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Introduction

 

We see but can NOT control individual nucleons in a nucleus. 

(or, can we?) 

is difficult:
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Introduction
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nuclear targets
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gas dynamics 
+ shell structure

Effects associated with nuclear 
targets in neutrino interactions

– highly convoluted and complex
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A study of nuclear effects in neutrino 
interactions with transverse kinematics

L. Pickering, 20-Nov-2015, 10:15
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Introduction
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Introduction

● Pure hydrogen

– Technical requirement: 

● bubble chamber (historical: 73, 79, 78, 82, 86) or high pressure gas chamber

– Safety issue: explosive

● “Since the use of a liquid H2 bubble chamber is excluded in the ND hall due to safety 
concerns, ...” [2]

[1] K. A. Olive et al. (Particle Data Group Collaboration), Review of particle physics, Chin. Phys. C 38, 090001 (2014).
[2] C. Adams et al. (LBNE Collaboration), Reports No. BNL-101354-2013-JA, No. BNL-101354-2014-JA, No. FERMILAB-PUB-14-022, and No. LA-UR-14-20881, 
2013.

H
2 In the last ~30 years there has 

been no new measurement of 
(anti)neutrino interactions on pure 
hydrogen. But soon there will be 
→ see later slides)

Ref. [1]
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Introduction

● Mixed target like polystyrene (“hydrogen-doping” in nuclei) 

– Events from hydrogen and other nuclei not distinguishable, only statistical 
subtraction between two target materials:  “... the (anti)neutrino interactions off a 
hydrogen target can only be extracted with a subtraction method from the composite 
materials of the ND targets.”[1]

– In Phys.Rev. D92 (2015) 5, 051302 we introduce a technically much more 
accessible way of using hydrogen as target, which enables

● Neutrino energy spectra reconstruction independent of nuclear effects
● (Anti)Neutrino-hydrogen cross section
● Direct measurement of nuclear effects

● Outline

– Double-transverse kinematics

– Systematics

– Demonstration with T2K MC

– Application in current experiments ← 

– Potentials in future experiments

[1] C. Adams et al. (LBNE Collaboration), Reports No. BNL-101354-2013-JA, No. BNL-101354-2014-JA, No. FERMILAB-PUB-14-022, and No. LA-UR-14-20881, 
2013.

http://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.051302
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Double-Transverse Symmetry

● Lepton-proton interaction to 3 charged particles: l p → l' X Y

– Leading order realization in standard model: 

HIGHLY SYMMETRICAL SYSTEMS

● Double-transverse momentum imbalance 

– 0 for hydrogen 

– Heavier nuclei: irreducible symmetric broadening

● by Fermi motion O(200 MeV)
● further by FSI

– After reconstruction → see demonstration

● Still symmetric
● Hydrogen shape is only detector response → “Improving the detector resolution … eventually 

an event-by-event selection of hydrogen interactions”[1]

● ν energy resolution only detector response → simultaneously improved with selection.

[1] Phys.Rev. D92 (2015) 5, 051302 

http://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.051302
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Systematics

● δp
T T

 ≠ 0 but under the hydrogen peak

– Accidental nuclear background can be removed by

● tagging nuclear emission caused by FSI → 
● pion FSI that changes event topology

– Non-exclusive process (e.g. DIS) can be removed by 

● vetoing neutron, π0, γ  → 

● δp
T T

 = 0

– Higher mass resonances, non-resonant background

● can be removed by explicit kinematic (W, t)
● not background by redefinition of signal/background → topological definition, 

most relevant for energy measurement: “alternatively one could extend the definition 
of the production channel to include all contributions that have exclusive pπ+ final states”[1] 

– “Wrong sign” background

● can be removed by explicit kinematic – W(pµ) has no resonance peak

● stopped pions – advantage of resonance production [2]

[1] Phys.Rev. D92 (2015) 5, 051302  [2] MiniBooNE, Phys. Rev. D 84, 072005 (2011) 

http://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.051302
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Demonstration

● T2K-ND280 MC[1]

– Neut + realistic detector simulation 

– FGD: polystyrene (CH) target

– TPC: momentum, dE/dx

●  Reconstructed δp
T T

– Energy dependence typical for trackers

[1] Nucl. Instrum. Meth. A 659, 106 (2011)
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Demonstration

● Reconstructed E
ν
 from true hydrogen sample 

– More accurate than CCQE on carbon

● Energy dependence

– Constant energy scale

– Resolution typical for tracker
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Application in Current Experiments

● Direct measurement of neutrino-hydrogen cross section (signal: exclusive pπ +)

– Simple performance projection [see L. Pickering's talk] of T2K-like detector using 
NuWro+T2K flux on CH:

● neutrons not detectable

● Track, π0, γ threshold: kinetic energy 100 MeV

● Hit (vertex activity) threshold: 10% track threshold

● δp
TT
 resolution 20 MeV (Cauchy)

– Selection: CCNp1π+, no veto on nuclear emission*, no veto on neutrals 

(*secondary proton and activity above 
hit threshold below track threshold)

ν
µ
 - pπ+

S/B in 2σ improv.

nominal 0.8
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Application in Current Experiments

● Direct measurement of neutrino-hydrogen cross section (signal: exclusive pπ +)

– Simple performance projection [see L. Pickering's talk] of T2K-like detector using 
NuWro+T2K flux on CH:

● neutrons not detectable

● Track, π0, γ threshold: kinetic energy 100 MeV

● Hit (vertex activity) threshold: 10% track threshold

● δp
TT
 resolution 20 MeV (Cauchy)

– Selection: CCNp1π+, veto nuclear emission (N.E.), veto π0, γ above threshold 

ν
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 - pπ+

S/B in 2σ improv.

nominal 0.8

veto N.E. 0.9 1.1

veto π0, γ 1.0 1.1
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Application in Current Experiments

● Direct measurement of neutrino-hydrogen cross section (signal: exclusive pπ +)

– Simple performance projection [see L. Pickering's talk] of T2K-like detector using 
NuWro+T2K flux on CH:

● neutrons not detectable

● Track, π0, γ threshold: kinetic energy 100 MeV

● Hit (vertex activity) threshold: 10% track threshold

● δp
TT
 resolution 10 MeV (Cauchy) via e.g. B-field 0.2 → 0.4 T (capable to 0.8 T)

– Selection: CCNp1π+, veto nuclear emission (N.E.), veto π0, γ above threshold 

ν
µ
 - pπ+

S/B in 2σ improv.

nominal 0.8

veto N.E. 0.9 1.1

veto π0, γ 1.0 1.1

tracking 1.8 1.8
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Application in Current Experiments

● Direct measurement of neutrino-hydrogen cross section (signal: exclusive pπ +)

– Simple performance projection [see L. Pickering's talk] of T2K-like detector using 
NuWro+T2K flux on CH:

● neutrons not detectable

● Track, π0, γ threshold: kinetic energy 50 MeV via e.g. optimizing target geom.

● Hit (vertex activity) threshold: 10% track threshold

● δp
TT
 resolution 10 MeV (Cauchy) via e.g. B-field 0.2 → 0.4 T (capable to 0.8 T)

– Selection: CCNp1π+, veto nuclear emission (N.E.), veto π0, γ above threshold 

(Optimal thresholds depend on the signal and bk xsec.)

ν
µ
 - pπ+

S/B in 2σ improv.

nominal 0.8

veto N.E. 0.9 1.1

veto π0, γ 1.0 1.1

tracking 1.8 1.8

threshold 1.8 1.0

overall 2.3
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Application in Current Experiments

● Direct measurement of neutrino-hydrogen cross section (signal: exclusive pπ +)

– Simple performance projection [see L. Pickering's talk] of T2K-like detector using 
NuWro+T2K flux on CH:

● neutrons not detectable

● Track, π0, γ threshold: kinetic energy 50 MeV via e.g. optimizing target geom.

● Hit (vertex activity) threshold: 10% track threshold

● δp
TT
 resolution 10 MeV (Cauchy) via e.g. B-field 0.2 → 0.4 T (capable to 0.8 T)

– Selection: CCNp1π+, veto nuclear emission (N.E.), veto π0, γ above threshold 

(Optimal thresholds depend on the signal and bk xsec.)

ν
µ
 - pπ+

S/B in 2σ improv.

nominal 0.8

veto N.E. 0.9 1.1

veto π0, γ 1.0 1.1

tracking 1.8 1.8

threshold 1.8 1.0

overall 2.3

Most critical 
improvement
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Application in Current Experiments

1) 1D projection of Fermi 
motion w/ FSI smearing

2) pure detector resolution allowing 
multiple signal extraction method

3) bin in reconstructed E
ν
 

+ exclusive pπ+ extraction 
= nuclear-free ν  flux measurement

in E
ν

rec bin 

● Direct measurement of antineutrino-hydrogen cross section (signal: exclusive pπ −)

ν
µ
 – pπ -

Ε
ν
=1 GeV



20-Nov-2015 X.-G. Lu, Oxford 20

Application in Current Experiments

● Direct measurement nuclear effects on nuclear target

– Due to nuclear effects, σ
A
/σ

Η
 ≠ Z

– Nuclear effect = σ
A
/Zσ

Η 
 (deviation from 1)

● Signal/background definition may be subtle 
– “The yield ratio between the hydrogen signal and the remaining contribution from the other 

target nuclei is a precise measurement of the associated nuclear effects with cancellation 
of detection acceptance and efficiencies for both targets.”[1]

[1] Phys.Rev. D92 (2015) 5, 051302 

÷
nuclear 
effect =

http://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.051302
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Potentials in Future Experiments

● Production threshold ~ 300 – 500 MeV, cross section maximum after 2 – 3 GeV

– Higher energy flux by NuMI and LBNF optimal

● LAr

– Superb tracking and calorimetry properties

– Ar as neutrino target does not have advantage in terms of energy reconstruction 
quality

– Hydrogen-doping?

● Highly symmetrical systems for nu/anti-nu detection 

– Advantage for CPV measurement?
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Summary

● Pure neutrino-hydrogen interaction can be extracted from mixed target with double-
transverse momentum imbalance δp

TT
, all feasible with current technology (e.g. 

consider ALICE TPC tracking resolution):

– Nuclear-free neutrino flux measurement 

– (Anti)Neutrino-hydrogen interaction

– Direct measurements nuclear effects 

● On-going measurement in T2K

Nuclei are friends

– Base for hydrogen doping: convenient and safe. 

– Nuclear effect problem principally solvable – all influence can be avoided by 
improving tracking resolution.

– Prefer stronger nuclear effects to suppress background. 
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BACKUP
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Double-Transverse Symmetry

No nuclear effects → 4-momentum conservation applicable

z: symmetric between X and Y
y: symmetric between X+Y and lepton  → difficult to realize after reconstruction
x: E

ν
 = Σ

final state
 longitudinal momentum

E: E
ν
 = Σ

final state
 energy – m

initial nucleon

Consider 3-body CC final state

→ x or E depends on calorimetry / 
tracking / PID performance
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1 GeV (anti)ν
µ
 vs.  (anti)ν

e
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ν
µ
 NuMI
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END
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