10th International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region (NuInt15)

16-21 November 2015 Icho-Kaikan, Osaka University Suita Campus Asia/Tokyo timezone

Reconstruction of energy spectra of neutrino beams independent of nuclear effects

Xianguo Lu,¹ D. Coplowe,¹ R. Shah,^{1,2} G. Barr,¹ D. Wark,^{1,2} and A. Weber^{1,2}

¹Oxford University, UK ²Rutherford Appleton Laboratory, UK

> NuInt15, Osaka, Japan 20-Nov-2015

1

10th International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region (NuInt15) is difficult:

We see but can NOT control individual nucleons in a nucleus.

(or, can we?)

Effects associated with nuclear targets in neutrino interactions – highly convoluted and complex

nuclear effects

- Pure hydrogen
 - Technical requirement:
 - bubble chamber (historical: 73, 79, 78, 82, 86) or high pressure gas chamber

In the last ~30 years there has been no new measurement of (anti)neutrino interactions on pure hydrogen. **But soon there will be** \rightarrow see later slides)

- Safety issue: explosive
 - "Since the use of a liquid H2 bubble chamber is excluded in the ND hall **due to safety concerns**, ..." [2]
- [1] K. A. Olive et al. (Particle Data Group Collaboration), Review of particle physics, Chin. Phys. C 38, 090001 (2014).

^[2] C. Adams et al. (LBNE Collaboration), Reports No. BNL-101354-2013-JA, No. BNL-101354-2014-JA, No. FERMILAB-PUB-14-022, and No. LA-UR-14-20881, 2013.

- Mixed target like polystyrene ("hydrogen-doping" in nuclei)
 - Events from hydrogen and other nuclei not distinguishable, only statistical subtraction between two target materials: "... the (anti)neutrino interactions off a hydrogen target can only be extracted with a subtraction method from the composite materials of the ND targets."[1]
 - In Phys.Rev. D92 (2015) 5, 051302 we introduce a technically much more accessible way of using hydrogen as target, which enables
 - Neutrino energy spectra reconstruction independent of nuclear effects
 - (Anti)Neutrino-hydrogen cross section
 - Direct measurement of nuclear effects
- Outline
 - Double-transverse kinematics
 - Systematics
 - Demonstration with T2K MC
 - Application in current experiments ←
 - Potentials in future experiments

20-Nov-2015

^[1] C. Adams et al. (LBNE Collaboration), Reports No. BNL-101354-2013-JA, No. BNL-101354-2014-JA, No. FERMILAB-PUB-14-022, and No. LA-UR-14-20881, 2013.

Double-Transverse Symmetry

- Lepton-proton interaction to 3 charged particles: $l p \rightarrow l' X Y$
 - Leading order realization in standard model: {X, Y} = {p, π^+ } for $\nu + p \rightarrow l^- + \Delta^{++}$ or {p, π^- } for $\bar{\nu} + p \rightarrow l^+ + \Delta^0$

HIGHLY SYMMETRICAL SYSTEMS

• Double-transverse momentum imbalance

 $\delta p_{\rm TT} \equiv p_{\rm TT}^{\rm p} + p_{\rm TT}^{\pi}$

- 0 for hydrogen
- Heavier nuclei: irreducible symmetric broadening
 - by Fermi motion O(200 MeV)
 - further by FSI
- After reconstruction \rightarrow see demonstration
 - Still symmetric
 - Hydrogen shape is only detector response → "Improving the detector resolution ... eventually an event-by-event selection of hydrogen interactions"[1]
 - v energy resolution only detector response \rightarrow simultaneously improved with selection.

20-Nov-2015

Systematics

- $\delta p_{TT} \neq 0$ but under the hydrogen peak
 - Accidental nuclear background can be removed by
 - tagging nuclear emission caused by FSI \rightarrow
 - pion FSI that changes event topology
 - Non-exclusive process (e.g. DIS) can be removed by
 - vetoing neutron, π^0 , $\gamma \rightarrow$
- $\delta p_{TT} = 0$
 - Higher mass resonances, non-resonant background
 - can be removed by explicit kinematic (W, t)
 - not background by redefinition of signal/background \rightarrow *topological definition, most relevant for energy measurement*: "alternatively one could extend the definition of the production channel to include all contributions that have **exclusive** $p\pi^+$ final states"[1]
 - "Wrong sign" background
 - can be removed by explicit kinematic $W(p\mu)$ has no resonance peak
 - stopped pions advantage of resonance production [2]

20-Nov-2015

Demonstration

- T2K-ND280 MC[1] •
 - Neut + realistic detector simulation
 - FGD: polystyrene (CH) target
 - TPC: momentum, dE/dx
- Reconstructed δp_{TT} •
 - Energy dependence typical for trackers

 ν_{μ} +H \rightarrow μ^{-} + Δ^{++}

T2K MC, ND280 acceptance×efficiency

15

10

[1] Nucl. Instrum. Meth. A 659, 106 (2011)

Demonstration

- Reconstructed E_{y} from true hydrogen sample
 - More accurate than CCQE on carbon
- Energy dependence
 - Constant energy scale
 - Resolution typical for tracker

- Direct measurement of neutrino-hydrogen cross section (signal: exclusive $p\pi^+$)
 - Simple performance projection [see L. Pickering's talk] of T2K-like detector using NuWro+T2K flux on CH:
 - neutrons not detectable
 - Track, π^0 , γ threshold: kinetic energy 100 MeV
 - Hit (vertex activity) threshold: 10% track threshold
 - δp_{TT} resolution 20 MeV (Cauchy)
 - Selection: CCNp1 π^+ , no veto on nuclear emission*, no veto on neutrals

- Direct measurement of neutrino-hydrogen cross section (signal: exclusive $p\pi^+$)
 - Simple performance projection [see L. Pickering's talk] of T2K-like detector using NuWro+T2K flux on CH:
 - neutrons not detectable
 - Track, π^0 , γ threshold: kinetic energy 100 MeV
 - Hit (vertex activity) threshold: 10% track threshold
 - δp_{TT} resolution 20 MeV (Cauchy)
 - Selection: $CCNp1\pi^+$, veto nuclear emission (N.E.), no veto on neutrals

ν _μ - $pπ^+$	S/B in 2σ	improv.
nominal	0.8	
veto N.E.	0.9	1.1

- Direct measurement of neutrino-hydrogen cross section (signal: exclusive $p\pi^+$)
 - Simple performance projection [see L. Pickering's talk] of T2K-like detector using NuWro+T2K flux on CH:
 - neutrons not detectable
 - Track, π^0 , γ threshold: kinetic energy 100 MeV
 - Hit (vertex activity) threshold: 10% track threshold
 - δp_{TT} resolution 20 MeV (Cauchy)
 - Selection: CCNp1 π^+ , veto nuclear emission (N.E.), veto π^0 , γ above threshold

ν _μ - $pπ^+$	S/B in 2σ	improv.
nominal	0.8	
veto N.E.	0.9	1.1
veto π^0 , γ	1.0	1.1

- Direct measurement of neutrino-hydrogen cross section (signal: exclusive $p\pi^+$)
 - Simple performance projection [see L. Pickering's talk] of T2K-like detector using NuWro+T2K flux on CH:
 - neutrons not detectable
 - Track, π^0 , γ threshold: kinetic energy 100 MeV
 - Hit (vertex activity) threshold: 10% track threshold
 - δp_{TT} resolution 10 MeV (Cauchy) via e.g. B-field 0.2 \rightarrow 0.4 T (capable to 0.8 T)
 - Selection: CCNp1 π^+ , veto nuclear emission (N.E.), veto π^0 , γ above threshold

ν _μ - $pπ^+$	S/B in 2σ	improv.
nominal	0.8	
veto N.E.	0.9	1.1
veto π^0 , γ	1.0	1.1
tracking	1.8	1.8

- Direct measurement of neutrino-hydrogen cross section (signal: exclusive $p\pi^+$)
 - Simple performance projection [see L. Pickering's talk] of T2K-like detector using NuWro+T2K flux on CH:
 - neutrons not detectable

- (Optimal thresholds depend on the signal and bk xsec.)
- Track, π^0 , γ threshold: kinetic energy 50 MeV via e.g. optimizing target geom.
- Hit (vertex activity) threshold: 10% track threshold
- δp_{TT} resolution 10 MeV (Cauchy) via e.g. B-field 0.2 \rightarrow 0.4 T (capable to 0.8 T)
- Selection: CCNp1 π^+ , veto nuclear emission (N.E.), veto π^0 , γ above threshold

ν _μ - $pπ^+$	S/B in 2σ	improv.
nominal	0.8	
veto N.E.	0.9	1.1
veto π^0 , γ	1.0	1.1
tracking	1.8	1.8
threshold	1.8	1.0
	overall	2.3

- Direct measurement of neutrino-hydrogen cross section (signal: exclusive $p\pi^+$)
 - Simple performance projection [see L. Pickering's talk] of T2K-like detector using NuWro+T2K flux on CH:
 - neutrons not detectable

- (Optimal thresholds depend on the signal and bk xsec.)
- Track, π^0 , γ threshold: kinetic energy 50 MeV via e.g. optimizing target geom.
- Hit (vertex activity) threshold: 10% track threshold
- <u>Most critical</u> δp_{π} resolution 10 MeV (Cauchy) via e.g. B-field $0.2 \rightarrow 0.4$ T (capable to 0.8 T) improvement
 - Selection: CCNp1 π^{\dagger} , veto nuclear emission (N.E.), veto π^{0} , γ above threshold

ν _μ - $pπ^+$	S/B in 2σ	improv.
nominal	0.8	
veto N.E.	0.9	1.1
veto π^0 , γ	1.0	1.1
tracking	1.8	1.8
threshold	1.8	1.0
	overall	2.3

20-Nov-2015

• Direct measurement of antineutrino-hydrogen cross section (signal: exclusive $p\pi^{-}$)

- **Direct measurement nuclear effects on nuclear target** •
 - Due to nuclear effects, $\sigma_{A}/\sigma_{H} \neq Z$

20-Nov-2015

- Nuclear effect = $\sigma_{\mu}/Z\sigma_{\mu}$ (deviation from 1)
 - Signal/background definition may be subtle •
- "The yield ratio between the hydrogen signal and the remaining contribution from the other target nuclei is a precise measurement of the associated nuclear effects with cancellation of detection acceptance and efficiencies for both targets."[1]

Potentials in Future Experiments

- Production threshold ~ 300 500 MeV, cross section maximum after 2 3 GeV
 - Higher energy flux by NuMI and LBNF optimal
- LAr
 - Superb tracking and calorimetry properties
 - Ar as neutrino target does not have advantage in terms of energy reconstruction quality
 - Hydrogen-doping?
- Highly symmetrical systems for nu/anti-nu detection $\nu/\bar{\nu} + p \rightarrow l^{\mp} + \Delta \rightarrow l^{\mp} + p + \pi^{\pm}$
 - Advantage for CPV measurement?

Summary

- Pure neutrino-hydrogen interaction can be extracted from mixed target with doubletransverse momentum imbalance δp_{TT} , all feasible with current technology (e.g. consider ALICE TPC tracking resolution):
 - Nuclear-free neutrino flux measurement
 - (Anti)Neutrino-hydrogen interaction
 - Direct measurements nuclear effects
- On-going measurement in T2K

Nuclei are friends

- Base for hydrogen doping: convenient and safe.
- Nuclear effect problem principally solvable all influence can be avoided by improving tracking resolution.
- Prefer stronger nuclear effects to suppress background.

BACKUP

Double-Transverse Symmetry

Consider 3-body CC final state

÷

No nuclear effects \rightarrow 4-momentum conservation applicable

z: symmetric between X and Y y: symmetric between X+Y and lepton x: $E_v = \Sigma_{final \ state}$ longitudinal momentum E: $E_v = \Sigma_{final \ state}$ energy – $m_{initial \ nucleon}$ \rightarrow difficult to realize after reconstruction $\rightarrow x \ or \ E \ depends \ on \ calorimetry / tracking / PID \ performance$

1 GeV (anti) v_{μ} vs. (anti) v_{μ}

20-Nov-2015

X.-G. Lu, Oxford

20-Nov-2015

