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Why quantum Monte Carlo?
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Neutrino experimental communities need accurate theoretical calculations, with reliable error
estimates

QMC methods allow for solving the time-independent Schrédinger equation for nuclear
Hamiltonians and naturally provide estimates of the gaussian error of the calculation.




Electron scattering data

e Alarge body of experimental
data for the electromagnetic
response of “He and °C (and
larger nuclei) is available.

* A model unable to describe
electron-nucleus scattering is
(very) unlikely to describe
neutrino-nucleus scattering.

» Electron-scattering has also
provided evidence of the
existence of short-range nucleon
nucleon correlations




Nuclear correlations
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Nuclear correlations

» Recently, evidence of nuclear correlations has been also found in neutrino-nucleus scattering
events by the ArgoNeuT experiment at Fermilab.
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L epton-nucleus scattering

The inclusive cross section of the process in which
a lepton scatters off a nucleus and the hadronic
final state is undetected can be written as

d?o
dQdpd E

= L, W

* The leptonic tensor L,,W is fully specified by the lepton kinematic variables. For instance, in the
electron-nucleus scattering case

Ly = 2lkyuky, + Kok, — g (kK')]

- The Hadronic tensor contains all the information on target response

WH =% (Wl " ()| x ) (T x| T ()| W0)d™ (po + ¢ — px)

Note that the initial state does not depend on the momentum transfer!




Electron-nucleus scattering

Schematic representation of the inclusive cross section as a function of the energy loss.
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e Elastic scattering and
L - inelastic excitation of discrete
i - nuclear states.

* Broad peak due to quasi-
elastic electron-nucleon
scattering.

e Excitation of the nucleon to
distinct resonances (like the A)
and pion production.

inclusive cross section
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Towards a unified approach

Moderate momentum transfer regime
* Ab initio Green’s Function Monte Carlo calculation of the nuclear response from threshold up to
the quasielastic region, initially for nuclei as large as >C.

Large momentum transfer regime

* Development and implementation of the factorization approximation, in which the hadronic final
state is written as a product of a state representing the high-momentum particles produced in the
Interaction process, and a state representing the spectator nucleons, described by spectral

functions.

Both approaches are based on the same dynamical framework: the nucleus consists of a
collection of A non relativistic nucleons the dynamics of which being described by

2
H = L +Z”w Z Vije + .. H|Vo) = Ep|¥o)
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Nuclear hamiltonian

* Argonne vig two-body potent|al reproduces the ~4300 np and pp scattering data below 350 MeV
of the Nijmegen database with X ~ 1.

Definition: ab initio approaches are those which rely on the thousands of NN scattering data

e lllinois 7 three-body potential is needed to accurately describe the spectrum of light nuclei
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Nuclear currents

The nuclear electromagnetic current is constrained by the Hamiltonian through the continuity equation

V - Jem +i[H, Jpy] =0

» Because the NN potential does not commute with the charge operator, the above equation implies
that Jgnm involves two-nucleon contributions. They account for processes in which the vector boson
couples to the currents arising from meson exchange between two interacting nucleons.

* The inclusion of two-body currents is essential for low-momentum and low-energy transfer transitions.
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Green’s Function Monte Carlo

+ The Green’s function Monte Carlo (GFMC) method uses a projection technique to enhance the
true ground-state component of a starting trial wave function.

« The method relies on the observation that the trial wave function can be expanded in the
complete set of eigenstates of the the hamiltonian according to

W) :chmjn> H|V,) = E,|V,)
which implies
lim e~ H =T @r) = lim cp e EnTEOT I Y = )| W)
T—00 T—00

where 7 is the imaginary time. Hence, DMC projects out the exact lowest-energy state, provided
the trial wave function it is not orthogonal to the ground state.




Diffusion Monte Carlo

v(x) » A set of walkers is sampled from the trial wave
function

» Gaussian drift for the kinetic energy

1
2 2
( m )26—2;12%(%—%1)

2wh2 AT

* Branching and killing of the walkers induced
by the potential weight

w(wipr) = e VT = FolaT

- Ground-state expectation values are estimated
during the diffusion

>z (i H W) w(z;)

) = S ()




Nuclear VMC wave function

The trial wave function of the nucleus reflects the complexity of the nuclear potential

It contains 3-body correlations stemming from 3-body potential

Up= |1+ Y UL Up <@ Uy =eaViy + eVl

ijk
i<j<k

The pair correlated wave function is written in terms of operator correlations arising from the 2-body
potential

Up = 5H(1+Uij) Vv, @@= U= Z u?(ri;) Oy

1<J p=2,6

The total antisymmetric Jastrow wave function depends on the quantum numbers of the given
nucleus

\IJJ: H chk H Z'Cj (I)A(JaMaTanS)

1<j<k 1<J




Green’s Function Monte Carlo

* A walker associated with wave function of the nucleus, do not only describes the positions
of the protons and neutrons, but also their spin and isospin!

 The GFMC wave function is written as a complex vector, the coordinates of which represent
a spin-isospin state of the system

e The 3H case fits in the slide!
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Green’s Function Monte Carlo

The number of spin-isospin states growths exponentially with the number of particles
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Using supercomputers

« GFMC has steadily undergone development to take advantage of each new generation of
parallel machine and was one of the first to deliver new scientific results each time.




Using supercomputers

« GFMC has steadily undergone development to take advantage of each new generation of
parallel machine and was one of the first to deliver new scientific results each time.

40

(Y
-
[ I | [ N | [ I | [ I |

Time (minutes)
(\
S

[
-

/
‘\‘\.4_./‘74

—e— Actual
—Ideal

12C - GFMC+ADLB - BG/Q eo0s0

Weak scaling, 2 configs/rank NP

256 1,024 4 096 16,384 65,536 262,144
Number of MPI ranks



Moderate momentum transfer regime



Moderate momentum-transfer regime

At moderate momentum transfer, the inclusive cross section can be written in terms of the
response functions

Ras(w,q) = S (Wol I} (@)W 1) (¥ 1| J5(@)[¥0)3(w — Ey + Eo)
I

e Both initial and final states are eigenstates of the nuclear Hamiltonian

H|Wo) = Ey| Vo) H|Uys) = Ep|Uy)

* As for the electron scattering on °C

2C"), VB, p), [M'Con, B, pn), [B,pp) ...

These are eigenstate of a bare nuclear Hamiltonian and are, in principle, observable

 Relativistic corrections are included in the current operators and in the nucleon form factors



Integral transform techniques

* The integral transform of the response function are generally defined as

E.p(o,q) = /dwK(a,w)RaB(w,q)

* Using the completeness of the final states, they can be expressed in terms of ground-state

expectation values

Eup(0.q) = (Wl T (@) K (0, H — Eg)J5() o)




Euclidean response function
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The system is first heated up by the transition operator. How it cools down determines the
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12C electromagnetic Euclidean response

In the electromagnetic longitudinal case, destructive interference between the matrix elements of
the one- and two-body charge operators reduces, albeit slightly, the one-body response.
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12C electromagnetic Euclidean response

In the electromagnetic transverse case, two-body current contributions substantially increase the
one-body response. This enhancement is effective over the whole imaginary-time region we have
considered.
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12C neutral-current Euclidean response

Both the vector neutral current and the axial neutral current transverse responses are substantially
enhanced over the entire imaginary-time region we considered.
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Inversion of the Euclidean response

Inverting the Euclidean response is an ill posed problem: any set of observations is limited and
noisy and the situation is even worse since the kernel is a smoothing operator.
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Image reconstruction from incomplete

and noisy data
S. F. Gull & G. J. Daniell*

Mullard Radio Astronomy Observatory, Cavendish Laboratory, Madingley Road, Cambridge, UK

Results are presented of a powerful technique for image
reconstruction by a maximum entropy method, which is
sufficiently fast to be useful for large and complicated

images. Although our examples are taken from the fields of

radio and X-ray astronomy, the technigue is immediately
applicable in spectroscopy, electron microscopy, X-ray crys-
tallography, geophysics and virtually any type of optical
image processing. Applied to radioastronomical data, the
algorithm reveals details not seen by conventional analysis,
but which are known to exist.

Nature, 272, 688 (1978)

To avoid abstraction, we shall refer to our radioastronomical
example. Starting with incomplete and noisy data, one can obtain
by the Backus—Gilbert method a series of maps of the distribution
of radio brightness across the sky, all of which are consistent with
the data, but have different resolutions and noise levels. From the
data alone, there is no reason to prefer any one of these maps, and
the observer may select the most appropriate one to answer any
specific question. Hence, the method cannot produce a unique
‘best” map of the sky. There is no single map that is equally
suitable for discussing both accurate flux measurements and
source positions,

Nevertheless, it 1s useful to have a single general-purpose map
of the sky, and the maximume-entropy map described here fulfils



*He electromagnetic response

Two-body currents do not provide significant changes in the longitudinal response.
The agreement with experimental data appears to be remarkably good.
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*He electromagnetic response

Two-body currents do not provide significant changes in the longitudinal response.
The agreement with experimental data appears to be remarkably good.
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*He electromagnetic response

Two-body currents do not provide significant changes in the longitudinal response.
The agreement with experimental data appears to be remarkably good.
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*He electromagnetic response

Two-body currents do not provide significant changes in the longitudinal response.
The agreement with experimental data appears to be remarkably good.
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*He electromagnetic response

Two-body currents do not provide significant changes in the longitudinal response.
The agreement with experimental data appears to be remarkably good.
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*He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only in the dip
region, but also in the quasielastic peak and threshold regions.

| | | | | | |
0.040 + +o— World data -
—-——— GFMC Oy,
— GFMC Oy 9
m’\
O
~
5 0.020 | i
A
0.010 |
0.000




*He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only in the dip
region, but also in the quasielastic peak and threshold regions.
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*He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only in the dip
region, but also in the quasielastic peak and threshold regions.
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*He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only in the dip
region, but also in the quasielastic peak and threshold regions.
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*He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only in the dip
region, but also in the quasielastic peak and threshold regions.
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12C electromagnetic response

» \We were recently able to invert the electromagnetic Euclidean response of °C.This is the
first ab-initio calculation of the electromagnetic response of 12C!

» \Very good agreement with experimental data once two-body currents are accounted for!
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12C electromagnetic response

» \We were recently able to invert the electromagnetic Euclidean response of °C.This is the
first ab-initio calculation of the electromagnetic response of 12C!

* VVery good agreement with experimental data. Small contribution from two-body currents
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Large momentum-transfer regime



Quantum Monte Carlo & the spectral function

In the relativistic regime, the final state includes at least one particle carrying large momentum,
whereas the initial nuclear state is still an eigenstate of the nuclear Hamiltonian.

The spectral function formalism allow one to circumvent the difficulties associated with the
relativistic treatment of the nuclear final state and current operator, while at the same time preserving
essential features (such as correlations) inherent to the realistic description of nuclear dynamics
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The sum rule of the spectral function
corresponds to the momentum distribution
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/ dEP(k, E) = n(k)

The momentum distribution of nuclei as
large as '°O and “°Ca has been computed
using QMC fully accounting for the
correlations of the nuclear ground state




Conclusions

 For relatively large momentum transfer, the two-body currents enhancement is effective in the

entire energy transfer domain.

» We have computed the electromagnetic and neutral-current Euclidean response of °C. The
agreement of the former with experimental data is remarkably good.

* “He and '2C results for the electromagnetic response obtained using Maximum Entropy
technique are in very good agreement with experimental data.

* Fruitful interplay between Green’s function Monte Carlo and the spectral function approach.
Both are based on the same model of nuclear dynamics.




Current developments

» We are implementing charged-current transition operator in GFMC and the corresponding
Euclidean responses will soon be computed.

e Cluster variational Monte Carlo calculations of the energy weighted sum rules of the spectral
function for nuclei as large as “°Ca will be carried out. Crucial interplay with (e,e’) experiment on
Argon at JLab.

* \We plan to compute the Laplace transform of the spectral function using GFMC. Maximum-
entropy technique may well be used to obtain the real spectral function.

PE)(k,7) = (0|a’ (k)eH=E0)Tq(k)|0)



Thank you



Maximum entropy algorithm

We estimate the mean and the covariance matrix from Ne Euclidean responses

B(r) = 1 S Ew ) - N(Nl_ 5 OB (7) = B (r)) (E"(ry) = " (r;)

n

« The covariance matrix in general is NOT diagonal, and it is convenient to
diagonalize it
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Maximum entropy algorithm

 The likelihood is defined in terms of the covariance matrix

* We rotate both the data and the kernel in the diagonal representation of the
covariance matrix

K=UK FE=U'E <> (U'CU), =072

* The likelihood can be written in terms of the statistically independent
measurements and the rotated kernel

(¥, K’R _ E)?

)



Maximum entropy algorithm

Maximum entropy approach can be justified on the basis of Bayesian inference.
The best solution will be the one that maximizes the conditional probability

prim - PP

* The evidence is merely a normalization constant

PriB) = / DR Pr(E|R] Pr(R]

- When the number of measurements becomes large, the asymptotic limit of the
likelihood function is

= 1 _LIR I 1 2IR 9 1 (ZKz/jRJ_Ef:)z
PT[E‘R]:ZQ []:ZB > X" [R] Z J E

o

Limiting ourselves to the minimization of the x°, we implicitly make the assumption
that the prior probability is important or unknown.




Maximum entropy algorithm

Since the response function is nonnegative and normalizable, it can be interpreted
as a probability distribution function.

The principle of maximum entropy states that the values of a probability function
are to be assigned by maximizing the entropy expression

S|R| = —/dw(R(w) — D(w) — R(w)In[R(w)/D(w)]) <€«—>» D(w): Default model

The prior probability then reads

1
Pr|R] = ZGO‘S ]

and the posterior probability can be rewritten as

; e 9 s R] = 2*[R] — aS[R
PriRIE = o QIR] = ox7| ]i R

Regularization parameter




*He electromagnetic response

The enhancement is driven by process involving one-pion exchange and the
excitation of the Delta degrees of freedom
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