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Why quantum Monte Carlo?

• Quantum Monte Carlo (QMC) can be 
exploited to compute the electroweak 
response fully taking into account the 
correlations induced by the nuclear 
interactions and meson-exchange 
currents

• The Relativistic Fermi gas model is not 
adeguate to account for both the 
complexity of nuclear dynamics and the 
variety of reaction mechanisms 
contributing to the observed neutrino - 
nucleus cross section

can be added to form the total error matrix. For the neutrino
flux and background cross section uncertainties, a re-
weighting method is employed which removes the diffi-
culty of requiring hundreds of simulations with adequate
statistics. In this method, each neutrino interaction event is
given a new weight calculated with a particular parameter
excursion. This is performed considering correlations be-
tween parameters and allows each generated event to be
reused many times saving significant CPU time. The nature
of the detector uncertainties does not allow for this method
of error evaluation as parameter uncertainties can only be
applied as each particle or optical photon propagates
through the detector. Approximately 100 different simu-
lated data sets are generated with the detector parameters
varied according to the estimated 1! errors including
correlations. Equation (4) is then used to calculate the
detector error matrix. The error on the unfolding procedure
is calculated from the difference in final results when using
different input model assumptions (Sec. IVD). The statis-
tical error on data is not added explicitly but is included via
the statistical fluctuations of the simulated data sets (which
have the same number of events as the data).

The final uncertainties are reported in the following
sections. The breakdown among the various contributions
are summarized and discussed in Sec. VD. For simplicity,
the full error matrices are not reported for all distributions.
Instead, the errors are separated into a total normalization
error, which is an error on the overall scale of the cross
section, and a ‘‘shape error’’ which contains the uncer-
tainty that does not factor out into a scale error. This allows
for a distribution of data to be used (e.g. in a model fit) with
an overall scale error for uncertainties that are completely
correlated between bins, together with the remaining bin-
dependent shape error.

V. RESULTS AND DISCUSSION

A. CCQE flux-integrated double differential
cross section

The flux-integrated, double differential cross section per
neutron, d2!

dT"d cos#"
, for the $" CCQE process is extracted as

described in Sec. IVD and is shown in Fig. 13 for the
kinematic range, !1< cos#" <þ1, 0:2< T"ðGeVÞ<
2:0. The errors, for T" outside of this range, are too large
to allow a measurement. Also, bins with low event popu-
lation near or outside of the kinematic edge of the distri-
bution (corresponding to large E$) do not allow for a
measurement and are shown as zero in the plot. The
numerical values for this double differential cross section
are provided in Table VI in the appendix.

The flux-integrated CCQE total cross section, obtained
by integrating the double differential cross section (over
!1< cos#" <þ1, 0< T"ðGeVÞ<1), is measured to be
9:429% 10!39 cm2. The total normalization error on this
measurement is 10.7%.

The kinematic quantities, T" and cos#", have been
corrected for detector resolution effects only (Sec. IVD).
Thus, this result is the most model-independent measure-
ment of this process possible with the MiniBooNE detec-
tor. No requirements on the nucleonic final state are used to
define this process. The neutrino flux is an absolute pre-
diction [19] and has not been adjusted based on measured
processes in the MiniBooNE detector.
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FIG. 13 (color online). Flux-integrated double differential
cross section per target neutron for the $" CCQE process. The

dark bars indicate the measured values and the surrounding
lighter bands show the shape error. The overall normalization
(scale) error is 10.7%. Numerical values are provided in Table VI
in the Appendix.
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FIG. 14 (color online). Flux-integrated single differential cross
section per target neutron for the $" CCQE process. The

measured values are shown as points with the shape error as
shaded bars. Calculations from the NUANCE RFG model with
different assumptions for the model parameters are shown as
histograms. Numerical values are provided in Table IX in the
appendix.
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• Neutrino experimental communities need accurate theoretical calculations, with reliable error 
estimates

• QMC methods allow for solving the time-independent Schrödinger equation for nuclear 
Hamiltonians and naturally provide estimates of the gaussian error of the calculation.



Electron scattering data 

• A model unable to describe 
electron-nucleus scattering is 
(very) unlikely to describe 
neutrino-nucleus scattering.

• A large body of experimental 
data for the electromagnetic 
response of 4He and 12C (and 
larger nuclei) is available.

• Electron-scattering has also 
provided evidence of the 
existence of short-range nucleon 
nucleon correlations



Nuclear correlations 

• Even in neutron-rich nuclei, protons 
have a greater probability than neutrons 
to have momentum larger than the Fermi 
momentum.

Science 346, 6209 (2014) 

• Nuclear interaction creates short-range 
correlated pairs of unlike fermions with 
large relative momentum and pushes 
fermions from low momenta to high 
momenta creating a “high-momentum tail.”

nuclei. This backward peak is a strong signature
of SRC pairs, indicating that the two emitted
protons were largely back-to-back in the initial
state, having a large relative momentum and a
small center-of-mass momentum (8, 9). This is a
direct observation of proton-proton (pp) SRC
pairs in a nucleus heavier than 12C.
Electron scattering fromhigh–missing-momentum

protons is dominated by scattering from protons
in SRC pairs (9). The measured single-proton
knockout (e,e′p) cross section (where e denotes
the incoming electron, e′ the measured scattered
electron, and p the measured knocked-out pro-
ton) is sensitive to the number of pp and np SRC
pairs in the nucleus, whereas the two-proton
knockout (e,e′pp) cross section is only sensitive to
the number of pp-SRC pairs. Very few of the
single-proton knockout events also contained a
second proton; therefore, there are very few
pp pairs, and the knocked-out protons predom-
inantly originated from np pairs.
To quantify this, we extracted the [A(e,e′pp)/

A(e,e′p)]/[12C(e,e′pp)/12C(e,e′p)] cross-section dou-
ble ratio for nucleus A relative to 12C. The double
ratio is sensitive to the ratio of np-to-pp SRC
pairs in the two nuclei (16). Previous measure-
ments have shown that in 12C nearly every high-
momentum proton (k > 300 MeV/c > kF) has a
correlated partner nucleon, with np pairs out-
numbering pp pairs by a factor of ~20 (8, 9).
To estimate the effects of final-state interac-

tions (reinteraction of the outgoing nucleons in
the nucleus), we calculated attenuation factors
for the outgoing protons and the probability of
the electron scattering from a neutron in an np
pair, followed by a neutron-proton single-charge
exchange (SCX) reaction leading to two outgoing
protons. These correction factors are calculated
as in (9) using the Glauber approximation (22)
with effective cross sections that reproduce pre-
viously measured proton transparencies (23), and
using themeasured SCX cross section of (24).We
extracted the cross-section ratios and deduced the
relative pair fractions from the measured yields
following (21); see (16) for details.
Figure 3 shows the extracted fractions of np

and pp SRC pairs from the sum of pp and np
pairs in nuclei, including all statistical, systematic,
and model uncertainties. Our measurements are
not sensitive to neutron-neutron SRC pairs. How-
ever, by a simple combinatoric argument, even in
208Pb these would be only (N/Z)2 ~ 2 times the
number of pp pairs. Thus, np-SRC pairs domi-
nate in all measured nuclei, including neutron-
rich imbalanced ones.

The observed dominance of np-over-pp pairs
implies that even in heavy nuclei, SRC pairs are
dominantly in a spin-triplet state (spin 1, isospin
0), a consequence of the tensor part of the nucleon-
nucleon interaction (17, 18). It also implies that
there are as many high-momentum protons as
neutrons (Fig. 1) so that the fraction of protons
above the Fermi momentum is greater than that
of neutrons in neutron-rich nuclei (25).
In light imbalanced nuclei (A≤ 12), variational

Monte Carlo calculations (26) show that this re-
sults in a greater average momentum for the
minority component (see table S1). The minority
component can also have a greater average mo-
mentum in heavy nuclei if the Fermimomenta of
protons and neutrons are not too dissimilar. For
heavy nuclei, an np-dominance toy model that
quantitatively describes the features of the mo-
mentum distribution shown in Fig. 1 shows that
in imbalanced nuclei, the average proton kinetic
energy is greater than that of the neutron, up to
~20% in 208Pb (16).
The observed np-dominance of SRC pairs in

heavy imbalanced nuclei may have wide-ranging
implications. Neutrino scattering from two nu-
cleon currents and SRC pairs is important for the
analysis of neutrino-nucleus reactions, which are
used to study the nature of the electro-weak in-
teraction (27–29). In particle physics, the distribu-
tion of quarks in these high-momentum nucleons
in SRC pairs might be modified from that of free
nucleons (30, 31). Because each proton has a
greater probability to be in a SRC pair than a
neutron and the proton has two u quarks for
each d quark, the u-quark distribution modifica-
tion could be greater than that of the d quarks
(19, 30). This could explain the difference be-
tween the weak mixing angle measured on an
iron target by the NuTeV experiment and that of
the Standard Model of particle physics (32–34).
In astrophysics, the nuclear symmetry energy

is important for various systems, including neu-
tron stars, the neutronization of matter in core-
collapse supernovae, and r-process nucleosynthesis
(35). The decomposition of the symmetry energy
at saturation density (r0 ≈ 0.17 fm−3, the max-
imum density of normal nuclei) into its kinetic
and potential parts and its value at supranuclear
densities (r > r0) are notwell constrained, largely
because of the uncertainties in the tensor com-
ponent of the nucleon-nucleon interaction (36–39).
Although at supranuclear densities other effects
are relevant, the inclusion of high-momentum
tails, dominated by tensor-force–induced np-SRC
pairs, can notably soften the nuclear symmetry

energy (36–39). Our measurements of np-SRC
pair dominance in heavy imbalanced nuclei can
help constrain the nuclear aspects of these cal-
culations at saturation density.
Based on our results in the nuclear system, we

suggest extending the previous measurements of
Tan’s contact in balanced ultracold atomic gases
to imbalanced systems in which the number of
atoms in the two spin states is different. The
large experimental flexibility of these systems will
allow observing dependence of the momentum-
sharing inversion on the asymmetry, density,
and strength of the short-range interaction.

REFERENCES AND NOTES

1. S. Tan, Ann. Phys. 323, 2952–2970 (2008).
2. S. Tan, Ann. Phys. 323, 2971–2986 (2008).
3. S. Tan, Ann. Phys. 323, 2987–2990 (2008).
4. E. Braaten, in Lecture Notes in Physics (Springer, Berlin, 2012),

vol. 836, p. 193.
5. L. Lapikás, Nucl. Phys. A. 553, 297–308 (1993).
6. K. I. Blomqvist et al., Phys. Lett. B 421, 71–78 (1998).
7. R. Starink et al., Phys. Lett. B 474, 33–40 (2000).
8. E. Piasetzky, M. Sargsian, L. Frankfurt, M. Strikman, J. W. Watson,

Phys. Rev. Lett. 97, 162504 (2006).
9. R. Subedi et al., Science 320, 1476–1478 (2008).
10. K. Sh. Egiyan et al., Phys. Rev. Lett. 96, 082501 (2006).
11. N. Fomin et al., Phys. Rev. Lett. 108, 092502 (2012).
12. V. R. Pandharipande, I. Sick, P. K. A. deWitt Huberts,

Rev. Mod. Phys. 69, 981–991 (1997).
13. J. Arrington, D. W. Higinbotham, G. Rosner, M. Sargsian,

Prog. Part. Nucl. Phys. 67, 898–938 (2012).
14. J. T. Stewart, J. P. Gaebler, T. E. Drake, D. S. Jin, Phys. Rev. Lett.

104, 235301 (2010).
15. E. D. Kuhnle et al., Phys. Rev. Lett. 105, 070402 (2010).
16. Materials and methods are available as supplementary

materials on Science Online.
17. R. Schiavilla, R. B. Wiringa, S. C. Pieper, J. Carlson, Phys. Rev. Lett.

98, 132501 (2007).
18. M. M. Sargsian, T. V. Abrahamyan, M. I. Strikman, L. L. Frankfurt,

Phys. Rev. C 71, 044615 (2005).
19. L. Frankfurt, M. Strikman, Phys. Rep. 160, 235–427 (1988).
20. B. A. Mecking et al., Nucl. Inst. Meth. A 503, 513–553

(2003).
21. O. Hen et al., Phys. Lett. B 722, 63–68 (2013).
22. I. Mardor, Y. Mardor, E. Piasetsky, J. Alster, M. M. Sargsyan,

Phys. Rev. C 46, 761–767 (1992).
23. D. Dutta, K. Hafidi, M. Strikman, Prog. Part. Nucl. Phys. 69, 1–27

(2013).
24. J. L. Friedes, H. Palevsky, R. Stearns, R. Sutter, Phys. Rev. Lett.

15, 38–41 (1965).
25. M. M. Sargsian, Phys. Rev. C 89, 034305 (2014).
26. R. B. Wiringa, R. Schiavilla, S. C. Pieper, J. Carlson, Phys. Rev. C

89, 024305 (2014).
27. L. Fields et al., Phys. Rev. Lett. 111, 022501 (2013).
28. G. A. Fiorentini et al., Phys. Rev. Lett. 111, 022502 (2013).
29. Neutrino-Nucleus Interactions for Current and Next Generation

Neutrino Oscillation Experiments, Institute for Nuclear
Theory (INT) workshop INT-13-54W, University of Washington,
Seattle, WA, 3 to 13 December 2013.

30. O. Hen, D. W. Higinbotham, G. A. Miller, E. Piasetzky,
L. B. Weinstein, Int. J. Mod. Phys. E 22, 133017 (2013).

31. L. B. Weinstein et al., Phys. Rev. Lett. 106, 052301 (2011).
32. G. P. Zeller et al., Phys. Rev. Lett. 88, 091802 (2002).
33. G. P. Zeller et al., Phys. Rev. Lett. 90, 239902 (2003).
34. I. C. Cloët, W. Bentz, A. W. Thomas, Phys. Rev. Lett. 102,

252301 (2009).
35. J. M. Lattimer, Y. Lim, Astrophys. J. 771, 51 (2013).
36. A. Carbone, A. Polls, A. Rios, Europhys. Lett. 97, 22001 (2012).
37. I. Vidana, A. Polls, C. Providencia, Phys. Rev. C 84, 062801(R)

(2011).
38. C. Xu, A. Li, B. A. Li, J. Phys. Conf. Ser. 420, 012090 (2013).
39. B.-A. Li, L.-W. Chen, C. M. Ko, Phys. Rep. 464, 113–281

(2008).

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy (DOE)
and the National Science Foundation, the Israel Science
Foundation, the Chilean Comisión Nacional de Investigación
Científica y Tecnológica, the French Centre National de la

616 31 OCTOBER 2014 • VOL 346 ISSUE 6209 sciencemag.org SCIENCE

Fig. 3. The extracted
fractions of np (top)
and pp (bottom) SRC
pairs from the sum of
pp and np pairs in
nuclei.The green and
yellow bands reflect
68 and 95% confidence
levels (CLs), respec-
tively (9). np-SRC pairs dominate over pp-SRC pairs in all measured nuclei.
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• Like in a dance party with a majority of 
girls, where boy-girl interactions will make 
the average boy dance more than the 
average girl

tail with equal numbers of majority and minority
fermions, thereby leaving a larger fraction of majo-
rity fermions in low-momentumstates (k< kF) (see
Fig. 1). In neutron-rich nuclei, this increases the
average protonmomentumandmay even result in
protons having higher average momentum than
neutrons, inverting the momentum sharing in im-
balanced nuclei from that in noninteracting sys-
tems. Theoretically, this can happen because of
the tensor part of the nucleon-nucleon interac-
tion, which creates predominantly spin-1, isospin-
0 neutron-proton (np) SRC pairs (17, 18).

Here we identify SRC pairs in the high-
momentum tail of nuclei heavier than carbonwith
more neutrons (N) than protons (Z) (i.e., N > Z).
The data show the universal nature of SRC pairs,
which even in lead (N/Z = 126/82) are still pre-
dominantly np pairs. This np-pair dominance
causes a greater fraction of protons than neutrons
to have high momentum in neutron-rich nuclei.
The data presented here were collected in 2004

in Hall B of the Thomas Jefferson National Ac-
celerator Facility using a 5.014-GeV electron beam
incident on 12C, 27Al, 56Fe, and 208Pb targets. We

measured electron-induced two-proton knockout
reactions (Fig. 2). The CEBAF Large Acceptance
Spectrometer (CLAS) (20) was used to detect the
scattered electron and emitted protons. CLAS uses
a toroidal magnetic field and six independent
sets of drift chambers, time-of-flight scintillation
counters, Cerenkov counters, and electromag-
netic calorimeters for charged-particle identifi-
cation and trajectory reconstruction (Fig. 2) (16).
We selected events in which the electron in-

teracts with a single fast proton from an SRC pair
in the nucleus (9, 16) by requiring a large four-
momentumtransferQ2 ¼ q→2−ðw=cÞ2 > 1:5 GeV2/c2

[where q→ and w are the three-momentum and
energy, respectively, transferred to the nucleus
and c is the speed of light] and Bjorken scaling
parameter xB ¼ Q2=ð2mN ⋅ wÞ > 1:2 (wheremN

is the nucleonmass). To ensure selection of events
in which the knocked-out proton belonged to
an SRC pair, we further required missing mo-
mentum 300 < jp→missj < 600 MeV/c, where
p→miss ¼ p→p − q→ with p→p the measured proton
momentum. We suppressed contributions from
inelastic excitations of the struck nucleon by lim-
iting the reconstructed missing mass of the two-
nucleon systemmmiss < 1.1 GeV/c2. In each event,
the leading proton that absorbed the transferred
momentum was identified by requiring that its
momentum p→p is within 25° of q→ and that
jp→pj=jq

→j ≥ 0:6 (16, 21).
When a second proton was detected with mo-

mentum greater than 350 MeV/c, it was emitted
almost diametrically opposite to p→miss (see fig. S19).
The observed backward-peaked angular distribu-
tions are very similar for all four measured

SCIENCE sciencemag.org 31 OCTOBER 2014 • VOL 346 ISSUE 6209 615

Fig. 2. Illustration of the CLAS detector with
a reconstructed two-proton knockout event.
For clarity, not all CLAS detectors and sectors
are shown.The inset shows the reaction in which
an incident electron scatters fromaproton-proton
pair via the exchange of a virtual photon. The
human figure is shown for scale.

Fig. 1. Schematic
representation
of the momentum
distribution, n(k), of
two-component
imbalanced Fermi
systems. Red and blue
dashed lines show the
noninteracting system,
whereas the solid
lines show the effect of
including a short-range
interaction between
different fermions.
Such interactions create
a high-momentum tail
(k > kF, where kF is the
Fermi momentum of
the system). This is
analogous to a dance
party with a majority of girls, where boy-girl interactions will make the average boy dance more than the
average girl.

RESEARCH | REPORTS



4

energy for argon [16] and the actual excitation level of
the residual nucleus. We set its total value to a constant
Emiss=30 MeV. This is an approximation of the average
energy to remove a np pair from a Ar nucleus extrapo-
lated from single nucleon removal energy spectra for Ar
nuclei [17].
From the reconstructed neutrino energy and the mea-
sured muon kinematics, the components of the 4-
momentum transfer (!,~q) can eventually be inferred.
The muon momentum resolution is 5-10% [13]. The pro-
ton angular resolution (1-1.5�, depending on the track
length) and the proton energy resolution (about 6% for
protons above the Fermi momentum) are estimated by
MC simulation. The overall resolution in our neutrino
energy and transfer momentum reconstruction is dom-
inated by muon momentum resolution, as in CC inter-
actions the muon takes the largest fraction on the in-
cident neutrino energy. Discussion - Nucleon-nucleon
correlations are essential components of modern poten-
tials describing the mutual interaction of nucleons in nu-
clei. The strong, repulsive short-range correlations (NN
SRC) cause the nucleons to be promoted to states above
the Fermi level in the high-momentum tail of the nucleon
momentum distribution [20]. Thus, SRC cause nucleons
to form pairs with large relative momentum and small
center-of-mass momentum, i.e. pairs of nucleons with
large, back-to-back momenta. Due to NN tensor correla-
tions, SRC pairs are dominantly in iso-singlet (deuteron
like) state (np)I=0 [21].
Two-nucleon knock-out from high energy scattering pro-
cesses is the most appropriate venue to probe NN correla-
tions in nuclei. Two nucleons can be naturally emitted by
two-body mechanisms [4]: MEC - two steps interactions
probing two nucleons correlated by meson exchange cur-
rents, and “Isobar Currents” (IC) - intermediate state
�, N⇤ excitation of a nucleon in a pair with the pion
from resonance decay reabsorbed by the other nucleon.
It should be noted that the NN pairs in these two-body
processes may or may not be SRC pairs.
One-body interactions can also lead to two-nucleon ejec-
tion. This happens when the struck nucleon is in a SRC
pair and the high relative momentum in the pair would
cause the correlated nucleon to recoil and be ejected as
well [12].
It should also be noted that in both cases final state
interactions (FSI) - momenta or charge exchange and in-
elastic reactions - between the outgoing nucleons and the
residual nucleus [10] may alter the picture.

Hadron scattering experiments were extensively per-
formed to probe NN SRC in nuclei. In pion-nucleus ex-
periments in the intermediate energy range (incident en-
ergy fixed in the �-resonance range, 100-500 MeV) the
cross section is high and the main contribution is from ab-
sorption processes. Pion absorption is highly suppressed
on a single nucleon in the nucleus. Thus, absorption re-
quires at least a two-nucleon interaction. The simplest
and most frequent absorption mechanism (for A�12) is
on np pairs (“quasi-deuteron absorption (QDA)”: e.g.

FIG. 4. 2D views of one of the four “hammer events”,
with a forward going muon and a back-to-back proton pair
(pp1 = 552 MeV/c, pp2 = 500 MeV/c). Transformations
from the TPC wire-planes coordinates (w,t “Collection plane”
[Top], v,t “Induction plane” [Bottom]) into Lab coordinates
are given in [13].

⇡+ + (np) ! pp). Most of the pion energy is carried
away by the ejected nucleons (whose separation energy
contributes to the missing energy budget) and part of
the momentum can be transferred to the recoil nucleus
(missing momentum). Observation, e.g. from bubble-
chamber experiments, of pairs of energetic protons with
3-momentum pp1, pp2 � kF detected at large opening an-
gles in the Lab frame (cos�  �0.9) suggested first hints
for SRC in the target nucleus [22].

Electron scattering experiments extensively studied
SRC. Experiments of last generation probe SRC by triple
coincidence - A(e, e0np or pp)A-2 reaction - where the
two knock-out nucleons are detected at fixed angles. The
SRC pair is typically assumed to be at rest prior to the
scattering and the kinematics reconstruction utilizes pre-
defined 4-momentum transfer components determined
from the fixed beam energy and the electron scattering
angle and energy. NN SRC are associated with finding
a pair of high-momentum nucleons, whose reconstructed

initial momenta are back-to-back and exceed the charac-
teristic Fermi momentum of the parent nucleus, while the
residual nucleus is assumed to be left in a highly excited
state after the interaction [23]. Recent results from JLab
(on 12C) indicate that �20% of the nucleons (for A�12)
act in correlated pairs. 90% of such pairs are in the form
of high momentum iso-singlet (np)I=0 SRC pairs; 5% are
in the form of SRC pp pairs; and, by isospin symmetry,
it is inferred that the remaining 5% are in the form of
SRC nn pairs [24].

Neutrino scattering experiments, to our knowledge,
have never attempted to directly explore SRC through
detection of two nucleon knock-out. The main limita-
tion compared to electron scattering comes from the in-
trinsic uncertainty on the 4-momentum transfer. This
originates from the a priori undetermined incident neu-

Nuclear correlations 
• Recently, evidence of nuclear correlations has been also found in neutrino-nucleus scattering 
events by the ArgoNeuT experiment at Fermilab.
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Lepton-nucleus scattering 

The inclusive cross section of the process in which 
a lepton scatters off a nucleus and the hadronic 
final state is undetected can be written as

• The Hadronic tensor contains all the information on target response

• The leptonic tensor         is fully specified by the lepton kinematic variables. For instance, in the 
electron-nucleus scattering case

Lµ⌫

d2�

d⌦`dE`0
= Lµ⌫W

µ⌫

Wµ⌫ =
X

X

h 0|Jµ †(q)| Xih X |J⌫(q)| 0i�(4)(p0 + q � pX)

Note that the initial state does not depend on the momentum transfer!

`

`0

 0

 X

�, Z,W±

LEM
µ⌫ = 2[kµk

0
⌫ + k⌫k

0
µ � gµ⌫(kk

0)]
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I. INTRODUCTION

The energy spectrum of high-energy leptons !elec-
trons in particular" scattered from a nuclear target dis-
plays a number of features. At low energy loss !"",

peaks due to elastic scattering and inelastic excitation of
discrete nuclear states appear; a measurement of the
corresponding form factors as a function of momentum
transfer #q# gives access to the Fourier transform of
nuclear !transition" densities. At larger energy loss, a
broad peak due to quasielastic electron-nucleon scatter-
ing appears; this peak—very wide due to nuclear Fermi
motion—corresponds to processes by which the electron
scatters from an individual, moving nucleon, which, after
interaction with other nucleons, is ejected from the tar-
get. At even larger ", peaks that correspond to excita-
tion of the nucleon to distinct resonances are visible. At
very large ", a structureless continuum due to deep in-
elastic scattering !DIS" on quarks bound in nucleons ap-
pears. A schematic spectrum is shown in Fig. 1. At mo-
mentum transfers above approximately 500 MeV/c, the
dominant feature of the spectrum is the quasielastic
peak.

*benhar@roma1.infn.it
†dbd@virginia.edu
‡ingo.sick@unibas.ch

FIG. 1. Schematic representation of inclusive cross section as a
function of energy loss.
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Schematic representation of the inclusive cross section as a function of the energy loss.

• Elastic scattering and 
inelastic excitation of discrete 
nuclear states.

• Broad peak due to quasi-
elastic electron-nucleon 
scattering.

• Excitation of the nucleon to 
distinct resonances (like the Δ) 
and pion production.

Electron-nucleus scattering 



Both approaches are based on the same dynamical framework: the nucleus consists of a 
collection of A non relativistic nucleons the dynamics of which being described by

Towards a unified approach 

• Ab initio Green’s Function Monte Carlo calculation of the nuclear response from threshold up to 
the quasielastic region, initially for nuclei as large as 12C.

Large momentum transfer regime
• Development and implementation of the factorization approximation, in which the hadronic final 
state is written as a product of a state representing the high-momentum particles produced in the 
interaction process, and a state representing the spectator nucleons, described by spectral 
functions.

Moderate momentum transfer regime 

H =
X

i

p2
i

2m
+

X

i<j

vij +
X

i<j<k

Vijk + . . . H| 0i = E0| 0i



Nuclear hamiltonian 
• Argonne v18 two-body potential reproduces the ~4300 np and pp scattering data below 350 MeV 
of the Nijmegen database with             .

• Illinois 7 three-body potential is needed to accurately describe the spectrum of light nuclei
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Definition: ab initio approaches are those which rely on the thousands of NN scattering data
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FIG. 4: (Color online) Magnetic moments in nuclear magne-
tons for A ≤ 9 nuclei. Black stars indicate the experimen-
tal values [35–37], while blue dots (red diamonds) represent
GFMC calculations which include the IA one-body EM cur-
rent (total χEFT current up to N3LO). Predictions are for
nuclei with A > 3.

and the NLO OPE term contributes in both the trinu-
cleon clusters and in between the trinucleon clusters and
the valence pp (nn) pair. The IA m.m. for 9Be is close
to the experimental value, while those for 9Li and 9C
are far from the data, so this pattern of small and large
MEC corrections provides good overall agreement with
the data.

The χEFT results reported in Tables III and V are
summarized in Fig. 4, where the experimental data [34–
37] (there are no data for the m.m. of 9B) are repre-
sented by black stars. We show also the experimen-
tal values for the proton and neutron m.m.’s, as well
as their sum, which corresponds to the m.m. of an S-
wave deuteron. The experimental values of the A = 2–3
m.m.’s have been utilized to fix the LECs, therefore pre-
dictions are for A > 3 nuclei. The blue dots labeled
as GFMC(IA) represent theoretical predictions obtained
with the standard IA one-nucleon EM current entering
at LO: diagram (a) of Fig. 1. The GFMC(IA) results
reproduce the bulk properties of the m.m.’s of the light
nuclei considered here. In particular, we can recognize
three classes of nuclei with non-zero m.m.’s, i.e., odd-
even nuclei whose m.m.’s are driven by an unpaired va-
lence proton, even-odd nuclei driven by an unpaired va-
lence neutron, and odd-odd nuclei with either a deuteron
cluster or a triton-neutron (3He-proton) cluster outside
an even-even core. Predictions which include all the con-
tributions to the N3LO χEFT EM currents illustrated
in Fig. 1 are represented by the red diamonds of Fig. 4,
labeled GFMC(TOT). In all cases except 6Li and 9Be
(where the IA is already very good and the MEC correc-
tion is very small) the predicted m.m.’s are closer to the
experimental data when the MEC corrections are added
to the IA one-body EM operator.

It is also interesting to consider the spatial distribution
of the various contributions to the m.m., i.e., to examine
the magnetic density. The one-body IA contributions
from the starting VMC wave functions are shown in Fig. 5
for the isobaric analog pairs 7Li–7Be, 8Li–8B, and 9Li–
9C. (The VMC values for the IA m.m.’s are within a few
% of the final GFMC values, so we expect their spatial
distribution to be reasonably accurate.) In the figure, the
red upward-pointing triangles are the contribution from
the proton spin, µp[ρp↑(r)−ρp↓(r)], and similarly the blue
downward-pointing triangles are the contribution from
the neutron spin. The green diamonds are the proton
orbital (convection current) contribution, and the black
circles are the sum. The integrals of the black curves over
d3r give the total m.m.’s of the nuclei in IA.

For the neutron-rich lithium isotopes, there is one un-
paired proton (embedded in a p-shell triton cluster) with
essentially the same large positive contribution in all
three cases. The proton orbital term is also everywhere
positive, but relatively small. For 7Li and 9Li, the neu-
trons are paired up, and give only a small contribution,
so the total m.m. is close to the sum of the proton spin
and orbital parts. However 8Li has one unpaired neu-
tron which acts against the proton and significantly re-
duces the overall m.m. values. For the proton-rich iso-
baric analogs, there is one unpaired neutron (embedded
in a p-shell 3He cluster) with the same sizable negative
contribution in all three cases. In 7Be and 9C, the pro-
tons are paired up and give little net contribution, but
the orbital term is always positive and acts against the
neutron spin term. In 8B there is also one unpaired pro-
ton, which gives a bigger contribution than the unpaired
neutron and results in a net positive m.m. value.

In Table VI, we explicitly show the various contribu-
tions entering the χEFT operator. The labeling in the
table has been defined in Sec. III A. We list the contribu-
tions at each order. At N3LO, we separate the terms that
do not depend on EM LECs (i.e. the LOOP contribution
and the contact MIN currents; the former depends on the
known axial coupling constant, gA, and pion decay am-
plitude, Fπ , while the latter depends on the strong LECs
entering the NN χEFT potential at N2LO) and those
that depend on them (i.e. the contact NM and the OPE
current whose isovector component has been saturated
with the ∆ transition current). In most cases, chiral
convergence is observed but for the isovector N3LO OPE
contribution whose order of magnitude is in some cases
comparable to the OPE contribution at NLO. It is likely
that the explicit inclusion of ∆ degrees of freedom in the
present χEFT would significantly improve the conver-
gence pattern, since in such a theory this isovector OPE
current, presently entering at N3LO, would be promoted
to N2LO.

In Table VI, we do not provide the errors associated
with the individual terms at each order because they are
highly correlated. We limit ourselves to report the errors
associated with the IA, MEC, and total results. Also
in this table, we denote calculations performed enforcing

• The inclusion of two-body currents is essential for low-momentum and low-energy transfer transitions.

 The nuclear electromagnetic current is constrained by the Hamiltonian through the continuity equation

• Because the NN potential does not commute with the charge operator, the above equation implies 
that          involves two-nucleon contributions. They account for processes in which the vector boson 
couples to the currents arising from meson exchange between two interacting nucleons.

r · JEM + i[H, J0
EM] = 0

JEM



Green’s Function Monte Carlo
• The Green’s function Monte Carlo (GFMC) method uses a projection technique to enhance the 

true ground-state component of a starting trial wave function.

• The method relies on the observation that the trial wave function can be expanded in the 
complete set of eigenstates of the the hamiltonian according to

| T i =
X

n

cn| ni H| ni = En| ni

which implies 

where    is the imaginary time. Hence, DMC projects out the exact lowest-energy state, provided 
the trial wave function it is not orthogonal to the ground state.

⌧

lim
⌧!1

e�(H�E0)⌧ | T i = lim
⌧!1

X

n

cn e
�(En�E0)⌧ | ni = c0| 0i



v(x)

 0(x)

• A set of walkers is sampled from the trial wave 
function 

• Gaussian drift for the kinetic energy

• Branching and killing of the walkers induced 
by the potential weight

• Ground-state expectation values are estimated 
during the diffusion

Diffusion Monte Carlo
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It contains 3-body correlations stemming from 3-body potential 

The pair correlated wave function is written in terms of operator correlations arising from the 2-body 
potential

The total antisymmetric Jastrow wave function depends on the quantum numbers of the given 
nucleus

Nuclear VMC wave function
The trial wave function of the nucleus reflects the complexity of the nuclear potential 
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Green’s Function Monte Carlo 

• The 3H case fits in the slide!

• The GFMC wave function is written as a complex vector, the coordinates of which represent 
a spin-isospin state of the system 4

|Ψ3H⟩ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜
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⎜

⎜

⎜

⎜

⎝

a ↑↑↑
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⎟

⎟

⎟

⎟
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⎟

⎟

⎠

(9)

Each coefficient aα, which is a function of the coordinates r1, r2 and r3, represents the

amplitude of a given many-particle spin configuration; for instance

a ↑↑↓ = ⟨↑↑↓ |Ψ3H⟩ . (10)

The application of the spin matrix σ12 ≡
∑

i σ
i
1σ

i
2 yields

σ̂12|Ψ3H⟩ =

⎛
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(11)

The “new” wave function can be expressed in terms of the coefficients of the old one.

Therefore, in order to reduce the computational complexity of the spin and isospin matrix

multiplication, a specialized table-drive code is implemented.

III. BEFORE MIRA AND ON MIRA

The GFMC code needed to be deeply revised to better capitalize the resources of a

leadership class computer like Intrepid (BQP) and Mira (BGQ).

The branching process of the GFMC algorithm involves replication and killing of the sam-

ples, the number of which can undergo large fluctuations. Therefore, to achieve an high

0

@
apnn
anpn
annp

1

A⌦

• A walker associated with wave function of the nucleus, do not only describes the positions 
of the protons and neutrons, but also their spin and isospin! 



Green’s Function Monte Carlo 
The number of spin-isospin states growths exponentially with the number of particles

N = 2A ⇥
✓
A

Z

◆



• GFMC has steadily undergone development to take advantage of each new generation of 
parallel machine and was one of the first to deliver new scientific results each time.

Using supercomputers 



• GFMC has steadily undergone development to take advantage of each new generation of 
parallel machine and was one of the first to deliver new scientific results each time.
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Moderate momentum transfer regime 



Moderate momentum-transfer regime 

• Both initial and final states are eigenstates of the nuclear Hamiltonian

• Relativistic corrections are included in the current operators and in the nucleon form factors

• At moderate momentum transfer, the inclusive cross section can be written in terms of the 
response functions

• As for the electron scattering on 12C

R↵�(!,q) =
X

f

h 0|J†
↵(q)| f ih f |J�(q)| 0i�(! � Ef + E0)

H| f i = Ef | f iH| 0i = E0| 0i

These are eigenstate of a bare nuclear Hamiltonian and are, in principle, observable


|12C⇤i, |11B, pi, |11C, ni, |10B, pni, |10B, ppi . . .



Integral transform techniques  
• The integral transform of the response function are generally defined as

• Using the completeness of the final states, they can be expressed in terms of ground-state 
expectation values

K

E↵�(�,q) ⌘
Z

d!K(�,!)R↵�(!,q)

E↵�(�,q) = h 0|J†
↵(q)K(�, H � E0)J�(q)| 0i
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At finite imaginary time the contributions 
from large energy transfer are quickly 
suppressed

Euclidean response function 
The the Kernel of the Euclidean response 
defines the Laplace transform

The system is first heated up by the transition operator. How it cools down determines the 
Euclidean response of the system

Quantum Monte Carlo
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12C electromagnetic Euclidean response 
In the electromagnetic longitudinal case, destructive interference between the matrix elements of 
the one- and two-body charge operators reduces, albeit slightly, the one-body response. 3

E
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· ≠
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FIG. 1. (Color online) Euclidean electromagnetic longitudinal
(top panel) and transverse (lower panel) response function of
12C at q = 570 MeV. Experimental data are from Ref. [22].

that used in Ref. [3] for the sum rules. As discussed
in Ref. [3], the scaling assumption can be justified by ob-
serving that the high ! (well beyond !

qe

) region of the
response is dominated by two-nucleon physics, in partic-
ular by deuteron-like np pairs in the ground-state of the
nucleus. It is important to stress that, as ⌧ increases,
the Euclidean response functions become more and more
sensitive to strength in the quasi-elastic and threshold
regions of RL,T (q,!). Indeed, in this limit (⌧ >⇠ 1/!

qe

)
contributions from unmeasured strength at ! > !

max

are
exponentially suppressed.

In Fig. 1 we show results obtained by including only
one-body (open circles) or both one- and two-body (solid
circles) terms in the electromagnetic transition operators.
In the longitudinal case, destructive interference between
the matrix elements of the one- and two-body charge op-
erators reduces, albeit slightly, the one-body response.
In the transverse case, on the other hand, two-body cur-
rent contributions substantially increase the one-body re-
sponse. This enhancement is e↵ective over the whole
imaginary-time region we have considered, with the im-
plication that excess transverse strength is generated by
two-body currents not only at ! >⇠ !

qe

, but also in the
quasi-elastic and threshold regions of RT (q,!). It is re-
assuring to see that the full predictions for both longitu-

dinal and transverse Euclidean response functions are in
excellent agreement with data.
At larger values of ⌧ the statistical errors associated

with the GFMC evolution are rather large, particularly
in the longitudinal response for which the elastic contri-
bution proportional to the square of the 12C form fac-
tor [3] needs to be removed in order to account for the
inelastic strength only. However, it should be possible
to reduce these errors in the future by investing substan-
tial additional computational resources in this type of
calculation. Those presented here were performed with
⇠45 million core hours of Argonne National Laboratory’s
IBM Blue Gene/Q (Mira) parallel supercomputer. The
Automatic Dynamic Load Balancing (ADLB) library [23]
was used to distribute the imaginary time propagation of
O�(q)| V i and the evaluation of the matrix element in
Eq. (3) over more than 8000 MPI ranks. The code is at
present approximately 75% e�cient at this scale.
In Fig. 2 we show the largest of the five Euclidean

neutral-weak response functions: the transverse (top
panel) and interference (lower panel) E↵�(q, ⌧), having
respectively ↵� = xx and ↵� = xy in the notation of
Ref. [1]. The Exy(q, ⌧) response is due to interference
between the vector (VNC) and axial (ANC) parts of the
neutral current (NC), and in the inclusive cross section
the corresponding Rxy(q,!) enters with opposite sign de-
pending on whether the process A(⌫l, ⌫0l) or A(⌫l, ⌫

0
l ) is

considered [1]. On the other hand, in the transverse
case the interference of VNC and ANC terms vanishes,
and Exx(q, ⌧) is simply given by the sum of the terms
with both O↵ and O� in Eq. (1) being from the VNC
or from the ANC. For Exx(q, ⌧) these individual contri-
butions, along with their sum, are displayed separately.
Both Exx(q, ⌧) and Exy(q, ⌧) response functions obtained
with one-body terms only in the NC are substantially in-
creased when two-body terms are also retained. This
enhancement is found not only at low ⌧ , thus corrobo-
rating the sum-rule predictions of Ref. [4], but in fact
extends over the whole ⌧ region studied here. Moreover,
in the case of the transverse response it a↵ects, in rela-
tive terms, the individual (VNC-VNC) and (ANC-ANC)
contributions about equally.

The VNC consists of a linear combination of the isoscalar
and isovector components of the electromagnetic cur-
rent, weighted respectively by the factors �2 sin2 ✓W
and (1 � 2 sin2 ✓W ) with ✓W being the Weinberg an-
gle. The excess transverse strength induced by two-body
terms in the VNC is consistent with that found in the
transverse electromagnetic response, and is confirmed by
experiment as Fig. 1 demonstrates. The two-body en-
hancement in the (ANC-ANC) contribution of Exx(q, ⌧)
is substantial at these relatively large q’s. It decreases
significantly (for ⌧ >⇠ 0.01 MeV�1) as q is reduced [24],
consistently with what is found in calculations of low
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was used to distribute the imaginary time propagation of
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case the interference of VNC and ANC terms vanishes,
and Exx(q, ⌧) is simply given by the sum of the terms
with both O↵ and O� in Eq. (1) being from the VNC
or from the ANC. For Exx(q, ⌧) these individual contri-
butions, along with their sum, are displayed separately.
Both Exx(q, ⌧) and Exy(q, ⌧) response functions obtained
with one-body terms only in the NC are substantially in-
creased when two-body terms are also retained. This
enhancement is found not only at low ⌧ , thus corrobo-
rating the sum-rule predictions of Ref. [4], but in fact
extends over the whole ⌧ region studied here. Moreover,
in the case of the transverse response it a↵ects, in rela-
tive terms, the individual (VNC-VNC) and (ANC-ANC)
contributions about equally.

The VNC consists of a linear combination of the isoscalar
and isovector components of the electromagnetic cur-
rent, weighted respectively by the factors �2 sin2 ✓W
and (1 � 2 sin2 ✓W ) with ✓W being the Weinberg an-
gle. The excess transverse strength induced by two-body
terms in the VNC is consistent with that found in the
transverse electromagnetic response, and is confirmed by
experiment as Fig. 1 demonstrates. The two-body en-
hancement in the (ANC-ANC) contribution of Exx(q, ⌧)
is substantial at these relatively large q’s. It decreases
significantly (for ⌧ >⇠ 0.01 MeV�1) as q is reduced [24],
consistently with what is found in calculations of low
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(top panel) and transverse (lower panel) response function of
12C at q = 570 MeV. Experimental data are from Ref. [22].

that used in Ref. [3] for the sum rules. As discussed
in Ref. [3], the scaling assumption can be justified by ob-
serving that the high ! (well beyond !

qe

) region of the
response is dominated by two-nucleon physics, in partic-
ular by deuteron-like np pairs in the ground-state of the
nucleus. It is important to stress that, as ⌧ increases,
the Euclidean response functions become more and more
sensitive to strength in the quasi-elastic and threshold
regions of RL,T (q,!). Indeed, in this limit (⌧ >⇠ 1/!

qe

)
contributions from unmeasured strength at ! > !

max

are
exponentially suppressed.

In Fig. 1 we show results obtained by including only
one-body (open circles) or both one- and two-body (solid
circles) terms in the electromagnetic transition operators.
In the longitudinal case, destructive interference between
the matrix elements of the one- and two-body charge op-
erators reduces, albeit slightly, the one-body response.
In the transverse case, on the other hand, two-body cur-
rent contributions substantially increase the one-body re-
sponse. This enhancement is e↵ective over the whole
imaginary-time region we have considered, with the im-
plication that excess transverse strength is generated by
two-body currents not only at ! >⇠ !

qe

, but also in the
quasi-elastic and threshold regions of RT (q,!). It is re-
assuring to see that the full predictions for both longitu-

dinal and transverse Euclidean response functions are in
excellent agreement with data.
At larger values of ⌧ the statistical errors associated

with the GFMC evolution are rather large, particularly
in the longitudinal response for which the elastic contri-
bution proportional to the square of the 12C form fac-
tor [3] needs to be removed in order to account for the
inelastic strength only. However, it should be possible
to reduce these errors in the future by investing substan-
tial additional computational resources in this type of
calculation. Those presented here were performed with
⇠45 million core hours of Argonne National Laboratory’s
IBM Blue Gene/Q (Mira) parallel supercomputer. The
Automatic Dynamic Load Balancing (ADLB) library [23]
was used to distribute the imaginary time propagation of
O�(q)| V i and the evaluation of the matrix element in
Eq. (3) over more than 8000 MPI ranks. The code is at
present approximately 75% e�cient at this scale.
In Fig. 2 we show the largest of the five Euclidean

neutral-weak response functions: the transverse (top
panel) and interference (lower panel) E↵�(q, ⌧), having
respectively ↵� = xx and ↵� = xy in the notation of
Ref. [1]. The Exy(q, ⌧) response is due to interference
between the vector (VNC) and axial (ANC) parts of the
neutral current (NC), and in the inclusive cross section
the corresponding Rxy(q,!) enters with opposite sign de-
pending on whether the process A(⌫l, ⌫0l) or A(⌫l, ⌫
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considered [1]. On the other hand, in the transverse
case the interference of VNC and ANC terms vanishes,
and Exx(q, ⌧) is simply given by the sum of the terms
with both O↵ and O� in Eq. (1) being from the VNC
or from the ANC. For Exx(q, ⌧) these individual contri-
butions, along with their sum, are displayed separately.
Both Exx(q, ⌧) and Exy(q, ⌧) response functions obtained
with one-body terms only in the NC are substantially in-
creased when two-body terms are also retained. This
enhancement is found not only at low ⌧ , thus corrobo-
rating the sum-rule predictions of Ref. [4], but in fact
extends over the whole ⌧ region studied here. Moreover,
in the case of the transverse response it a↵ects, in rela-
tive terms, the individual (VNC-VNC) and (ANC-ANC)
contributions about equally.

The VNC consists of a linear combination of the isoscalar
and isovector components of the electromagnetic cur-
rent, weighted respectively by the factors �2 sin2 ✓W
and (1 � 2 sin2 ✓W ) with ✓W being the Weinberg an-
gle. The excess transverse strength induced by two-body
terms in the VNC is consistent with that found in the
transverse electromagnetic response, and is confirmed by
experiment as Fig. 1 demonstrates. The two-body en-
hancement in the (ANC-ANC) contribution of Exx(q, ⌧)
is substantial at these relatively large q’s. It decreases
significantly (for ⌧ >⇠ 0.01 MeV�1) as q is reduced [24],
consistently with what is found in calculations of low
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In the electromagnetic transverse case, two-body current contributions substantially increase the 
one-body response. This enhancement is effective over the whole imaginary-time region we have 
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bution proportional to the square of the 12C form fac-
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was used to distribute the imaginary time propagation of
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Eq. (3) over more than 8000 MPI ranks. The code is at
present approximately 75% e�cient at this scale.
In Fig. 2 we show the largest of the five Euclidean
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or from the ANC. For Exx(q, ⌧) these individual contri-
butions, along with their sum, are displayed separately.
Both Exx(q, ⌧) and Exy(q, ⌧) response functions obtained
with one-body terms only in the NC are substantially in-
creased when two-body terms are also retained. This
enhancement is found not only at low ⌧ , thus corrobo-
rating the sum-rule predictions of Ref. [4], but in fact
extends over the whole ⌧ region studied here. Moreover,
in the case of the transverse response it a↵ects, in rela-
tive terms, the individual (VNC-VNC) and (ANC-ANC)
contributions about equally.

The VNC consists of a linear combination of the isoscalar
and isovector components of the electromagnetic cur-
rent, weighted respectively by the factors �2 sin2 ✓W
and (1 � 2 sin2 ✓W ) with ✓W being the Weinberg an-
gle. The excess transverse strength induced by two-body
terms in the VNC is consistent with that found in the
transverse electromagnetic response, and is confirmed by
experiment as Fig. 1 demonstrates. The two-body en-
hancement in the (ANC-ANC) contribution of Exx(q, ⌧)
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serving that the high ! (well beyond !

qe

) region of the
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and Exx(q, ⌧) is simply given by the sum of the terms
with both O↵ and O� in Eq. (1) being from the VNC
or from the ANC. For Exx(q, ⌧) these individual contri-
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Both Exx(q, ⌧) and Exy(q, ⌧) response functions obtained
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rating the sum-rule predictions of Ref. [4], but in fact
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tive terms, the individual (VNC-VNC) and (ANC-ANC)
contributions about equally.

The VNC consists of a linear combination of the isoscalar
and isovector components of the electromagnetic cur-
rent, weighted respectively by the factors �2 sin2 ✓W
and (1 � 2 sin2 ✓W ) with ✓W being the Weinberg an-
gle. The excess transverse strength induced by two-body
terms in the VNC is consistent with that found in the
transverse electromagnetic response, and is confirmed by
experiment as Fig. 1 demonstrates. The two-body en-
hancement in the (ANC-ANC) contribution of Exx(q, ⌧)
is substantial at these relatively large q’s. It decreases
significantly (for ⌧ >⇠ 0.01 MeV�1) as q is reduced [24],
consistently with what is found in calculations of low
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FIG. 2. (Color online) Euclidean neutral-weak transverse
(top panel) and interference (lower panel) response functions
(↵� = xx and xy in the notation of Ref. [1]) of 12C at q = 570
MeV. See text for further explanations.

q charge-changing weak transitions to specific low-lying
states, such as the �-decays and electron and muon cap-
tures studied in Refs. [25, 26], where it amounts to a
few percent. In principle, the enhancement in the quasi-
elastic region could be measured in parity-violating in-
clusive (~e, e0) scattering at backward angles. However,
the smallness of the factor (1� 4 sin2 ✓W ), to which the
relevant (VEM-ANC) interference response function is
proportional, makes experiments of this type extremely
di�cult.

In order to obtain more detailed information on the
energy dependence of the R↵�(q,!) response, we em-
ploy the maximum entropy (MaxEnt) method to invert
E↵�(q, ⌧). We describe the method here very briefly, sev-
eral standard references are available [15, 16]. The nu-
merical inversion of a Laplace transform E↵�(q, ⌧) with
its associated statistical errors is a notoriously ill-posed
problem. The fact that we are interested in the (smooth)
response around the quasi-elastic peak rather than iso-
lated peaks makes it somewhat more practical. The
MaxEnt method is based on Bayesian statistical infer-
ence: the “most probable” response function is the one
that maximizes the posterior probability Pr[R|E ], i.e.,
the conditional probability of R given E. Bayes theo-
rem states that the posterior probability is proportional

to the product Pr[E|R ] ⇥ Pr[R ], where Pr[E|R ] is the
likelihood function and Pr[R ] is the prior probability. Ar-
guments based on the central limit theorem show that
the asymptotic limit of the likelihood function is given
by Pr[E|R ] / exp(��2/2) with �2 defined as follows.
Let N⌧ and N! be the numbers of grid points in the
variables ⌧ and !, respectively. Then the Laplace trans-
form in Eq. (2) reads (the q-dependence and subscripts
↵� of E↵�(q, ⌧) and R↵�(q, ⌧) are suppressed for simplic-
ity hereafter)

Ei =
N!X

j=1

Kij Rj , (4)

where Kij = exp(�⌧i !j) and Rj = �!j R(!j), and the
�2 follows from

�2 =
N⌧X

i,j=1

�
Ei � Ei

� �
C�1

�
ij

�
Ej � Ej

�
, (5)

where the Ei are obtained from Eq. (4), the Ei are the
GFMC calculated values, and C is the covariance matrix.
Therefore, maximizing the likelihood function reduces to
finding a set of Ri values that minimizes the �2. The
GFMC errors on Ei are strongly correlated in ⌧ , as in-
dividual steps involve only small spatial distances and
evolutions of the spin-isospin amplitudes. It is therefore
of paramount importance to estimate the covariance ma-
trix C.
Limiting ourselves only to the �2 minimization would

implicitly be making the assumption that the prior prob-
ability is either unimportant or unknown. However, since
the response function is positive definite and normal-
izable, it can be interpreted as yet another probability
function. The principle of maximum entropy states that
the values of a probability function are to be assigned by
maximizing the entropy

S =
N!X

i=1

h
R(!i)�M(!i)�R(!i) ln[R(!i)/M(!i)]

i
�!i ,

(6)
where the positive definite function M(!) is the default

model. It is worthwhile mentioning that the above ex-
pression is applicable even whenR(!) andM(!) have dif-
ferent normalizations. The entropy measures how much
the response function di↵ers from the model. It vanishes
when R(!) = M(!), and is negative when R(!) 6= M(!).
The maximum entropy method adds to the simple �2

minimization the use of the prior information that the
response function can be interpreted as a probability dis-
tribution function. We employ historic maximum en-

tropy by minimizing ↵S � �2/2 with the parameter ↵
adjusted to make the �2 equal to one. While more re-
fined methods relying on Bayes statistical inference have
been developed, we found historic maximum entropy to
be simple to implement and adequate for our purposes.
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elastic region could be measured in parity-violating in-
clusive (~e, e0) scattering at backward angles. However,
the smallness of the factor (1� 4 sin2 ✓W ), to which the
relevant (VEM-ANC) interference response function is
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In order to obtain more detailed information on the
energy dependence of the R↵�(q,!) response, we em-
ploy the maximum entropy (MaxEnt) method to invert
E↵�(q, ⌧). We describe the method here very briefly, sev-
eral standard references are available [15, 16]. The nu-
merical inversion of a Laplace transform E↵�(q, ⌧) with
its associated statistical errors is a notoriously ill-posed
problem. The fact that we are interested in the (smooth)
response around the quasi-elastic peak rather than iso-
lated peaks makes it somewhat more practical. The
MaxEnt method is based on Bayesian statistical infer-
ence: the “most probable” response function is the one
that maximizes the posterior probability Pr[R|E ], i.e.,
the conditional probability of R given E. Bayes theo-
rem states that the posterior probability is proportional
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likelihood function and Pr[R ] is the prior probability. Ar-
guments based on the central limit theorem show that
the asymptotic limit of the likelihood function is given
by Pr[E|R ] / exp(��2/2) with �2 defined as follows.
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form in Eq. (2) reads (the q-dependence and subscripts
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where the Ei are obtained from Eq. (4), the Ei are the
GFMC calculated values, and C is the covariance matrix.
Therefore, maximizing the likelihood function reduces to
finding a set of Ri values that minimizes the �2. The
GFMC errors on Ei are strongly correlated in ⌧ , as in-
dividual steps involve only small spatial distances and
evolutions of the spin-isospin amplitudes. It is therefore
of paramount importance to estimate the covariance ma-
trix C.
Limiting ourselves only to the �2 minimization would

implicitly be making the assumption that the prior prob-
ability is either unimportant or unknown. However, since
the response function is positive definite and normal-
izable, it can be interpreted as yet another probability
function. The principle of maximum entropy states that
the values of a probability function are to be assigned by
maximizing the entropy

S =
N!X
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R(!i)�M(!i)�R(!i) ln[R(!i)/M(!i)]
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(6)
where the positive definite function M(!) is the default

model. It is worthwhile mentioning that the above ex-
pression is applicable even whenR(!) andM(!) have dif-
ferent normalizations. The entropy measures how much
the response function di↵ers from the model. It vanishes
when R(!) = M(!), and is negative when R(!) 6= M(!).
The maximum entropy method adds to the simple �2

minimization the use of the prior information that the
response function can be interpreted as a probability dis-
tribution function. We employ historic maximum en-

tropy by minimizing ↵S � �2/2 with the parameter ↵
adjusted to make the �2 equal to one. While more re-
fined methods relying on Bayes statistical inference have
been developed, we found historic maximum entropy to
be simple to implement and adequate for our purposes.

Both the vector neutral current and the axial neutral current transverse responses are substantially 
enhanced over the entire imaginary-time region we considered.

12C neutral-current Euclidean response

q=570 MeV



Inverting the Euclidean response is an ill posed problem: any set of observations is limited and 
noisy and the situation is even worse since the kernel is a smoothing operator.

E↵�(⌧,q) R↵�(!,q)

Inversion of the Euclidean response 
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Two-body currents do not provide significant changes in the longitudinal response.

The agreement with experimental data appears to be remarkably good.  
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Two-body currents do not provide significant changes in the longitudinal response.

The agreement with experimental data appears to be remarkably good.  
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Two-body currents do not provide significant changes in the longitudinal response.

The agreement with experimental data appears to be remarkably good.  
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Two-body currents do not provide significant changes in the longitudinal response.

The agreement with experimental data appears to be remarkably good.  
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Two-body currents do not provide significant changes in the longitudinal response.

The agreement with experimental data appears to be remarkably good.  
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Two-body currents significantly enhance the transverse response function, not only in the dip 
region, but also in the quasielastic peak and threshold regions.
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Two-body currents significantly enhance the transverse response function, not only in the dip 
region, but also in the quasielastic peak and threshold regions.
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Two-body currents significantly enhance the transverse response function, not only in the dip 
region, but also in the quasielastic peak and threshold regions.



• We were recently able to invert the electromagnetic Euclidean response of 12C.This is the 
first ab-initio calculation of the electromagnetic response of 12C!

q=570 MeV
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• Very good agreement with experimental data once two-body currents are accounted for!
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• We were recently able to invert the electromagnetic Euclidean response of 12C.This is the 
first ab-initio calculation of the electromagnetic response of 12C!

• Very good agreement with experimental data. Small contribution from two-body currents



Large momentum-transfer regime 



Quantum Monte Carlo & the spectral function 

The spectral function formalism allow one to circumvent the difficulties associated with the 
relativistic treatment of the nuclear final state and current operator, while at the same time preserving 
essential features (such as correlations) inherent to the realistic description of nuclear dynamics

In the relativistic regime, the final state includes at least one particle carrying large momentum, 
whereas the initial nuclear state is still an eigenstate of the nuclear Hamiltonian.
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The sum rule of the spectral function 
corresponds to the momentum distribution

Z
dEP (k, E) = n(k)

The momentum distribution of nuclei as 
large as 16O and 40Ca has been computed 
using QMC fully accounting for the 
correlations of the nuclear ground state 



Conclusions

• 4He and 12C results for the electromagnetic response obtained using Maximum Entropy 
technique are in very good agreement with experimental data. 

• For relatively large momentum transfer, the two-body currents enhancement is effective in the 
entire energy transfer domain.

• We have computed the electromagnetic and neutral-current Euclidean response of 12C. The 
agreement of the former with experimental data is remarkably good.

• Fruitful interplay between Green’s function Monte Carlo and the spectral function approach. 
Both are based on the same model of nuclear dynamics.



• We plan to compute the Laplace transform of the spectral function using GFMC. Maximum-
entropy technique may well be used to obtain the real spectral function.

P (E)(k, ⌧) = h0|a†(k)e�(H�E0)⌧a(k)|0i

• Cluster variational Monte Carlo calculations of the energy weighted sum rules of the spectral 
function for nuclei as large as 40Ca will be carried out. Crucial interplay with (e,e’) experiment on 
Argon at JLab.

• We are implementing charged-current transition operator in GFMC and the corresponding 
Euclidean responses will soon be computed.

Current developments



Thank you



Maximum entropy algorithm 
We estimate the mean and the covariance matrix from NE Euclidean responses

Ē(⌧i) =
1

N

X

n

En(⌧i) C(⌧i, ⌧j) =
1

N(N � 1)

X

n

(Ēn(⌧i)� En(⌧i))(Ē
n(⌧j)� En(⌧j))

• The covariance matrix in general is NOT diagonal, and it is convenient to 
diagonalize it

1.4.2 Likelihood and covariance

The �2 definition of Eq. (4) is valid only in the case of uncorrelated data. In the more general
case, the �2 reads

�2 =
N⌧X

ij

(Ēi � Ei)[C
�1]ij(Ēj � Ej) (23)

with Ēi and Ei being defined in Eqs. (3) and (2). The covariance matrix can be estimated by the
set of NE Euclidean responses by

Cij =
1

NE(NE � 1)

NEX

n=1

(Ēi � En
i )(Ēj � En

j ) . (24)

In general, the covariance is not diagonal because the values of the Euclidean response at di↵erent
⌧i are correlated. In this case, the use of the chi2 of Eq. (5), where �i are obtained from the square
root go the diagonal elements of the covariance, is inappropriate.
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Figure 9: Spectrum of the covariance matrix eigenvalues obtained from NE = 50 Euclidean re-
sponses at |q| = 500 MeV

Following the procedure described in Ref. [3], we first find the transformation U that diago-
nalizes the covariance matrix

(U�1
CU)ij = �0 2

i �ij (25)

then we rotate both the data and the kernel in this diagonal representation

K

0 = U

�1
K Ē

0 = U

�1
Ē . (26)
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MAXIMUM ENTROPY APPROACH FOR THE INVERSION OF THE EUCLIDEAN RESPONSE

Correlated errors

We generated a set of N
E

' 2500 GFMC estimates of the Euclidean response functions, obtained from independent
imaginary-time propagations, on a grid of ⌧ points uniformly distributed between 0 to 0.05 MeV�1 with �⌧ = 0.0005
MeV�1. The estimates were each started from statistically uncorrelated sets of 20, 000 VMC configurations. Let

E
(n)
i

= E(n)(⌧
i

) be the Euclidean response function corresponding to the nth GFMC propagation. The average
Euclidean response function and covariance matrix elements are given by

E
i
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N
E
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� E
(n)
j
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. (2)

In general, the covariance matrix is non-diagonal because The GFMC errors on E
i

are strongly correlated in ⌧ , as
individual steps involve only small spatial distances and evolutions of the spin-isospin amplitudes.
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Following the procedure described in Ref. [1], we first find the transformation U that diagonalizes the covariance
matrix

(U�1CU)
ij

= �0 2
i

�
ij

(3)

then we rotate both the data and the kernel K
ij

= exp(�⌧
i

!
j

) in this diagonal representation

K0 = U�1K Ē0 = U�1Ē . (4)

The likelihood, which in general is given by

�2 =
N⌧X

i,j=1

�
E

i

� E
i

� �
C�1

�
ij

�
E

j

� E
j

�
, , (5)

where

E
i

=
N!X

j=1

K
ij

R
j

, (6)

• If N is not sufficiently large, 
the spectrum of the 
covariance eigenvalues 
becomes pathological.
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The likelihood, which in general is given by

�2 =
N⌧X

i,j=1

�
E

i

� E
i

� �
C�1

�
ij

�
E

j

� E
j

�
, , (5)

where

E
i

=
N!X

j=1

K
ij

R
j

, (6)

2

MAXIMUM ENTROPY APPROACH FOR THE INVERSION OF THE EUCLIDEAN RESPONSE

Correlated errors

We generated a set of N
E

' 2500 GFMC estimates of the Euclidean response functions, obtained from independent
imaginary-time propagations, on a grid of ⌧ points uniformly distributed between 0 to 0.05 MeV�1 with �⌧ = 0.0005
MeV�1. The estimates were each started from statistically uncorrelated sets of 20, 000 VMC configurations. Let

E
(n)
i

= E(n)(⌧
i

) be the Euclidean response function corresponding to the nth GFMC propagation. The average
Euclidean response function and covariance matrix elements are given by

E
i

=
1

N
E

NEX

n=1

E
(n)
i

, (1)

C
ij

=
1

N
E

(N
E

� 1)

NEX

n=1

h
E

i

� E
(n)
i

ih
E

j

� E
(n)
j

i
. (2)

In general, the covariance matrix is non-diagonal because The GFMC errors on E
i

are strongly correlated in ⌧ , as
individual steps involve only small spatial distances and evolutions of the spin-isospin amplitudes.

≠

≠

≠

≠

≠

≠

≠

‡
Õ i

≠

Ê

NE

NE

FIG. 1. Spectrum of the covariance matrix eigenvalues obtained from NE = 50 and NE = 2500 Euclidean responses at |q| = 500
MeV

Following the procedure described in Ref. [1], we first find the transformation U that diagonalizes the covariance
matrix

(U�1CU)
ij

= �0 2
i

�
ij

(3)

then we rotate both the data and the kernel K
ij

= exp(�⌧
i

!
j

) in this diagonal representation
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• The likelihood is defined in terms of the covariance matrix

• We rotate both the data and the kernel in the diagonal representation of the 
covariance matrix
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• The likelihood can be written in terms of the statistically independent 
measurements and the rotated kernel

3

can written in terms of the statistically independent measurement Ē0 and the rotated kernel,

�2 =
1

N
⌧

X

i

(
P

j

K 0
ij

R
j

� Ē0
i

)2

�0 2
i

. (7)

To simplify the notation, from now on we assume that the data and the kernel are rotated, so that the prime is
understood.

It has to be remarked that if N
E

is not large enough, the covariance and its spectrum of eigenvalues are likely to
show a pathological behavior. When diagonalizing the covariance matrix, N

⌧

independent eigenvectors are found,
provided that there are su�cient data to determine them. The empirical rule to get a well behaved spectrum is to
consider at least N

E

= 2N
⌧

independent estimates of the Euclidean response function [1]. As shown in Fig. 1, if such
requirement is not fulfilled, the spectrum of the eigenvalues of the covariance matrix displays a sharp break.

The algorithm

The key point in the inversion of the Laplace transform resides in the minimization of Q[R] = ↵S[R] � �2[R]/2.
We adopted the so called “Bryan algorithm” [2], the first step of which consists in performing the singular value
decomposition (SVD) of the kernel

K = V⌃UT . (8)

In the above equation, U and V are N
⌧

⇥ N
⌧

and N
!

⇥ N
!

orthogonal matrices, while ⌃ is a N
⌧

⇥ N
!

diagonal
matrix. The smallest element on the diagonal are essentially zero for the numerical precision of the computer, since
the kernel is e↵ectively singular. Within Bryan algorithm, only the N

s

diagonal elements of ⌃ which are larger than
the numerical precision of the machine are considered, while the other are disregarded. Hence, only the first N

s

column of U are relevant for representing the kernel. Moreover, because

KT

ij

=
NsX

k=1

U
ik

V T

kj

, (9)

the vector space spanned by the column of KT is the same as the space spanned by the column of U. Since the
gradient of the likelihood lies is defined by the columns of KT ,
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X

j
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@E
j
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j

@R
i

=
X

j

KT

ij

@L

@E
j

. (10)

all the search directions for the minimum are spanned, within machine precision, by the first N
s

columns of U. Bryan
called this reduced space the singular space.

In the singular space, the extreme condition for Q[R] reads

@Q

@R
i

= ↵
@S

@R
i

� @L

@R
i

= 0 ! �↵ ln(R
i

/M
i

) =
X

j

KT

ij

@L

@E
j

(11)

and the solution can be represented in terms of the vector u

ln
⇣R

i

M
i

⌘
= KT

ij

u
j

. (12)

Since only the first N
s

elements of ⌃ are di↵erent from zero, not all the components of u are independent. However,
since, as shown above, KT and U belong to the same vector space and since most of the relevant search directions lie
in the singular space, Bryan proposed the solution to be written in the form

R
i

= M
i

exp
⇣ NsX

j=1

U
ij

u
j

⌘
. (13)

Hence, to the machine-precision level, the most general solution of Eq. (11) only depends on the N
s

coordinates of u.
Searching the global maximum of Q[R] in the N

s

-dimensional singular space is computationally much less demanding
than in the full N

!

-dimensional space and can be performed by a straightforward Newton-Marquardt method.



Maximum entropy algorithm 
Maximum entropy approach can be justified on the basis of Bayesian inference. 
The best solution will be the one that maximizes the conditional probability
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Figure 8: Normalized tranverse response function extracted from the GFMC Euclidean response
by artificially increasing �Ē. Saclay data are also shown.

shown above have been obtained by averaging over many of these response functions. However,
there are other criteria to establish which is the best response function we can extract from Monte
Carlo data.

In this Section, I will report on the very promising results that have been obtained implementing
the Maximum Entropy method. In the following I will outline the main features of the method, for
further details, see the excellent Refs. [1, 3]. Within this approach, based on Bayesian statistical
inference, the “most probable” response function is the one that will be selected.

1.4.1 Bayesian inference

The non negativity and the normalizability of R(!), allow us to interpret it as a probability
function and to use the principle of maximum entropy, in conjunction with the Bayesian methods.
To phrase the problem in terms of Bayesian approach, our events are the functions R(!) and Ē(⌧).
The best solution R̃(!) will be the one that maximize Pr[R|Ē], i.e. the conditional probability of
R given Ē. Using Bayes theorem, we get

Pr[R|Ē] =
Pr[Ē|R]Pr[R]

Pr[Ē]
, (7)

where Pr[R|Ē] is called the posterior probability, Pr[Ē|R] the likelihood function, Pr[R] the prior
probability, and Pr[Ē] the evidence. It can be easily shown that the evidence is nothing but a
normalization constant, only depending on the likelihood function and the prior probability

Pr[Ē] =

Z
DRPr[Ē|R]Pr[R] . (8)
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• The evidence is merely a normalization constant
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Limiting ourselves to the minimization of the    , we implicitly make the assumption 
that the prior probability is important or unknown.

�2

• When the number of measurements becomes large, the asymptotic limit of the 
likelihood function is
When the number of measurements becomes large, by central limit arguments, the asymptotic

limit of the likelihood function is

Pr[Ē|R] =
1

Z1
e�L[R] =

1

Z1
e�

1
2�

2[R] (9)

where the normalization factor is given by

Z1 =

Z
DĒe��2[R]/2 . (10)

Thus, maximizing the likelihood is equivalent to minimizing the �2. However, by limiting our-
selves to the minimization of the �2, we implicitly make the assumption that the prior probability
is important or unknown. On the other hand, we have some information on the asymptotic limit
of R(!) that we would like to include. Also, since the spectral function is a nonnegative and
normalizable function, it can be interpreted as still another probability function. The principle of

maximum entropy states that the values of a probability function are to be assigned by maximizing
the entropy expression

S[R] ⌘ �
Z

d!(R(!)�D(!)�R(!) ln[R(!)/D(!)]) , (11)

where the function D(!) is called the default model. It is worth mentioning that the above
expression is applicable even when R(!) and D(!) have di↵erent normalization. The entropy
measures how much the response function di↵ers from the model. When A(!) 6= D(!), S[R] is
negative and t has maximum value of zero when R(!) = D(!). What the maximum entropy
method add to the simple minimization of the �2 is simply to use the prior information that the
spectral function can be interpreted as a probability function. For further details on this, please
read the nice kangaroo argument of Ref. [2].

In the limit case, of no data, or with the lack of information about the likelihood function, the
posterior probability is proportional to the prior probability

Pr[R|Ē] / Pr[R] . (12)

Hence, maximizing the posterior probability in absence of data is the same as maximizing S[R]
when

Pr[R] =
1

Z2
e↵S[R] . (13)

where the normalization constant Z2 is given by

Z2 =

Z
DRe↵S[R] . (14)

Therefore, the posterior probability can be rewritten as

Pr[R|Ē] =
e�Q[R]

Z1Z2Pr[Ē]
(15)
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In terms of the statistically independent measurement Ē 0 and the rotated kernel, the likelihood
can be written as

�2 =
1

N⌧

X

i

(
P

j K
0
ijRj � Ē 0

i)
2

�0 2
i

, (27)

If there the set of Euclidean responses is not large enough, the covariance and its spectrum
of eigenvalues can become pathological. When diagonalizing, we are asking for N⌧ independent
eigenvectors, so we should have enough data do determine these directions, so that NE > N⌧ .
Since in our case we have NE = 50 and N⌧ = 100, our original spectrum, represented by the red
filled circles of Fig. 9, displays a sharp break.

The empirical rule to get a non pathological spectrum is to have NE > 2N⌧ . Instead of
computing more Euclidean responses, I decided to consider only one ⌧i every three, so thatN⌧ = 33.
The covariance eigenvalues spectrum is in this case regular, as shown by the black point of Fig. 9.
During the weekend, I will compute ten additional Euclidean responses, in order to be able to use
more imaginary time points.

To simplify the notation, from now on we assume that the data and the kernel are rotated, so
that the prime is understood.

1.4.3 The algorithm

The key point in the inversion of the Laplace transform resides in the minimization of Q[R],
defined in Eq. (16) Typical algorithm, like the simulated annealing I reported on in the previous
section, search for an optimal R(!) in the entire space of Ri, In his algorithm, Bryan first perform
a singular value decomposition (SVD) of the kernel (again, all quantities are now rotated, the
prime is understood)

K = V⌃U

T . (28)

In the above equation, U and V are N⌧ ⇥ N⌧ and N! ⇥ N! orthogonal matrices, while ⌃ is
a N⌧ ⇥ N! diagonal matrix. The smallest element on the diagonal are essentially zero for the
numerical precision of the computer, since the kernel is e↵ectively singular. If we order the diagonal
elements of ⌃, from the largest to the smallest, Bryan algorithm only consider the first Ns, that
are larger than the precision of the machine, disregarding the others.

Therefore, only the first Ns column of U are relevant for representing the kernel. Moreover,
because

KT
ij =

NsX

k=1

UikV
T
kj , (29)

the vector space spanned by the column of KT is the same as the space spanned by the column of
U. Since the gradient of the likelihood lies is defined by the columns of KT ,
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Maximum entropy algorithm 
Since the response function is nonnegative and normalizable, it can be interpreted 
as a probability distribution function.

The principle of maximum entropy states that the values of a probability function 
are to be assigned by maximizing the entropy expression
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(15)

8

D(!)

and the posterior probability can be rewritten as

When the number of measurements becomes large, by central limit arguments, the asymptotic
limit of the likelihood function is
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with

Q[R] ⌘ 1

2
�2[R]� ↵S[R] , (16)

↵ being a regularization parameter. Thus, the maximization of the posterior probability corre-
sponds to the minimization of Q[R]. The results, however, will depend on ↵. In the limit ↵ ! 1,
the spectrum minimizing Q[R] is the default model D(!), while for ↵ ! 0 the least-squares fit is
regained. In what is often denoted as historic maximum entropy, ↵ is adjusted to make �2 = 1.
This choice is the expected value of �2 when the errors are Gaussian noise, but is otherwise ad

hoc. Bayes statistical inference provides the necessary tools to eliminate the free parameter ↵. Eq.
(7) can be rewritten explicitly including ↵

Pr[R,↵|Ē] =
Pr[Ē|R,↵]Pr[R,↵]

Pr[Ē]
, (17)

By applying Bayes’s theorem to factorize the joint probability Pr[R,↵], it turns out that

Pr[R,↵|Ē] =
Pr[↵]Pr[Ē|R,↵]Pr[R|↵]

Pr[Ē]
. (18)

Hence, integrating over ↵, the following relation for the posterior probability Pr[↵, Ē] can be found

Pr[↵, Ē] =
Pr[↵]

Z1Z2Pr[Ē]

Z
DRe�Q[R] . (19)

To derive the previous equation, we have identified Pr[Ē|R,↵] / exp(��[R]2/2) and Pr[R|↵] /
exp(↵S[R]), while the evidence

Pr[Ē] =

Z
d↵Pr[↵]

R
DRe�Q[R]

Z1Z2
(20)

is an ↵-independent normalization constant. The only unknown quantity in these equations is
Pr[↵], the prior probability of ↵. In the literature (and in the code I have), it is either taken to
be constant or to be the Je↵reys prior 1/↵. However, the choice of Pr[↵] has little influence on
the reconstructed spectra.

In the classical maximum entropy approach, one calculates ↵̂ as the ↵ that maximizes Pr[↵, Ē]
and takes the corresponding R̂↵̂ as the final result for the response function. This method relies
on the assumption that Pr[↵|Ē] is sharply peaked, which is not always the case. To overcome this
di�culty, Bryan’s method can be adopted, where ↵ is addressed by marginalization. In Bryan’s
method, for each ↵ we find R̂↵ that satisfies

�Q[R]

�↵

���
R=R̂↵

= 0 . (21)

Then we choose as the final result for the response function the average R̄(!) defined by

R̄(!) ⌘
Z

d↵R̂↵(!)Pr[↵|Ē] , (22)

where Pr[↵|Ē] is given by Eq. (19).

9

Regularization parameter



4He electromagnetic response 

q=700 MeV

The enhancement is driven by process involving one-pion exchange and the 
excitation of the Delta degrees of freedom 


