

Charged-Current Pion Production in T2K

S. V. Cao Kyoto University (On behalf of the T2K collaboration)

 \diamond Introduction

♦ Charged pion production ♦ In water, off-axis

♦ Coherent pion production
 ♦ In carbon, on-axis
 ♦ In carbon, off-axis

 \diamond Summary

- ♦ Needed for oscillation analysis
 - ♦ Main background around oscillation dip
 - ♦ Energy misreconstruction
- $\Rightarrow \pi$ -production itself: FSI model (π absorption, scattering, charge exchange...)
- Dominant background to charged-current quasielastic scattering measurements
 - ♦ Pion absorption
 - ♦ Detector inefficiency
- Also background to other cross-section measurements

TZR Needs of π -production in T2K (cont'd)

Outstanding issues:

- ♦ CC1π⁺: inconsistency between MINERvA and MiniBooNE in overall normalization and pion kinematics
- ♦ CC1 π coherent: MINERvA observed this rare interaction above 1.5 GeV, but prediction overestimated at low E_{π}

T2K important keys to these issues:

- Fairly clean N-∆ coupling information (narrow peak at ∆ resonance); multiple targets (¹²C, ¹⁶O,...) for FSI constraints
- ♦ CC1 π coherence below 1.5 GeV (~0.8 GeV for off-axis, ~1.5 GeV for on-axis)

 $\sin^2 2\theta_{23} = 1.0$ $\sin^2 2\theta_{13} = 0.1$ $\Delta m_{22}^2 = 2.4 \times 10^{-3} \, eV^2$

-- IH, $\delta_{CP} = \pi/2$

HIH OA 0.0°

4 OA 2.0° ♦ OA 2.5°

- NH, $\delta_{CP} = 0$ - NH, $\delta_{CP} = \pi/2$

E_v (GeV)

 $P(\nu_{\mu}\!\rightarrow\nu_{\mu})$

્રે

 $\Phi_{v_{\mu}}^{295km}\left(A.U.\right)$

- High intensity, pure muon (anti) neutrino beam
- The world's first off-axis designed neutrino experiment
 - \diamond Far Detector (SK) is 2.5^o off the beam's axis
 - \Rightarrow Narrow band beam, peaked at oscillation maximum (0.6 GeV)

Primary goal is to measure precisely neutrino oscillations

T2K on-axis detector: INGRID

Designed for measuring ν beam intensity, direction and profile

- ♦ 16 scintillator-steel interleaved "standard" modules formed a cross shape (7.1 tons/each)
- → Fully active scintillator Proton Module to detect protons and pions specifically for cross-section studies.

Key features for cross-section:

- Broad flux spectrum, mean ~1.51 GeV
- Target materials: scintillator and iron
- Large number of interactions

Display of MC event interacted in Proton Module and μ tracked by INGRID

T2K off-axis detector: ND280

Aim to understand unoscillated ν beam: constrains flux and cross-section parameters

- Tracker, composed of Fine-Grained Detector (FGD) and Time Projection Chamber (TPC), is central part
 - Two FGDs: active target w/ scintillator only (FGD1) or scintillator-water interleaved (FGD2)
 - Three TPCs: mainly Argon (95%) filled, for momentum measurement and particle ID
- $\Rightarrow \pi^{o}$ detector (POD) for water-scintillator target and π^{o} tagging
- ♦ Electromagnetic calorimeters (ECal) to detect gamma rays and reconstruct π^0
- Side muon range detectors (SMRD) to tag entering cosmic muons or side-exiting muons

Key features for cross-section:

- Narrow flux spectrum , mean ~ 0.85 GeV
- Multiple targets: scintillator, water, argon, lead
- High final state ID resolution, charge separation

T2K interaction topologies

♦ Final state topologies based on the true particles exiting the nucleus (takes advantage of ND280 high final state ID resolution)

NuINT 2015, Osaka

T2K recent pion production

<u>measurements</u>

Various activities on pion production are ongoing at T2K near detectors. This talk highlights measurements which are official only.

2 CC1 π^+ coherent \diamond CC1 π^+ coherence in carbon (ND280-FGD1) \diamond CC1 π^+ coherence in carbon (INGRID)

(1) CC1 π^+

 \diamond Signal definition $\nu_{\mu} + N \rightarrow \mu^{-} + \pi^{+} + N'$

♦ Main contribution from resonance

Simulation: Rein-Sehgal model
♦ NEUT ("official" v generator)
♦ GENIE (alternative v generator)

CC1 π^+ in Water (ND280-FGD2)

- ♦ Signal: CC w/ 1 π^+ in water layer of FGD2
- \diamond Event selection:
 - \diamond Negative muon-like track (TPC)
 - $\diamond~$ Positive pion-like track (TPC ID)
 - $\diamond~$ Reject events w/ π^{0} (ECal)
 - ♦ Muon-like track starts in x-scintillator layer
- Phase-space restriction applied to remove areas of low detector acceptance
- ♦ Dominant backgrounds:
 - $\diamond~$ CC 1 π^+ in scintillator layers (XY)
 - $\diamond\,$ CC non-1 $\pi^{\scriptscriptstyle +}$ (dominated by DIS)

CC1 π^+ in Water (ND280-FGD2)(cont'd)

♦ Two control samples to constrain background

CC-other water-enhanced

Flux-integrated differential cross section based on Bayesian unfolding method

- \diamond In muon kinematics
- \diamond In pion kinematics

$$\left\langle \frac{\partial \sigma}{\partial X} \right\rangle_k = \frac{N_k^{unfolded}}{\epsilon_k N_{targets} \Phi \Delta X_k}$$

- \diamond In muon-pion angle
- \diamond In neutrino reconstructed energy

CC1 π^+ in Water (ND280-FGD2)(cont'd)

11/18/15

NuINT 2015, Osaka

0.2

0.12

0.08

0.02

0.5

.5

2

2.5

3

0.1

(10⁻³⁸,

ں۔ 10.06 نے 10 م

ĭ**1800**⊆

1600<u>6</u>

1400 ਵ

1200 5

1000

800

600

400

(/cu

T2K 200

T2K v_{μ} flux

NEUT prediction

NEUT average

GENIE average

(5.56x10²⁰ POT)

T2K Preliminary

3.5

4

4.5

GENIE prediction

T2K Run II-IV data

- \diamond Data lower than GENIE prediction cm² / Nucleon) 0.18 (same as MiniBooNE result) 0.16 0.14
- \diamond Suppression observed specifically $P_{\pi_{+}} > 0.3 \text{ GeV } \text{P}_{\pi_{+}} < 0.8 \text{ GeV}$ $\Leftrightarrow \cos\theta_{\pi+} > 0.9$ (coherent channel contribution is significant)

\diamond Interesting features

- ♦ Pion created from off-shell W boson despite small nucleus binding energy (~10s MeV)
- ♦ Very small four-momentum transfer, $|t| \sim \hbar^2/R^2$ to leave nucleus in its ground state
- \diamond Small angle scattering of produced lepton
- Puzzle: K2K and SciBooNE found no evidence of CC coherent below 1.5 GeV but NC coherent signal was clearly observed at same energy

(2) CC1 π^+ coherent

 \diamond CC1 π^+ coherence in carbon (ND280-FGD1), ~ 0.8 GeV \diamond CC1 π^+ coherence in carbon (INGRID), ~1.5 GeV

TZR Coherent in Carbon (ND280-FGD1)

 \diamond Phase-space restriction:

$$p_{\mu,\pi} > 0.18 \text{ GeV}; \ \theta_{\mu,\pi} < 70^{\circ}; \ p_{\pi} < 1.6 \text{ GeV}$$

- $\diamond~$ Event pre-selection (CC1 π^+)
 - ♦ Negative muon-like track
 - ♦ Positive pion-like track
- ♦ Additional cuts to enhance coherent interaction
 - $\diamond~$ Vertex activity (<300 Photon Equivalent Unit (PEU))
 - ♦ t-momentum transfer (<0.15 GeV²)

♦ Event reduction:

Step	Data	Efficiency	Purity
Start			
ν_{μ} Inclusive	20508	0.83	0.009
Coherent Initial Selection	1199	0.47	0.081
Pion Particle ID	857	0.43	0.100
Vertex Consistency	665	0.40	0.110
Vertex Activity	246	0.37	0.274
t cut	126	0.36	0.440

♦ Dominant backgrounds:

48% resonance, 34% deep-inelastic

TZR Coherent in Carbon (ND280-FGD1)

Itl (GeV²)

- ♦ Sidebands to constrain expected N₀ of backgrounds in the signal box
- ♦ Background estimate method
 - Split sidebands into bins of reconstructed invariant hadronic mass, W
 - Normalization parameters to fit pion momentum template for each W bin
 - ♦ Background in signal box is retuned based on fitted normalization parameters.

Coherent in Carbon (ND280-FGD1) (cont'd)

- \diamond An excess of 45±18, with 2.2 σ significance
- $\diamond\,$ Two models used to estimate signal efficiency
 - Rein-Seghal: PCAC model; relate with pion-nucleus elastic scattering, use "officially" in event generators, valid for high energy neutrino, less reliable at < 2 GeV</p>
 - Alvarez-Ruso: Microscopic model; excitation of Δ resonance, full quantum mechanical treatment, valid up to 5 GeV

Number of events

300

250

200

150

100

50

TZK CC coherent in Carbon (INGRID)

\diamond Challenging:

- Pion momentum is not well-reconstructed
 - \rightarrow impossible to reconstruct |t|-transfer
- ♦ Unavoidable model-dependence

♦ Coherent interaction enhanced:

- \diamond Muon angle scattering (<15^o)
- \diamond Energy deposit around vertex (<37 MeV)

NuINT 2015, Osaka

- ♦ Systematics ~60%, dominated by CC resonance
- 1.7σ data excess, suppression observed at high pion track angle

NuINT 2015, Osaka

- \diamond On-going efforts to improve analysis:
 - ♦ Increase signal significance (multi-variate approach to select candidate event)
 - ♦ Use sidebands to control the dominant background (CC resonance and CC deepinelastic scattering)
 - More than 2.5σ excess can be achieved if data
 agrees with GENIE prediction

Up-coming results:

- ♦ CC1 π^+ in Carbon (ND280-FGD1) ← Under review
- ♦ CC1 π^+ in water (ND280-P0D) ← under review
- \diamond CC1 π^+ with proton identification (ND280-FGD1)
- \Leftrightarrow CC1 π^+ coherent in water (ND280-FGD2)

Prospects:

- \diamond CC1 π^{0} in water (ND280-POD)
- \diamond CC1 π^+ in carbon (INGRID)

T2K has near detectors in two different neutrino fluxes simultaneously
 → unique capacity to make comparisons, joint fit

Summary

- Various cross-section measurements with fine final-state resolution, thank to ND280 structures
- ♦ First exclusive CC1π⁺ in water indicated suppression at
 ♦ low momentum (P_{π+} > 0.3 GeV & P_{π+} < 0.8 GeV)
 ♦ small pion scattering (cosθ_{π+} > 0.9)
- \diamond First experimental evidence of CC1 π^+ coherent below 1.5 GeV
- ♦ Stay tuned for more interesting results!!!

Backup: dE/dx w/ TPC

- ♦ NEUT: 5.1.4.2 vs GENIE: 2.8.0
- \diamond Differences:
 - \diamond Default values of model parameters

	NEUT	GENIE
MACCQE	1.21 GeV/c ²	0.99 GeV/c ²
MARes	1.21 GeV/c ²	1.12 GeV/c ²
Threshold for res. meson prod.	2.0 GeV/c ²	1.7 GeV/c ²

- \diamond Model for off-shell scattering (Smith-Moniz vs Bodek-Ritchie)
- Determine pion multiplicity (W-dependent function vs AGKY)
- Coherent pion production: GENIE use a revised version of Rein-Sehgal (include lepton mass term effect & update pion-nucleon cross-section)

Backup: Pion production

Backup: CC1 π^+ in Water

TZR CC1 π^+ in Water: Event migration

 \diamond Migration (both forward and backward)

\diamond Study

- ♦ Going-through sample
- ♦ Mask some FGD layer
- Rerun reconstruction to verify that vertex reconstructed at first non-masked layer

mask	FGD1 MC	FGD1 data	FGD2 MC	FGD2 data
1/3 FGD up to Y	0.960 ± 0.006	0.941 ± 0.008	0.960 ± 0.006	0.948 ± 0.007
1/3 FGD up to X	0.949 ± 0.007	0.930 ± 0.008	0.949 ± 0.006	0.933 ± 0.008
2/3 FGD up to Y	0.966 ± 0.005	0.948 ± 0.007	0.962 ± 0.005	0.944 ± 0.007
2/3 FGD up to X	0.960 ± 0.006	0.945 ± 0.007	0.962 ± 0.005	0.947 ± 0.007

	CC Inclusive	$CC0\pi$ -like	$CC1\pi^+$ -like	CC Other-like
Matched scintillator to scintillator	31.16 %	31.14 %	33.27 %	30.43 %
Matched water to x layer	39.75 %	40.98 %	40.70%	35.75 %
Gap	12.48 %	12.11 %	10.32 %	14.39 %
Forward scintillator to scintillator	3.69 %	3.70 %	4.07 %	3.51 %
Backward scintillator to scintillator	5.39%	4.98 %	5.02 %	6.73%
Forward water to scintillator	2.14 %	2.09 %	1.83 %	2.40 %
Backward water to scintillator	5.39 %	4.99 %	4.78%	6.79 %

TZR CC1 π^+ in Water (ND280-FGD2)(cont'd)

CC1 π^+ in Carbon (ND280-FGD1)

♦ Phase space restriction ♦ 0.18 GeV < P_{π} < 1.6 GeV, $\theta_{\pi,\mu}$ < 70⁰

♦ Event selections

- \diamond Negative muon-like track
- $\diamond \pi^{ ext{+}}$ -like track
- $\diamond\,$ No $\pi^{\text{-}}$ in TPC, no e[±] in TPC or ECAL

♦ Backgrounds

- \diamond Dominated by CC-other (22%)
- \diamond Detailed in table

\diamond Three control samples are used

- \diamond CCO π 1P: to control CCO π bkg
- ♦ CCother1 π^+ : to control CCN π bkg
- ♦ CCother1e[±]: to control CCX π^0 bkg

BKG type	Topology Composition (%)
CC-0-pion	15.5
$\mathbf{CCX}\pi^{0}$	28.7
$\operatorname{CCN}\pi$	26.2
Background	14.9
Out of FGD 1 FV	14.6

CC1 π^+ in Carbon (ND280-FGD1)

T₂

11/18/15

NuINT 2015, Osaka

Backup: Coherent RS vs AR

- Dominated systematics: Background model and vertex activity model
- \diamond Vertex activity model:
 - Single particle-gun protons are generated isotropically [0-250 MeV]
 - \diamond Vertex activity for protons formed
 - Extra vertex activity is added randomly
 25% of MC events scattering off a neutron

Systematic Source	Error on Background
Flux	4.0
W^2 scale covariance (stat)	6.4
Background model	12.0
Vertex Activity model	9.0
Pion reinteractions	3.6
OOFV interactions	0.6
Vertex Activity	4.5
Charge reconstruction	0.6
Momentum Scale	0.5
Momentum Resolution	0.6
TPC PID	0.3
Total Systematic Uncertainty	17.9

Proton Module

FGD1

Backup: Coherent FGD1

	W < 1.1	1.1 < W < 1.4	1.4 < W < 2.0	2.0 < W
W < 1.1	0.045	0.046	0.044	0.039
1.1 < W < 1.4		0.049	0.046	0.039
1.4 < W < 2.0			0.045	0.039
2.0 < W				0.038

Pion Momentum Bins

Backup: Vertex activity

Number of events Data / MC \diamond Use sand muons enhanced 1.2 V. CCQE 60Ē v^{μ}_{μ} CCnonQE NC 50E B.G. from outside \diamond Data-MC vertex activity 20E 0.8 difference is 2.7% 15 20 10 25 30 35 5 10 15 20 25 30 35 40 5 45 Energy deposit (MeV) Energy denosit (MeV) \diamond Vary PE as function of track angle, simultaneously vary PE in vertex region \rightarrow re-estimate cross-section. 13.6% differences used as systematics 30 40 50 60 20

Add up quenching effect based on Birk's law → 7.17%, and sum in quadrature 15.37%

....

Backup: INGRID coherent systematics

	-		
Item	Error		
Neutrino flux	-35.68%/+43.20%		
$M_{A}^{ m QE}$	-11.20%/+7.98%		
$M_A^{ m RES}$	-23.84%/+21.39%		
$\overrightarrow{\text{CCQE}}$ normalization ($E_{\nu} < 1.5 \text{ GeV}$)	-0.69%/+0.68%		
CCQE normalization $(1.5 < E_{\nu} < 3.5 \text{ GeV})$	-0.80%/+0.79%		
CCQE normalization $(E_{\nu} > 3.5 \text{ GeV})$	-2.69%/+2.67%		
$CC1\pi$ normalization ($E_{\nu} < 2.5 \text{ GeV}$)	-11.47%/+11.17%	Target mass	$\pm 0.90\%$
$CC1\pi$ normalization ($E_{\nu} > 2.5 \text{ GeV}$)	-18.55%/+18.21%	MPPC dark noise	$\pm 0.74\%$
CC other E_{ν} shape	-3.51%/+3.41%	Hit efficiency	$\pm 5.36\%$
$NC1\pi^0$ normalization	$-0.46\%/\pm0.45\%$	Light yield	$\pm 15.37\%$
$NC1\pi^{\pm}$ normalization	$-0.06\%/\pm0.06\%$	Event pileup	$\pm 0.31\%$
NCt = normalization	-0.00707+0.0070	Beam-induced external background	$\pm 0.00\%$
NC concrete w normalization	-0.11%/+0.11%	2D track reconstruction	$\pm 0.00\%$
NC other normalization	-0.81%/+0.70%	Track matching	$\pm 1.92\%$
π -less Δ decay	-11.54%/+13.11%	3D tracking	$\pm 4.20\%$ $\pm 12.73\%$
Spectral function	-0.29%/+0.00%	Vertexing	$\pm 12.00\%$ $\pm 12.00\%$
Fermi momentum	-0.09%/+0.17%	Timing cut	$\pm 0.00\%$
Binding energy	-0.89%/+0.92%	Veto cut	$\pm 10.42\%$
Pion absorption	-6.06%/+4.66%	Fiducial volume cut	$\pm 14.38\%$
Pion charge exchange (low energy)	-0.41%/+0.29%	Secondary interactions	$\pm 6.72\%$
Pion charge exchange (high energy)	-3.02%/+2.80%	Total	-60.72%/+63.95%
Pion QE scattering (low energy)	-6.12%/+4.97%		
Pion QE scattering (high energy)	-0.46%/+0.18%		
Pion inelastic scattering	-5.65%/+5.04%		
Nucleon elastic scattering	-1.24%/+1.11%		
Nucleon single π production	-4.01%/+3.96%		
Nucleon two π production	-0.10%/+0.27%		

11/18/15

Backup: MVA for INGRID coherent

11/18/15

NuINT 2015, Osaka

Backup: FGD

Fine Grained Detectors (FGDs)

- Active target mass of ND280
- Finely grained for vertex resolution
- Reconstruct and identify short tracks

Key channel for oscillation analysis: Charged Current Quasi Elastic (CCQE)

Width = 0.264

Scintillator Bars: 9.6mm x 9.6mm x 1843mm
FGD1: 15 modules (30 layers)
FGD2: 7 modules (14 layers) + 6 water panels
8448 channels in total
Each is ~1.1 ton

- Light from scintillator bars collected by Wavelength Shifting (WLS) fibers
- Propagates down fibers to Multi Pixel Photon Counters (MPPCs)

Backup: INGRID

