identify dominant systematics
- No ND constraint applied

Raj Shah - NuInt 2015

Sensitivity studies

HK Detector <1% effect Flux Errors next biggest Interaction uncertainties dominate!

Interaction model

Neut model v5.3.2 - Tuned - Nieves 2p-2h

<u>Shape</u>

CCQE- Relativistic Fermi Gas + Random Phase approximation Fermi Momentum (5%)

Binding Energy (33%) MaQE (6%)

Constrained from external data MiniBooNE + Minerva

Pion - CC and NC - Rein-Sehgal production model Nucleon - Δ axial current form factor (12%) Isospin 1/2 continuum background (15%) MaRes (16%) DIS + multi Pion (0.4/E_ν)

Normalisation uncertainties

2p-2h (100%), 2p-2h anti- ν (100%), CC Coherent (100%), NC Coherent (30%), NC ($\overline{\pi}$, coh) (30%), CC ν_e (2%), CC anti ν_e (2%)

v_e - anti v_e + 2p-2h

Big contribution from v_e - anti v_e σv_e not currently constrained by T2K ND280 2p-2h parameters next largest

o to determine CPV

Raj Shah - Nulnt 2015

v_e - anti v_e Uncertainty

Day & McFarland (Phys.Rev. D86 (2012) 053003)

Kinematic allowed region

Second class currents (anti-correlated)

Radiative corrections need to be calculated!

v_{e} - anti v_{e}

 ν_e - anti ν_e anti-correlation significant $\sim\!1\%$ constraint to maximise HK potential

Raj Shah - NuInt 2015

Flux

2 Systematic effects identified and studied

Fraction of wrong sign flux in anti- v_e Intrinsic v_e in both v_e and anti- v_e

Wrong Sign Background

Negligible effect below ~10% error Current T2K (magnetised) ND ~ 7% -> Focusing 250kA - > 320kA

Hyper-K systematics

Intrinsic ν_e

Need a constraint between 1-5% Current T2K ND has ~5% error -> (Comes from ν_{μ} - ν_{e} correlations)

Raj Shah - Nulnt 2015

Flux Uncertainties

- •Proton beam uncertainties
- Target and hadron production uncertainties
- •Horn field uncertainties
- Alignment uncertainties

Data from NA61/SHINE

Hyper-K systematics

Non maximal Θ_{23}

$sin^{2}(\Theta_{23}) \neq 0.5$

Raj Shah - NuInt 2015

22

$sin^{2}(\Theta_{23}) \neq 0.5$

$sin^{2}(\Theta_{23}) \neq 0.5 - XSec$

No dominant uncertainty π shape + 2p-2h have similar effects Minimal effect from including CCQE shape errors!

ν - mode anti ν - mode

Measurement depends on shape at dip!

<u>NC</u>

- •Same in ν and anti- ν
- Dominates are low E

CCnQE (with 2p2h)

- •Significant at osc dip
- > CCQE in anti- ν

Summary

<u>CPV</u>

- v_e + anti v_e errors dominate
- 2p-2h and anti 2p-2h errors next largest
- Both explicitly have ν + anti ν differences

Non-Maximal O₂₃

- •No dominant source of error
- •Flux and Detector still under study
- •From x-sec, 2p-2h and Pion have biggest effect

Hyper-K systematics

Backups

Systematic envelopes

1R_e

 $\mathbf{1R}_{\mu}$

Raj Shah - NuInt 2015

CCQE Reconstruction

 ν - mode anti ν - mode

$$E_{\nu}^{\text{rec}} = \frac{m_p^2 - (m_n - E_b)^2 - m_l^2 + 2(m_n - E_b)E_l}{2(m_n - E_b - E_l + p_l\cos\theta_l)}$$

Raj Shah - Nulnt 2015

Model and Errors

Parameter	Validity Range	Nominal	Error	Class
M_A^{QE}	all	$1.15~{\rm GeV}/\textit{c}^2$	0.06	shape
$p_F~^{12}{ m C}$	200 - 275 ${\rm MeV/c}$	$223~{\rm MeV/c}$	0.06	shape
MEC ^{12}C	all	0.27	0.29	norm
E_B ¹² C	12 - $42~{\rm MeV}$	$25 { m MeV}$	0.36	shape
p_F ¹⁶ O	200 - 275 $\mathrm{MeV/c}$	$225~{\rm MeV/c}$	0.05	shape
MEC ^{16}O	all	0.27	1.04	norm
E_B ¹⁶ O	12 - $42~{\rm MeV}$	$27 { m MeV}$	0.33	shape
$CA5^{RES}$	all	1.01	0.12	shape
M_A^{RES}	all	$0.95~{\rm GeV}/\textit{c}^2$	0.16	shape
$Isospin = \frac{1}{2} Background$	all	1.3	0.15	shape
$ u_e/ u_\mu$	all	1.0	0.02	norm
CC Other Shape	all	0.0	0.40	shape
$CC Coh {}^{12}C$	all	1.0	1.00	norm
$\rm CC$ Coh $^{16}\rm O$	all	1.0	1.00	norm
NC Coh	all	1.0	0.30	norm
NC Other	all	1.0	0.30	norm

Raj Shah - Nulnt 2015

T2K ND constraint

Near Detector Fit

- Predicted flux at Super-K is generally increased
- Some cross-section parameters are significantly different to prior values
- In general error on parameters is decreased

Raj Shah - NuInt 2015

T2K ND constraint

Near Detector Constraint at

Super-K

The near detector significantly reduces the systematic uncertainty in the predicted event rate at Super-K

		Systematic	Without ND	With ND
Flux and Cross-		Common to ND280/SK	9.2%	3.4%
	Super-K	Multi-nucleon effect on oxygen	9.5	%
Section	Only	All Super-K Only	10.0	0%
		All	13.0%	10.1%
Final Sta	te Interactio	n/Secondary Interaction at Super-K	2.1	.%
	Si	uper-K Detector	3.8	8%
		Total	14.4%	11.6%

Raj Shah - Nulnt 2015

$\overline{\nu}_{\mu}$ disappearance: K Duffy NuFact 2015 Comparison to T2K ν_{μ} + ν_{e} fit

- Results are consistent between neutrinos and antineutrinos
- Antineutrino analysis has much larger contours

Raj Shah - Nulnt 2015

ν_μ disappearance: K Duffy NuFact 2015 Effect of systematics

Analysis is still very much statisticsdominated

Raj Shah - Nulnt 2015

- $\pi^0 \rightarrow \gamma$ background 70 % from out-of-fiducial-volume constrained from data (2.1 % systematics)
- · large model-dependence where very small efficiency (otherwise stat. limited)
- v_e on water with T2K P0D filled with water or emptied (air)
- requires forward electrons (θ <45°) + shower/track variable to remove μ and π^0

	MC Signal	MC Background	MC Total	Data
Water	196.1 ± 4.8	56.7 ± 2.7	252.8 ± 5.5	230
On-Water	60.2 ± 2.6	14.5 ± 1.3	74.7 ± 2.9	
Not-Water	135.9 ± 4.0	42.2 ± 2.3	178.2 ± 4.6	
Air	173.6 ± 4.6	97.4 ± 3.6	271.0 ± 5.8	257

subtraction of air data from water data

 \rightarrow large statistical uncertainties (syst dominated by detector)

 $R_{on water} = (water - air)_{data} / MC_{on water} = 0.87 \pm 0.33 (stat.) \pm 0.21 (syst)$

Sara Bolognesi - NuFact15

Det + FSI + PN

Detector errors have little effect even at SK level (~100% correlated between ν and anti - ν modes) FSI + Photo-nuclear currently uncorrelated

sin²(Θ_{23}) - MEC

- The problem of energy reconstruction was covered in the neutrino-nucleus theory overview by M. Martini on Monday (12:30)
 - Non-QE interactions have a reconstructed energy that can deviate significantly from the true energy
 - Constraining this effect with near detector data is challenging since the near detector flux is broad and different from the far detector flux

M Hartz NuFact2015

Raj Shah - Nulnt 2015

sin²(Θ_{23}) - MEC

- The uncertainty on the energy smearing due to nuclear effects has a large impact on the v_{μ} disappearance measurement since smeared events fill in the "dip" region
- HK aims for 1-3% precision on $sin^2\theta_{23}$ (depends on the true value)
- T2K studied the impact of np-nh modeling uncertainty
 - Generate toy data with an ad-hoc np-nh model
 - Fit the toy data with the NEUT model (includes pion-less delta decay)
 - Evaluate the bias on the fitted oscillation parameters

The average bias in the fitted sin²θ₂₃ was 3%

Hyper-K systematics