

#### **Update of HKN nuclear PDFs**

#### M. Hirai (NIT) Collaborators: S. Kumano(KEK), K. Saito (TUS)

#### nPDFs [HKN07: Nucl. Phys. C76,065207 (2007)] http://research.kek.jp/people/kumanos/nuclp.html

2015, NOV. 19 @Osaka Univ

## Introduction



#### Ambiguity of energy neutrino flux

- Measurement of energy dependence on final lepton  $v(\overline{v}) + A \rightarrow l(\overline{l}) + X$ 
  - $\frac{dN}{dE_1} = T \times N_{eff} \int \frac{d\sigma(E_{\nu})}{dE_1} \Phi(E_{\nu}) dE_{\nu}$ 
    - T:time of exposure
    - N<sub>eff</sub>: effective # of target nucleons (nuclear)
    - $\sigma(E_v)$ : x-section of induced neutrino energy
    - $\Phi(\mathsf{E}_{v})$  : neutrino energy flux
  - Nuclear target needs for the neutrino reaction caused by the week interaction

#### Getting better understanding in wide energy range where exists several phenomena

- QE, resonance, DIS
- DIS process is well defined by the pQCD, and confirmed it by many experiments of the lepton DIS process
- Nuclear effects on PDFs and neutrino physics ?





## nPDFs from neutrino DIS





- K. Schienbein, et. al [PRD77,054013(2008)]
  - Using (anti-)neutrino DIS data
  - Shallow EMC effect
  - Moving the anti-shadowing peak for small-x
- DSSZ12 [PRD85,0704028 (2012)]
  - **Combined data set with lepton & neutrino DIS** 
    - Using  $F_2 \& xF_3$  data, not x-sect !
  - Showing same effect ... ?
- Paukkunen, Salgado [JHEP07,032,(2010)]





(b)



# An issue of global analysis ( $\chi^2$ analysis)



- Assuming the same model when using data sets simultaneously
- Information fall ?
  - larger # of v-DIS data of Fe, Pb targets
    - 100 (NC-DIS,DY) v.s. 5000 (CC-DIS)
    - Large error data become numerical noise in total  $\chi^2$
  - Weight dependence ?
    - Obtained intermediate model which has
       possibility to reproduce these data sets
- Are nuclear effects different?
  - Attributing to structure and dynamics in a nucleus, base on strong interaction
  - EW probe dependent ?

4/13

To answer the equation, test of significance for data set needs



K. Kovarik, et. al, PRL106,122301(2011)  $\chi^2 = \chi^2_{IA-DIS} + W^* \chi^2_{VA-DIS}$ 

### **Neutrino-nuclear DIS**



Cross section

$$d\sigma^{(-)}_{\nu A} \propto y^2 x F_1^{(-)}_1 + \left(1 - y + \frac{(xyM)^2}{Q^2}\right) F_2^{(-)}_2 \pm y \left(1 - \frac{y}{2}\right) x F_3^{(-)}_3,$$

- Assuming the Callan-Gross eq. at LO
  - $F_2(x)=2xF_1(x)$

$$d\sigma^{(-)}_{\nu A} \to \begin{cases} \frac{1}{2} \left( F_2^{(-)} \pm x F_3^{(-)} \right) & \text{(for } y \to 1) \\ F_2^{(-)} & \text{(for } y \to 0) \end{cases}$$

$$\begin{cases} Q^2 = 4E_v E_1 \sin^2\left(\frac{\theta_{Lab}}{2}\right) = 2ME_v xy\\ x = \frac{2E_v E_1}{M(E_v - E_1)} \sin^2\left(\frac{\theta_{Lab}}{2}\right) = \frac{2E_1}{My} \sin^2\left(\frac{\theta_{Lab}}{2}\right)\\ y = 1 - \frac{E_1}{E_v} \end{cases}$$

- Structure function F<sub>2</sub>, xF<sub>3</sub>
  - Flavor deference by charged current W<sup>±</sup>  $\begin{cases}
    F_{2}^{\nu A} = 2x \left( d^{A} + s^{A} + \overline{u}^{A} + \overline{c}^{A} + ... \right) \\
    F_{2}^{\overline{\nu} A} = 2x \left( u^{A} + c^{A} + \overline{d}^{A} + \overline{s}^{A} + ... \right)' \\
    F_{3}^{\overline{\nu} A} = 2x \left[ u^{A} + c^{A} - \overline{d}^{A} - \overline{s}^{A} + ... \right] \\
    F_{3}^{\overline{\nu} A} = 2x \left[ u^{A} + c^{A} - \overline{d}^{A} - \overline{s}^{A} + ... \right] \\
    - \mathbf{y} \rightarrow \mathbf{1} \\
    \left\{ d\sigma^{(\nu + \overline{\nu})A} \propto \frac{1}{2} \left( F_{2}^{(\nu + \overline{\nu})A} + x F_{3}^{(\nu - \overline{\nu})A} \right) = 2x \left( d^{A} + \overline{d}^{A} + s^{A} + \overline{s}^{A} \right) \\
    d\sigma^{(\nu - \overline{\nu})A} \propto \frac{1}{2} \left( F_{2}^{(\nu - \overline{\nu})A} + x F_{3}^{(\nu + \overline{\nu})A} \right) = 2x \left( d_{\nu}^{A} + s_{\nu}^{A} \right)
    \end{cases}$

### Kinematics of the neutrino DIS experiment

- Kinematic in Lab frame
  - $X = Q^2/2 < M_N > v$
  - v=E<sub>had</sub>: energy of outgoing hadron
  - $y = E_{had} / (E_{had} + E_{l})$
  - $Q^2 = 2 < M_N > xyE_v, (E_v = E_{had} + E_l)$
  - $W = \langle M_N \rangle^2 + Q^2 (1-x)/x$
- Q<sup>2</sup>> 4 GeV<sup>2</sup>, W>3.5 GeV

| Experiment | Target | Beam energy<br>(GeV) | <b># of data</b><br>∨ &⊽ |
|------------|--------|----------------------|--------------------------|
| NuTeV      | Fe     | 35-340               | 2604                     |
| CHORUS     | Pb     | 25-130               | 1204                     |
| CDHSW      | Fe     | 23-187               | 1602                     |





## **Global analyses of the Nuclear PDFs**



- Q<sup>2</sup> dependence given by the DGLAP equation
  - Need the initial distributions at  $Q_0^2$
  - Functional form is arbitrary
- Satisfying the conservation lows
  - Baryon number & charge:  $\int \left[ u_v^A(x) + d_v^A(x) \right] dx = 3$ ,  $\int \left| \frac{2}{3} u_v^A(x) \frac{1}{3} d_v^A(x) \right| dx = \frac{Z}{A}$
  - Momentum:  $\sum_{i=q,\overline{q},g} \int x f_i^A(x) dx = 1$
  - Fixed some free parameters by using these conditions
- Neglecting the effect in the region 1<x<sub>Bi</sub><A</li>
  - Not enough data to constrain on the behavior of the NPDFs
    - EPS09, SYKMOO08, HKN07
  - Small contribution in the region
  - DSSZ12: convolution type covering whole x<sub>Bj</sub> region
- Uncertainty estimation by the Hessian method

# Functional form of initial distributions at $Q_0^2$

Definition of NPDF ( as initial condition of the DGLAP eq.)

 $- f_i^A(x) = \frac{1}{A} \left( Z f_i^{p/A}(x) + (A - Z) f_i^{n/A}(x) \right), \left[ f_i^{N/A}(x) : \text{PDF of bound nucleon in the nucleus} \right]$ 

- Assuming isospin symmetry:  $u \equiv d^n = u^p$ ,  $d \equiv u^n = d^p$ 

Functional forms

8/13

- HKN07 (Q<sub>0</sub><sup>2</sup>=1 GeV<sup>2</sup>)

 $f_i^A(x) = w_i(x, A, Z) \frac{1}{A} \left( Z f_a^p(x) + (A - Z) f_a^n(x) \right), w_i(x, A, Z) = 1 + \left( 1 - \frac{1}{A^{1/3}} \right) \frac{a_i + b_i x + c_i x^2 + d_i x^3}{(1 - x)^{0.1}}$ 

- $EPS09 (Q_0^2 = 1.69 \text{ GeV}^2) \\ f_i^{N/A}(x) = R_i^A(x) f_i^{\text{CTEQ6.1M}}(x, Q_0^2), R_i^A(x) = \begin{cases} a_0 + (a_1 + a_2 x)[\exp(-x) \exp(-x_a)] & (x \le x_a : \text{shadowing}) \\ b_0 + b_1 x + b_2 x^2 + b_3 x^3 & (x_a \le x \le x_e : \text{antishadowing}) \\ c_0 + (c_1 c_2 x)(1 x)^{-\beta} & (x_e \le x \le 1 : \text{EMC}\&\text{Fermi}) \end{cases}$
- nCTEQ15 ( $Q_0^2$ =1.69 GeV<sup>2</sup>)

 $xf_{i}^{N/A}(x) = \begin{cases} A_{0}x^{A_{1}}(1-x)^{A_{2}}e^{A_{3}x}(1+e^{A_{4}}x)^{A_{5}} & :i = u_{v}, d_{v}, g, \overline{u} + \overline{d}, s, \overline{s} \\ A_{0}x^{A_{1}}(1-x)^{A_{2}} + (1+A_{3}x)(1-x)^{A_{4}} & :i = \overline{d} / \overline{u} \end{cases}$ 

 $- \text{DSSZ}(Q_{0}^{2}=0.4 \text{ GeV}^{2}) \\ f_{i}^{N/A}(x_{N}) = \int_{x}^{A} \frac{dy}{y} W_{i}(y,A,Z) f_{i}^{N}\left(\frac{x_{N}}{y},Q_{0}^{2}\right), \begin{cases} W_{v}(y,A,Z) = \left[a_{v} \,\delta(1-\cdot_{v}-y) + (1-a_{v}) \,\delta(1-_{v}-y)\right] + n_{v}\left(\frac{y}{A}\right)^{\alpha_{v}} \left(1-\frac{y}{A}\right)^{\beta_{v}} + n_{s}\left(\frac{y}{A}\right)^{\alpha_{s}} \left(1-\frac{y}{A}\right)^{\beta_{s}}, \\ W_{v}(y,A,Z) = A \,\delta(1-y) + \frac{a_{s,g}}{N_{s,g}}\left(\frac{y}{A}\right)^{\alpha_{s,g}} \left(1-\frac{y}{A}\right)^{\beta_{s,g}} \end{cases}$ 

## Comparison with HKN07 (NuTeV)





9/13

Υ

## Comparison with HKN07 (CHORUS)



## Comparison with HKN07 (CDSHW)



### Significance test of the neutrino data set

- χ**=(D-T)/**σ<sub>D</sub>, not χ<sup>2</sup>
  - T is calculated by HKN07
  - $\chi \text{ means difference from NC DIS \& }$ corrective direction for HKN07
    - χ<sub>+</sub> (>0) : upper correction
    - Error bar is standard deviation for each  $\boldsymbol{\chi}$
- No significance for anti-shadowing & EMC effect
- Possibility of improving the fermi motion effect
  - Not determining well with now lepton DIS data only







## Summary



- Refine neutrino energy flux  $\Phi(E_v)$ 
  - Event generator dependence on estimation of the flux
  - Overall understanding for wide energy region (QE, resonance & DIS)
  - Taking into account of nuclear effect is important as long as using nuclear target
- Only  $\chi^2$  analysis cannot estimate models if these are different
  - Need to check significance or consistency of the data sets
  - As another test, Bayesian estimation is effective

$$P(\sigma \mid D_{CC}) = \frac{P(D_{CC} \mid \chi^2, \sigma_{nPDF})P(\sigma_{nPDF})}{P(D_{CC})}$$

- Is nuclear effect prove dependent ?
- We are performing analysis with only neutrino data