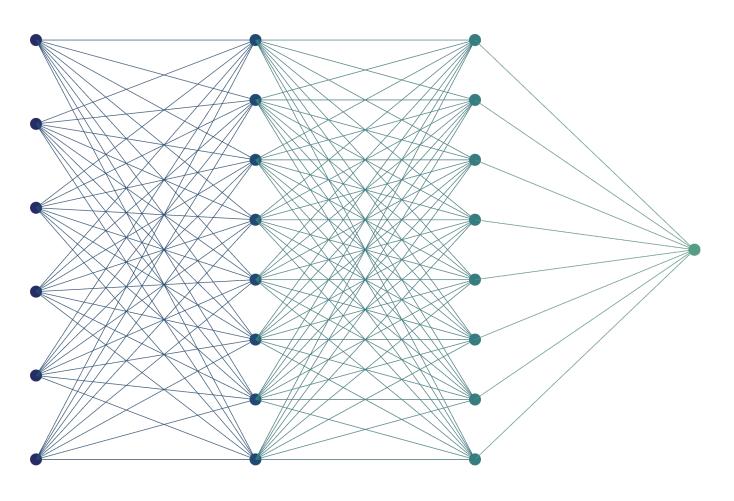


ML Methods for the keV sterile neutrino search with the TRISTAN-Phase of the KATRIN Experiment

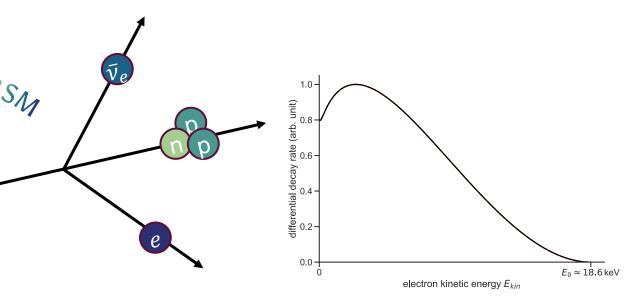
Luca Fallböhmer – NPML 2025



Neutrino Physics and the KATRIN Experiment

The Neutrino v

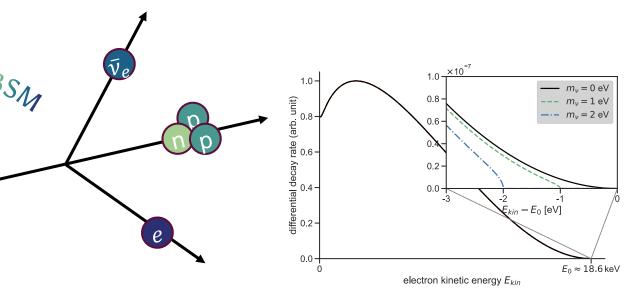
- Lepton that only interacts via the weak force
- Oscillates between flavors $(e, \mu, \tau) \rightarrow$ has a mass
- Is created in β -decay (e.g. of Tritium)



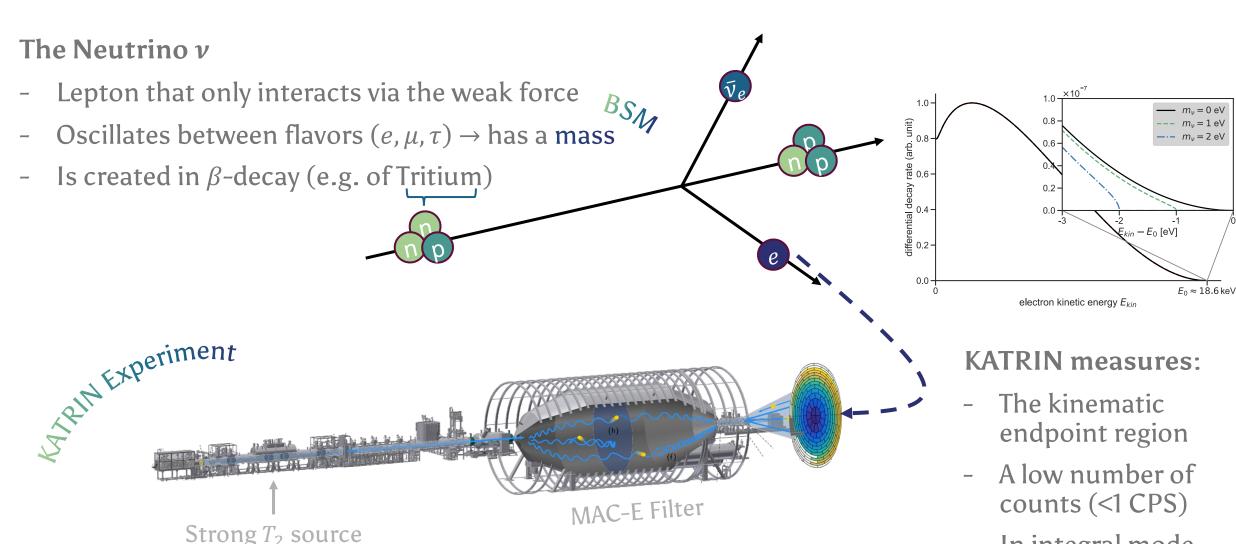
Neutrino Physics and the KATRIN Experiment

The Neutrino v

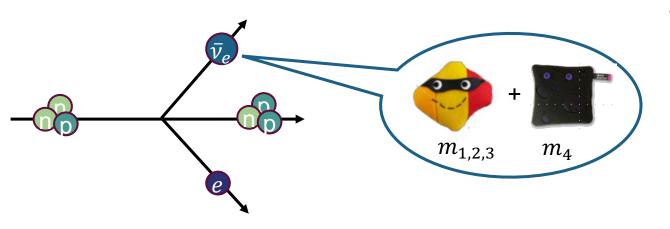
- Lepton that only interacts via the weak force
- Oscillates between flavors $(e, \mu, \tau) \rightarrow$ has a mass
- Is created in β -decay (e.g. of Tritium)



Neutrino Physics and the KATRIN Experiment



In integral mode

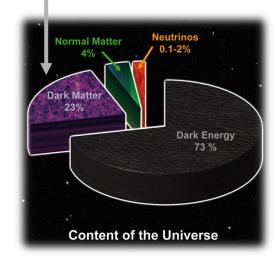


The Sterile Neutrino v_4

- Hypoth. particle, no interaction via weak force

- Excellent dark matter candidate if m_4 on a keV-

scale

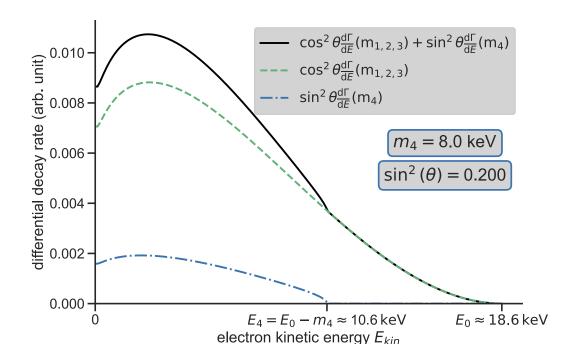


The Sterile Neutrino v_4

- Hypoth. particle, no interaction via weak force
- Excellent dark matter candidate if m_4 on a keV-scale

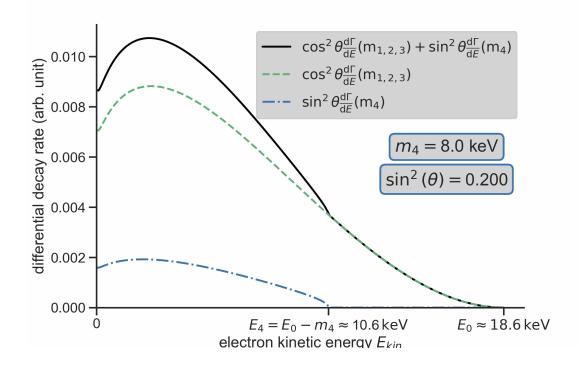
The Sterile Neutrino v_4

- Hypoth. particle, no interaction via weak force
- Excellent dark matter candidate if m_4 on a keV-scale
- Appears as a kink in the spectral shape



The Sterile Neutrino v_4

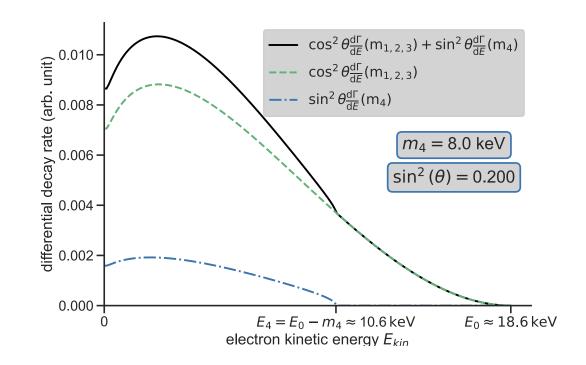
- Hypoth. particle, no interaction via weak force
- Excellent dark matter candidate if m_4 on a keV-scale
- Appears as a kink in the spectral shape



30.10.25 Luca Fallböhmer – NPML 2025

The Sterile Neutrino v_4

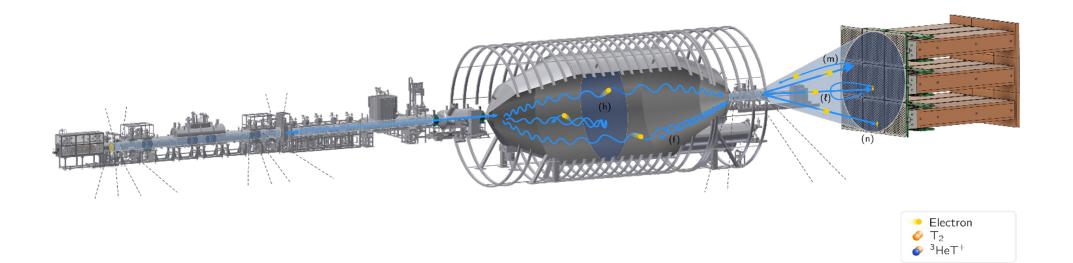
- Hypoth. particle, no interaction via weak force
- Excellent dark matter candidate if m_4 on a keV-scale
- Appears as a kink in the spectral shape

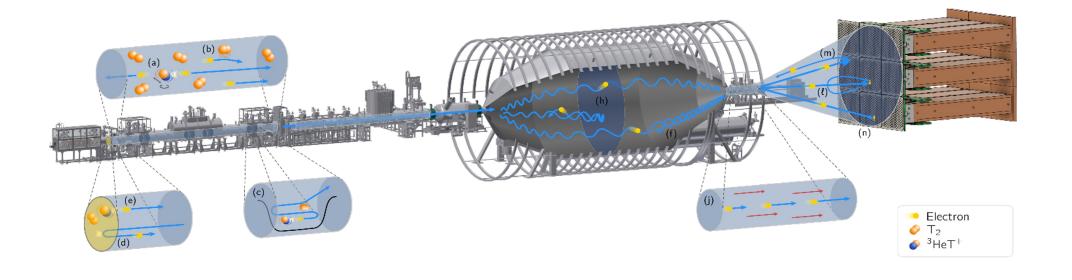


Electron

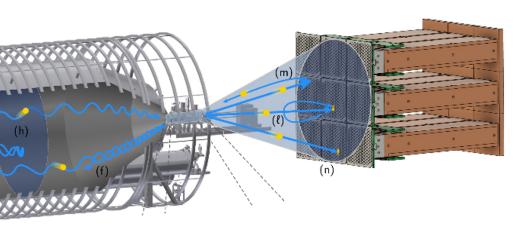
The TRISTAN Detector and DAQ System

- Silicon Drift Detector
- Consists of ~1000 pixels
- Can handle very high rates (~10⁸ CPS total)
- Differential measurement

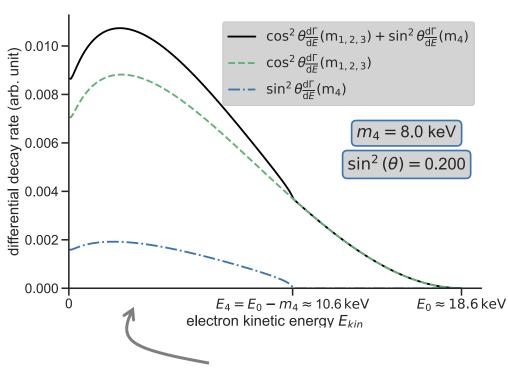




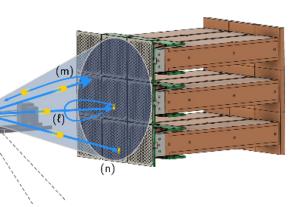
Percent-level systematic effects (e.g. Backscattering @ Detector)



While...



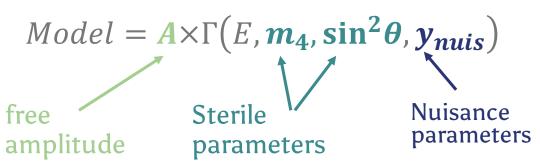
Trying to be sensitive to ppm-level signal (collecting $O(10^{14})$ events)

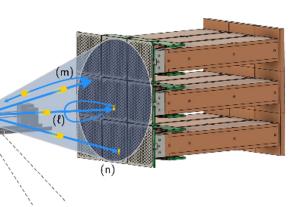


Model systematic effects via Monte Carlo simulations

(need to be very precise)

Fit prediction to data

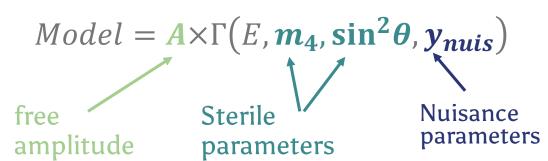




Model systematic effects via Monte Carlo simulations

(need to be very precise)

Fit prediction to data



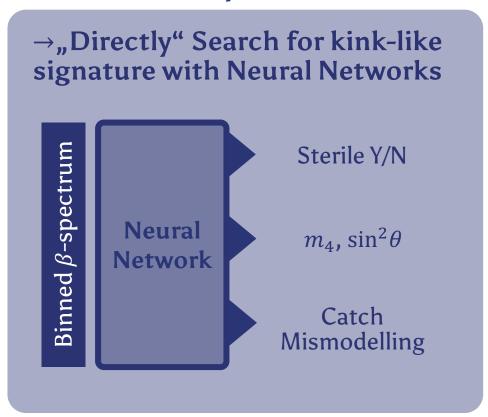
But...

- Limited accuracy of MC
- Limited statistics of MC

First Ideas (work in progress)

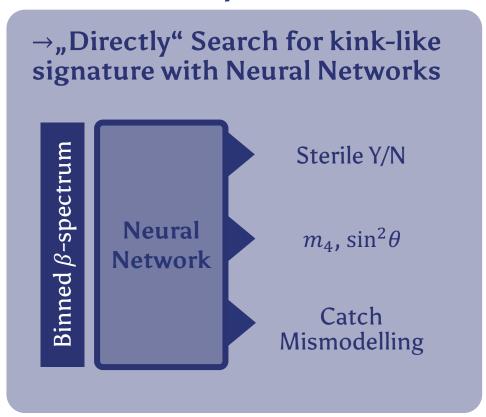
First Ideas (work in progress)

Limited Accuracy of MC:

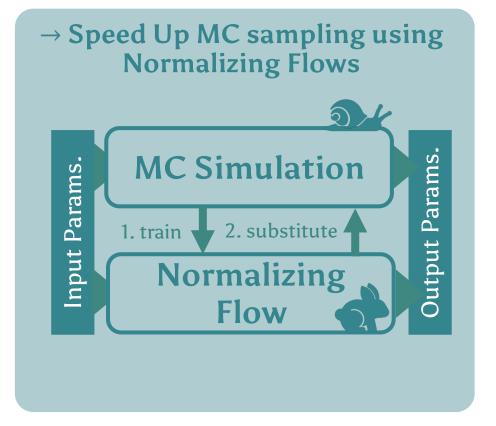


First Ideas (work in progress)

Limited Accuracy of MC:

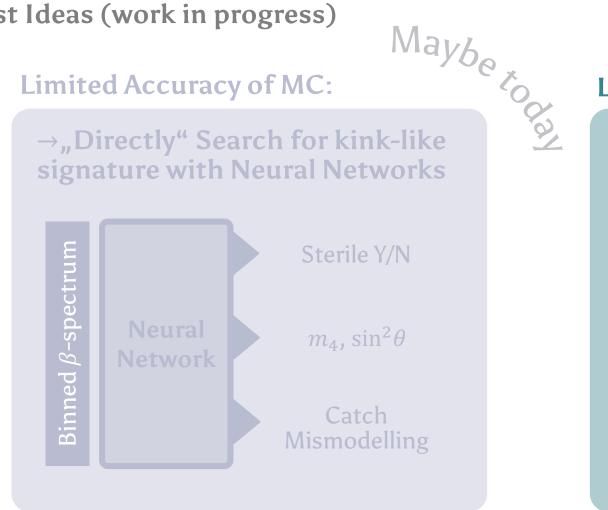


Limited Statistics of MC:

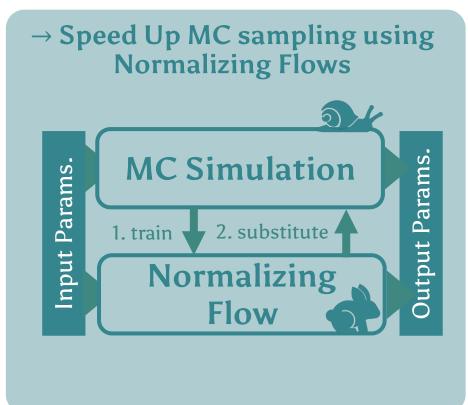


First Ideas (work in progress)

Limited Accuracy of MC:



Limited Statistics of MC:

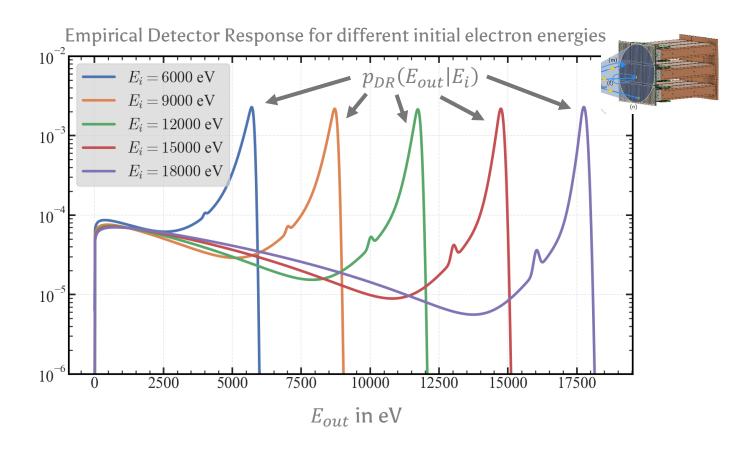


Flow Based Monte Carlo - Setting

Feasibility study on simple example:

Are the flows:

- Accurate Enough?
- Fast Enough?
- Can we draw more samples than we train with?



Flow Based Monte Carlo - Setting

Feasibility study on simple example:

Are the flows:

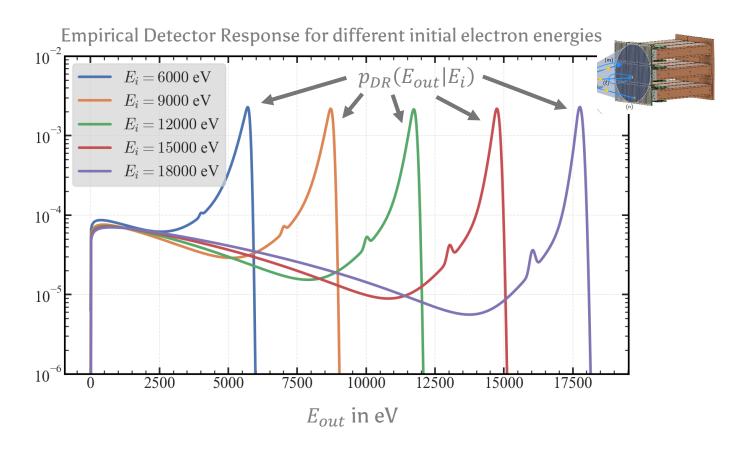
- Accurate Enough?
- Fast Enough?
- Can we draw more samples than we train with?

Training Data

1. $E_i \sim \mathcal{U}(0, 18.6) \text{ keV}$

2. $E_{out} \sim p_{DR}(E_{out}|E_i)$

repeat N-times for N samples



Flow Based Monte Carlo - Setting

Feasibility study on simple example:

Are the flows:

- Accurate Enough?
- Fast Enough?
- Can we draw more samples than we train with?

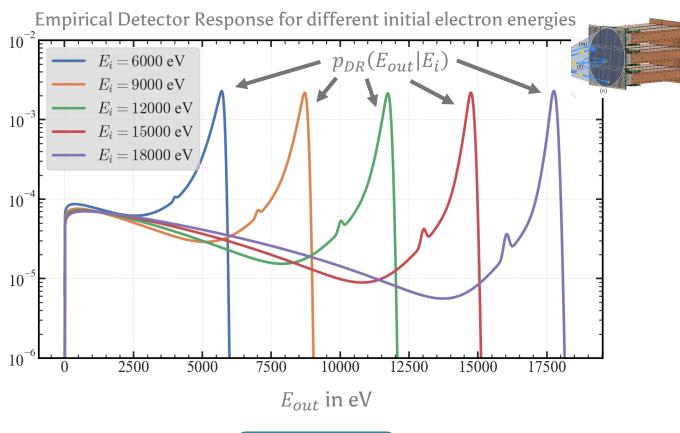
Training Data

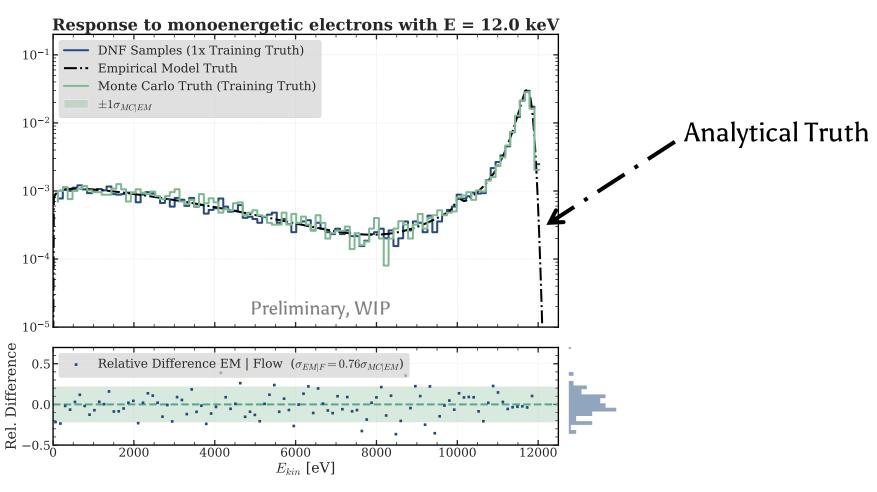
- **1.** $E_i \sim \mathcal{U}(0, 18.6) \text{ keV}$
- **2.** $E_{out} \sim p_{DR}(E_{out}|E_i)$

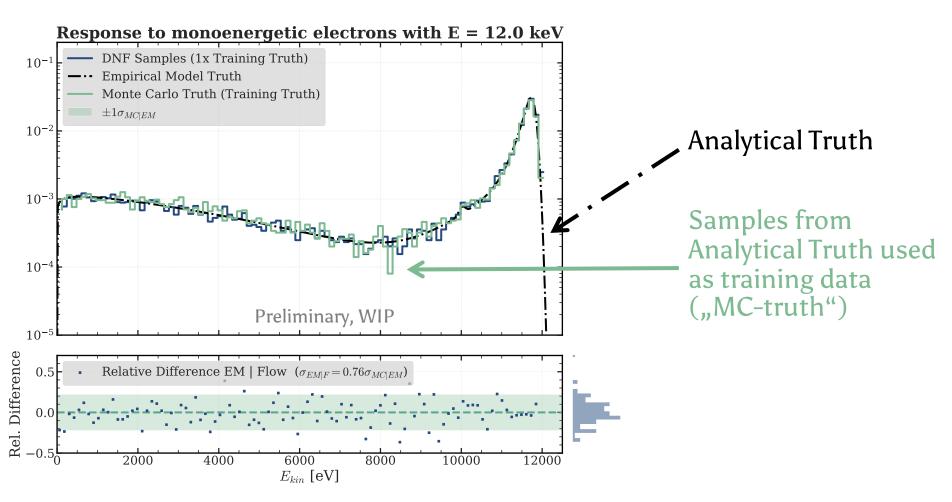
repeat N-times for N samples

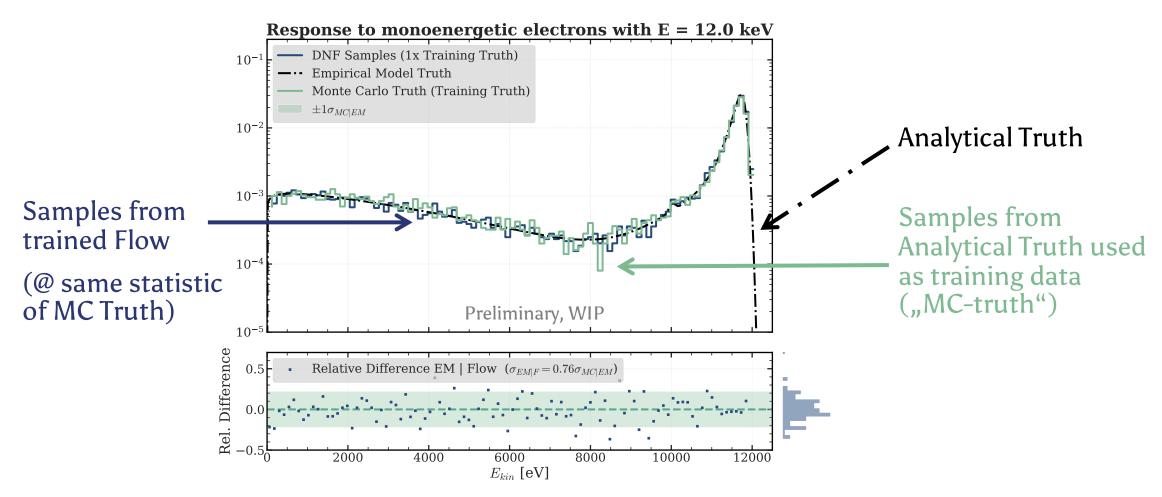
Models / Techniques

- 1. Discrete Normalizing Flow (RQ-Spline)
- 2. MLP trained in Flow-Matching scenario (OT CFM)

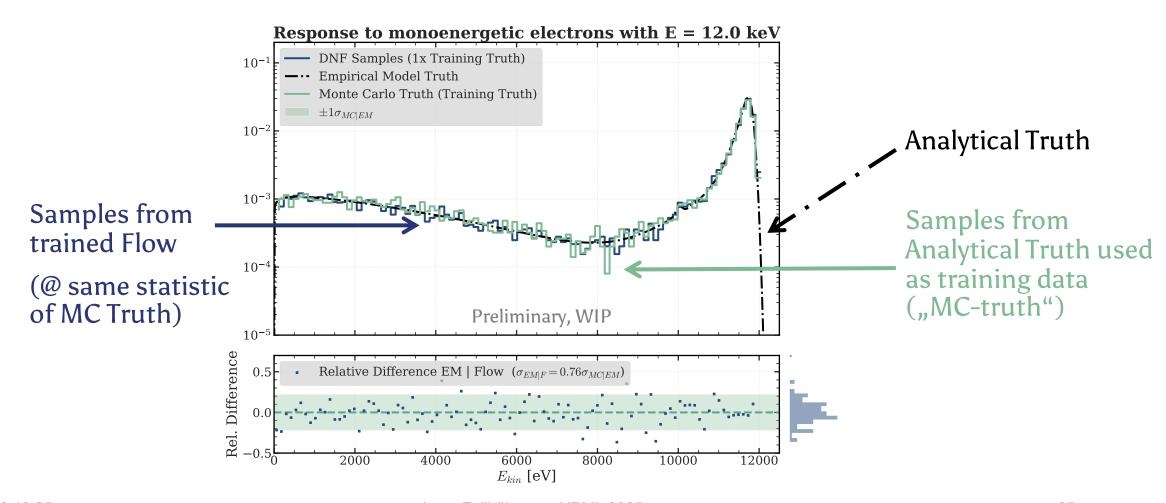








@ same statistic of MC Truth: Inference speedup by 500x with virtually no quality loss



Flow Based Monte Carlo - Limitations

What happens at large statistics N?

Dataset Sizes become prohibitive (e.g. 10^{13} events \rightarrow PB-scale)

Training Times become prohibitive

Can we draw more samples than we train with?

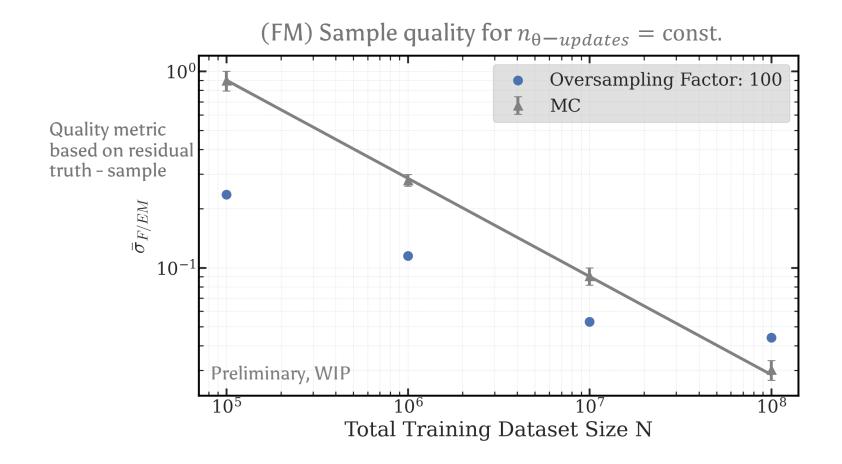
Flow Based Monte Carlo - Limitations

What happens at large statistics N?

Dataset Sizes become prohibitive (e.g. 10^{13} events \rightarrow PB-scale)

Training Times become prohibitive

Can we draw more samples than we train with?



27

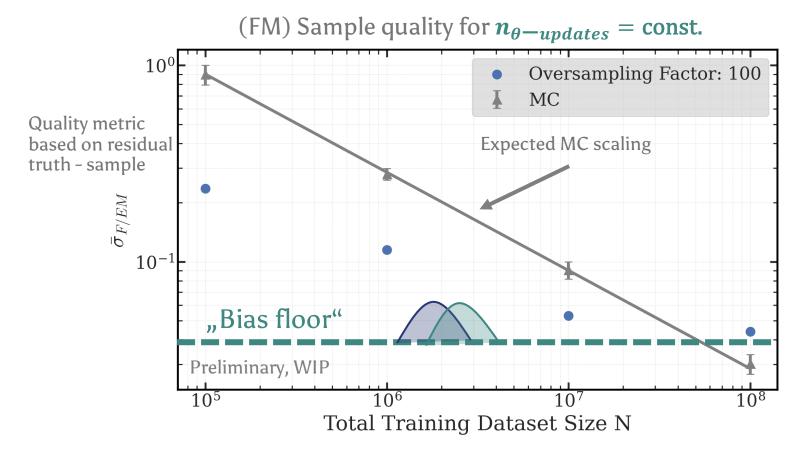
Flow Based Monte Carlo - Limitations

What happens at large statistics N?

Dataset Sizes become prohibitive (e.g. 10^{13} events \rightarrow PB-scale)

Training Times become prohibitive

Can we draw more samples than we train with?



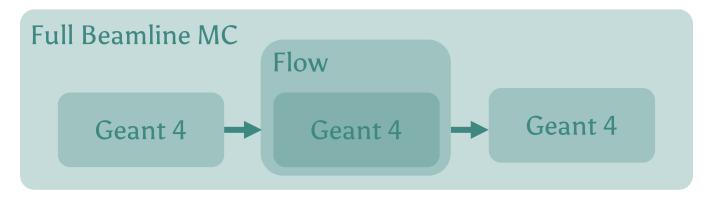
 \exists Limit when keeping $n_{\theta-updates} = \text{const!}$ Diminishing returns for increased effort

Flow Based Monte Carlo – Where would this be used?

Normalizing Flow

Full Beamline MC

Highest speedup not modular



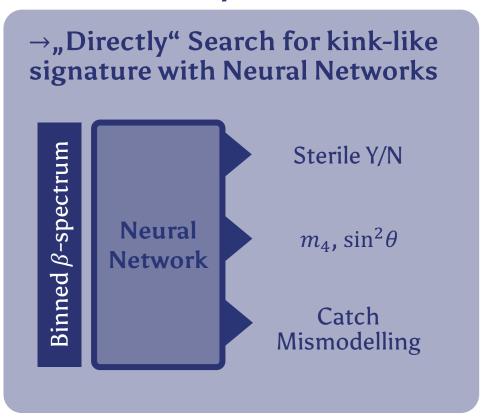
Only speed up bottleneck MCs Highly modular

Conclusion & Outlook

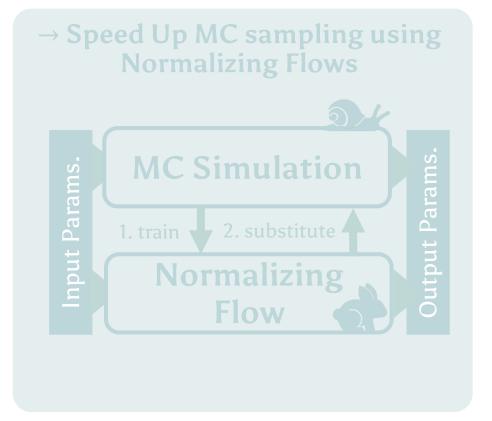
- Accuracy & speed of sample generation demonstrated
- Currently scalable to datasets with $\mathcal{O}(10^9)$ events
 - → fast generator suitable for sensitivity studies & smaller calibration measurements
- still very early in development, lots of work in progress

First Ideas (work in progress)

Limited Accuracy of MC:



Limited Statistics of MC:



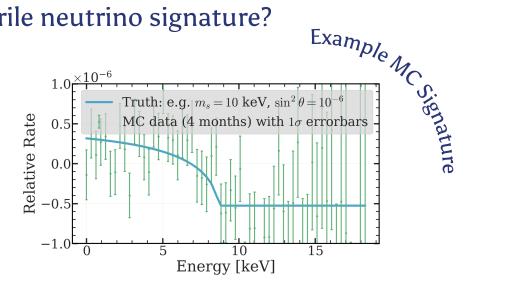
Search for Sterile Signature with NN

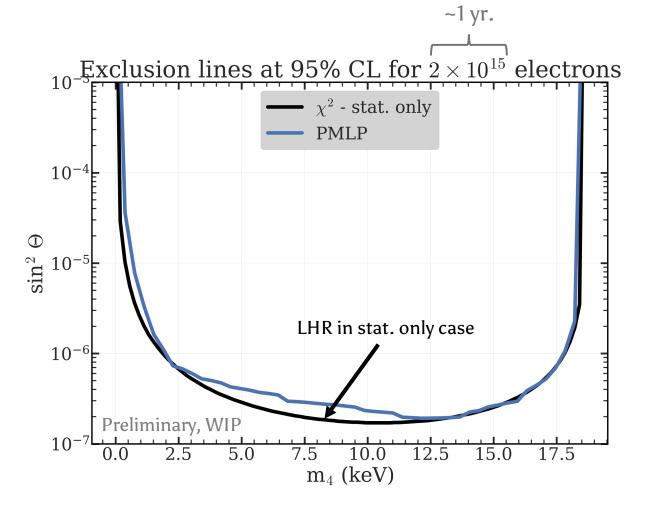
Motivation:

NN could learn higher-order correlations to "semantically" learn the kink-like signature

First Check:

Are Neural Networks even sensitive to the sterile neutrino signature?





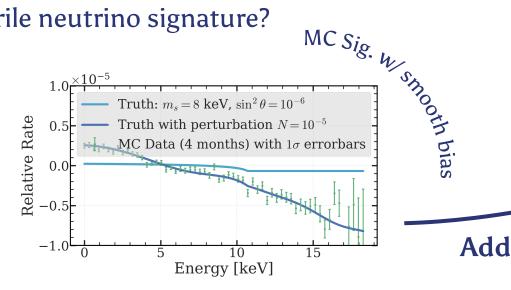
Search for Sterile Signature with NN

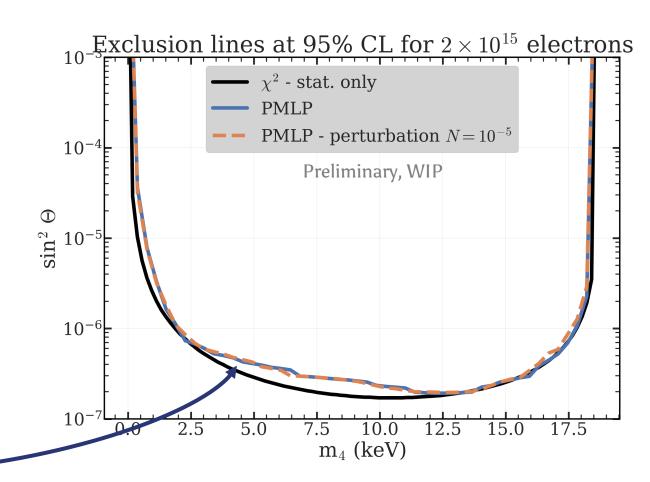
Motivation:

NN could learn higher-order correlations to "semantically" learn the kink-like signature

First Check:

Are Neural Networks even sensitive to the sterile neutrino signature?





Add Bias ∉ {Training Data} → No sensitivity loss for NN

Search for Sterile Signature with NN

Another Example:

Can do bin-wise tests for the stat. significance of sterile signature or mismodelling, etc.

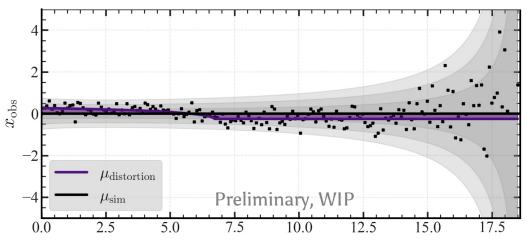
Idea:

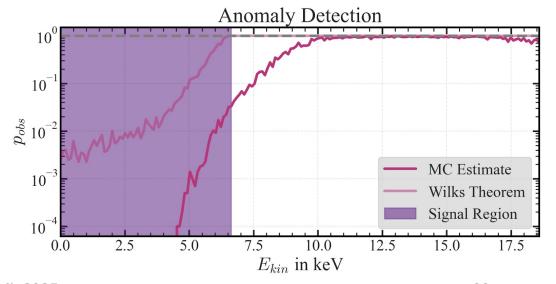
Train bin-wise classifier, NN will learn LHR for each bin when minimizing BCE ("LHR-trick")

How to get p-values:

Use a MC estimate, for a global p-value: take care to include "look-elsewhere-effect"!

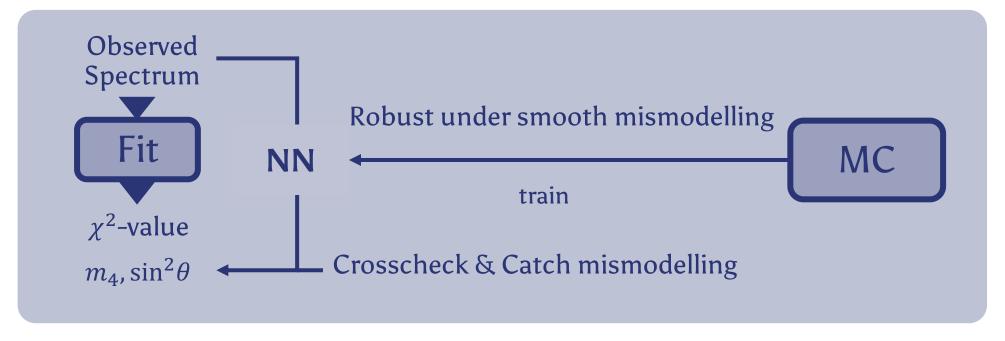
Bin-Wise stat. Significance of sterile signature





Search for Sterile Signature with NN - Outlook

Where would this be used?

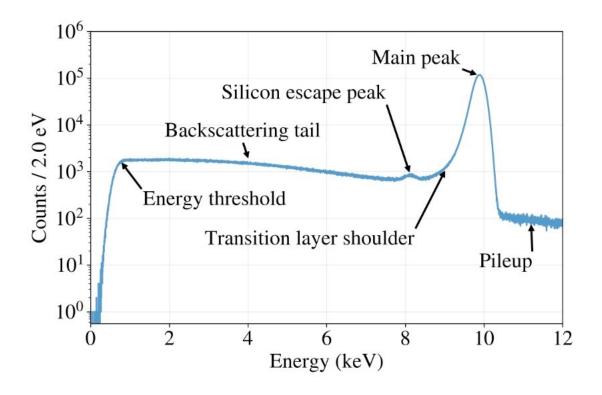


- _imitations Still somewhat reliant on the MC (used as training data, cant be too far off)
 - Still to be tested for non-smooth / larger group of perturbations

Backup 1: Flow Based MC

Real Response of TRISTAN Detector

To a monoenergetic electron beam



Flow Based Monte Carlo - Data

Simple Standardization

"Choice of units" $\vec{x} \to \frac{\vec{x} - mean(\vec{x})}{var(\vec{x})}$ with $\vec{x} = (E_{out}, E_i)$ (also called z-score normalization)

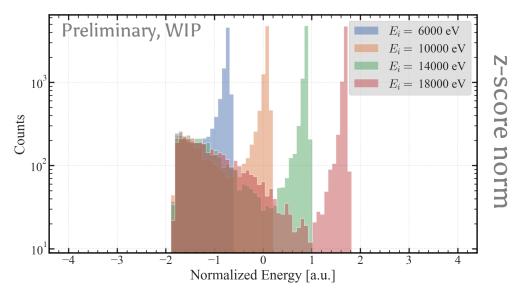
Energy-based Standardization

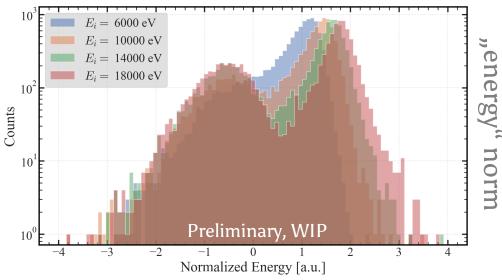
Want to mitigate sharp cutoffs in E_{out} close to E_i

$$u = \frac{E_{out}}{E_i} \in [0, 1]$$

$$\tilde{u} = \alpha + (1 - 2\alpha)u \text{ with } \alpha = 10^{-6}$$

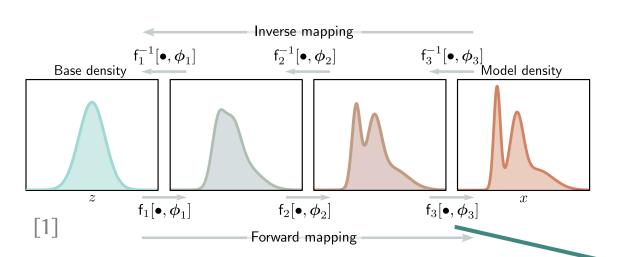
$$u_{final} = \log_{10}(\frac{\tilde{u}}{1 - \tilde{u}})$$





30.10.25 Luca Fallböhmer – NPML 2025 37

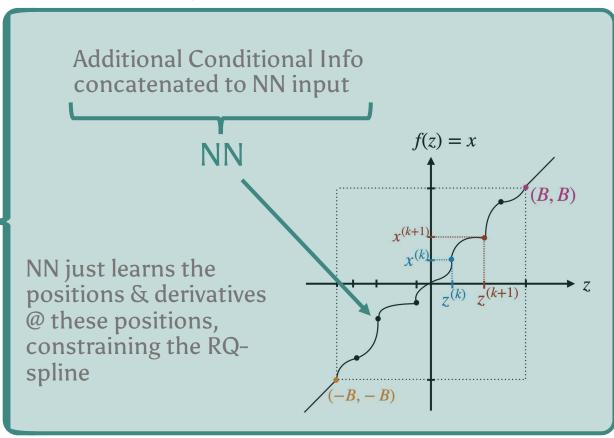
(Conditional) Discrete Normalizing Flows



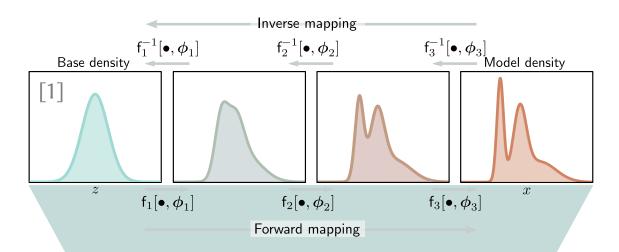
How do they work?

- Minimize KL-Div. between model and target density by minimizing NLL of samples!
- NNs learn series of invertible transforms while keeping Jacobians in check (Jacobian <-> "density info")
- Allows sampling & density estimation!

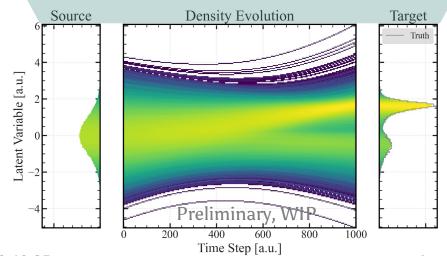
How does a RQS transform look like?



Base density



Continuous limit $(f_n \le n / n \to \infty)$



Going from discrete transformations to continuous field

Updates to latent variable z become infinitesimally small

$$\frac{dz(t,\text{ctxt})}{dt} = u(z,t,\text{ctxt}); t \in [0,1]$$

$$w/z(t = 0) = z_0 \text{ and } z(t = 1) = x$$

Neural ODE: train NN to predict u(z, t, ctxt), call it $v_{\theta}(z, t, ctxt)$

To do training / density est.:

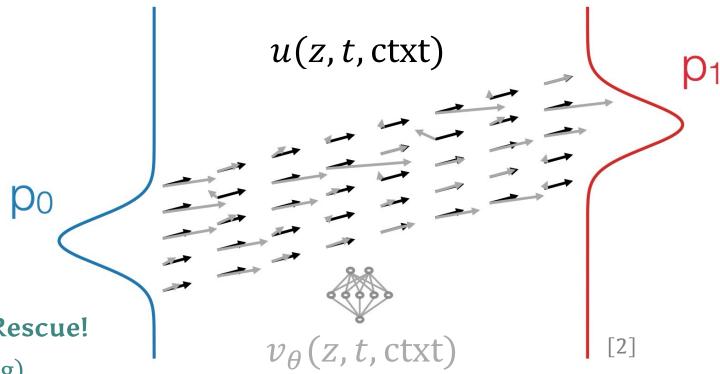
$$z_0 = x - \int_0^1 v_{\theta}(z, t, \text{ctxt}) dt$$

Integration @ Training Time!

Integration @ training time:

- Very time consuming
- (doesn't scale nicely to higher D)

Do regression on the ODE velocity field!



(Conditional) Flow Matching to the Rescue!

(no integration required for training)

$$\mathcal{L}_{CFM} = \mathbb{E}_{t,z_0,x}[\|v_{\theta}(z,t,\text{ctxt}) - u(z,t,\text{ctxt} \mid z_0,x)\|^2]$$

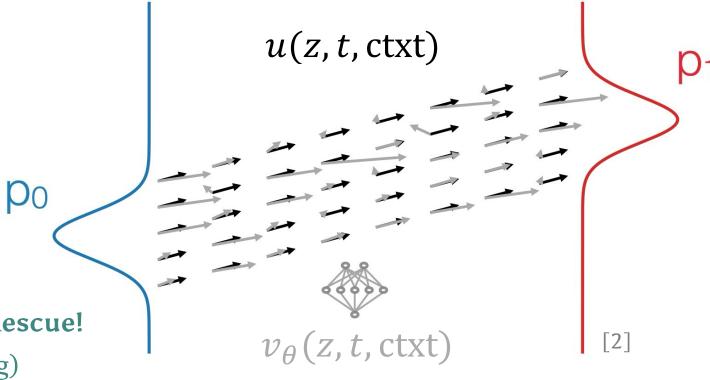
41

Flow Based Monte Carlo - Model

Integration @ training time:

- Very time consuming
- (doesn't scale nicely to higher D)

Do regression on the ODE velocity field!



(Conditional) Flow Matching to the Rescue!

(no integration required for training)

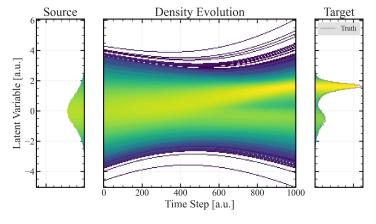
$$\mathcal{L}_{CFM} = \mathbb{E}_{t,z_0,x} [\|v_\theta(z,t,\mathrm{ctxt}) - x - z_0\|^2]$$
 Luca Fallböhmer – NPML 2025 & straight line approx.

What we want:

- Accurate sampling
- Fast sampling

Conditional Flow Matching with:

- Velocity Field Predictor: MLP with Unetlike Structure & self attn. at bottleneck
- Optimal Transport Coupling between Source and Target



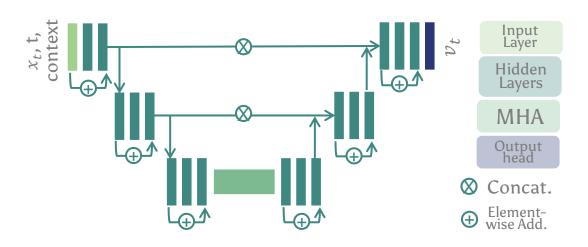
Density Evolution

Time Step [a.u.]

Latent Variable [a.u.]

CFM

Target



CFM w/ (batch-wise) optimal transport coupling

Architecture

Unet-like to retain info from different scales

Backup 2: "Kink search" with Neural Networks

Exclusion Lines

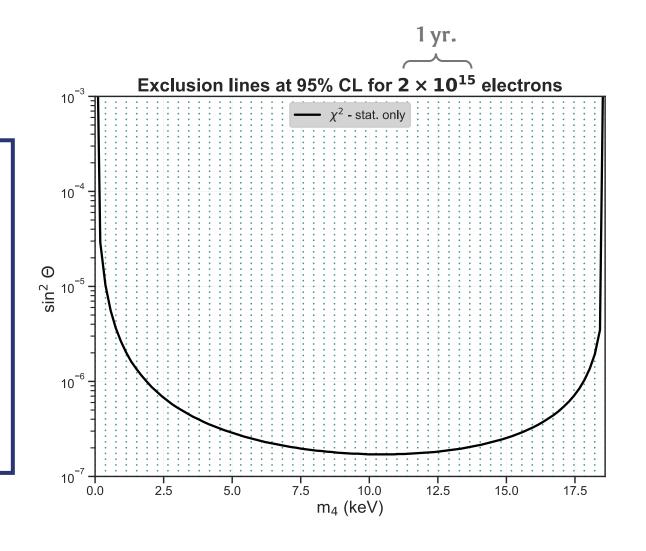
Goal: Compare NN to "traditional" method -> draw an exclusion line

χ^2 -based approach

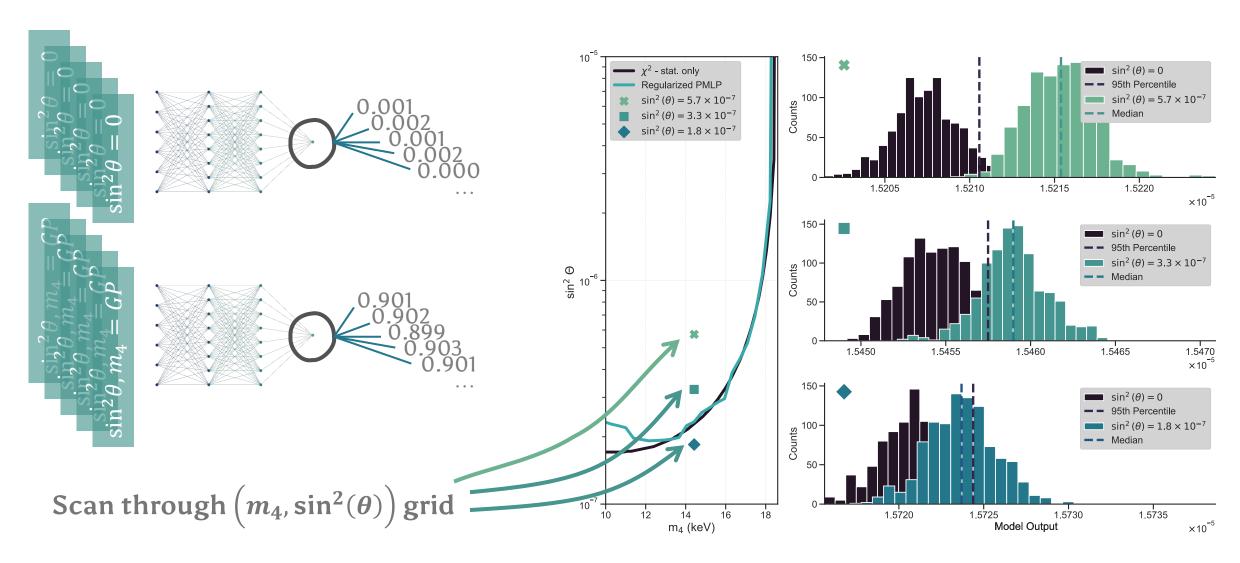
Gridscan over $(m_4, \sin^2(\theta))$

- χ^2 computed at every gridpoint kl
- Contour drawn at 95% CL
 - $\chi_{crit}^2 = 5.99$ if Wilks' theorem holds
- Nuisance parameters: global signal amplitude

$$\chi_{kl}^2(\vec{p}) = \left(\vec{\Gamma}_{kl}(\vec{p}) - \vec{\Gamma}_{\text{ref}}\right)^T V^{-1} \left(\vec{\Gamma}_{kl}(\vec{p}) - \vec{\Gamma}_{\text{ref}}\right)$$

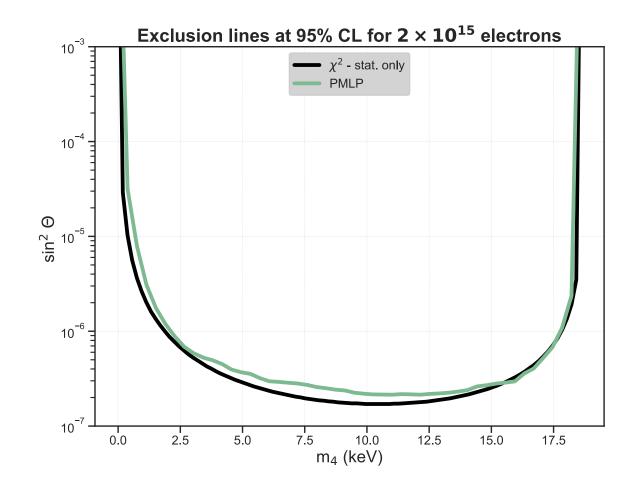


Exclusion Lines using Neural Networks



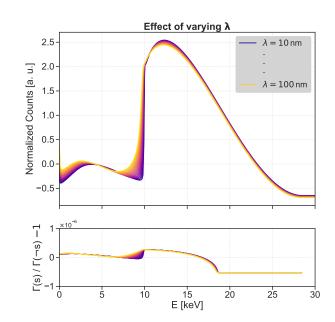
Three Takeaways

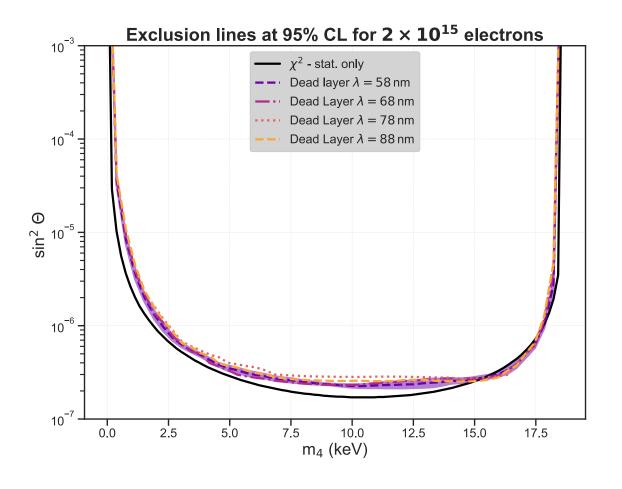
NNs are very sensitive to the sterile neutrino signature



Three Takeaways

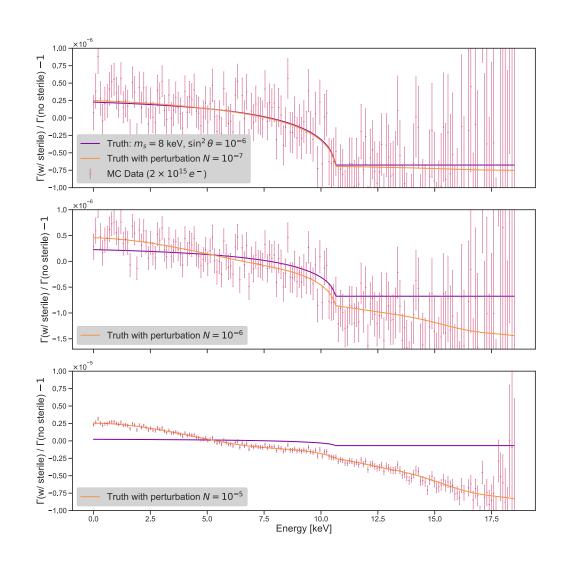
- NNs are very sensitive to the sterile neutrino signature
- 2. Can handle detector related syst. effects and uncertainties





Three Takeaways

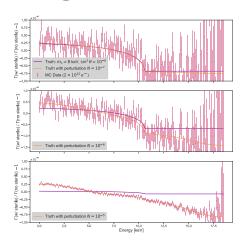
- 1. NNs are very sensitive to the sterile neutrino signature
- 2. Can handle detector related syst. effects and uncertainties
- 3. Can handle small smooth modelling inaccuracies

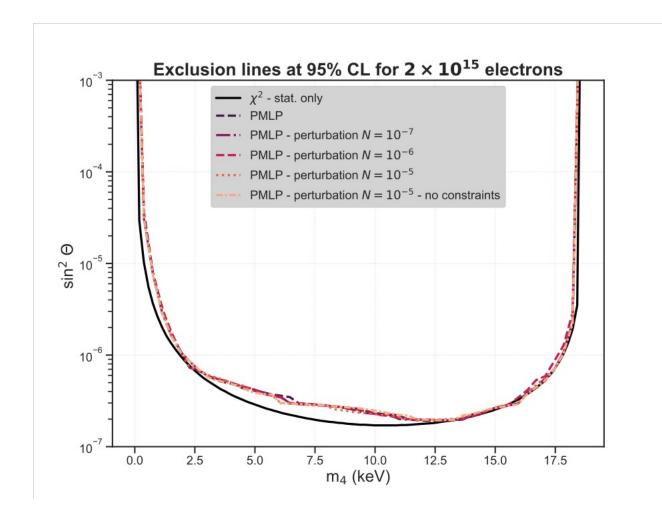


49

Three Takeaways

- NNs are very sensitive to the sterile neutrino signature
- Can handle detector related syst.effects and uncertainties
- 3. Can handle small smooth modelling inaccuracies



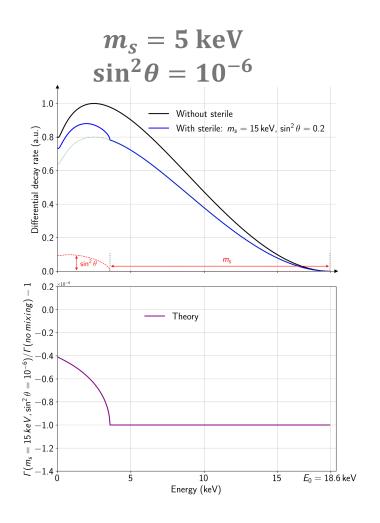


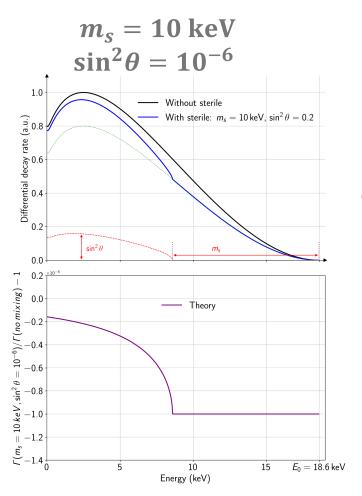
Caveats

Not completely model independent (training data has to come from somewhere)

Not 100% transparent

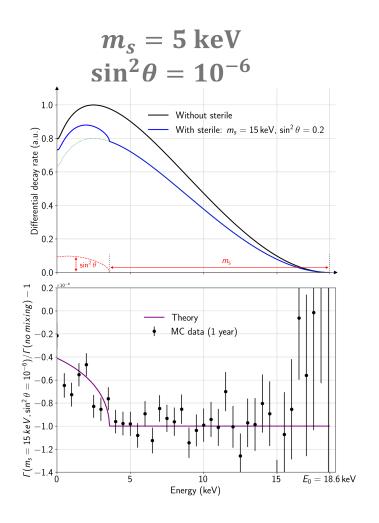
(only likelihood-ratio estimator)

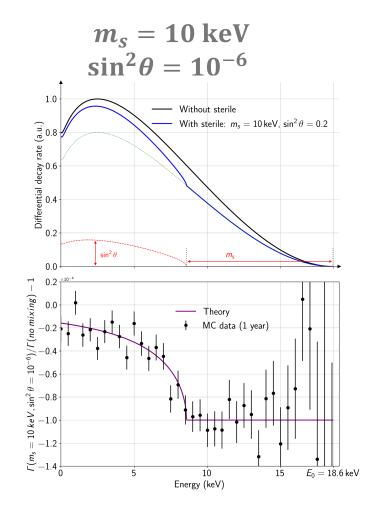




Training Data should include:

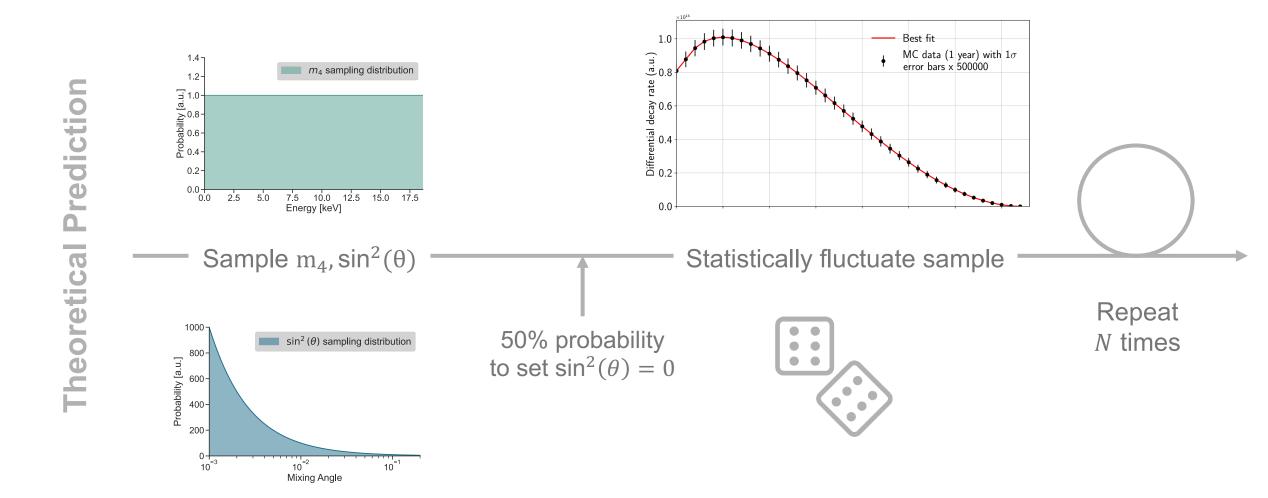
- Different sterile signatures

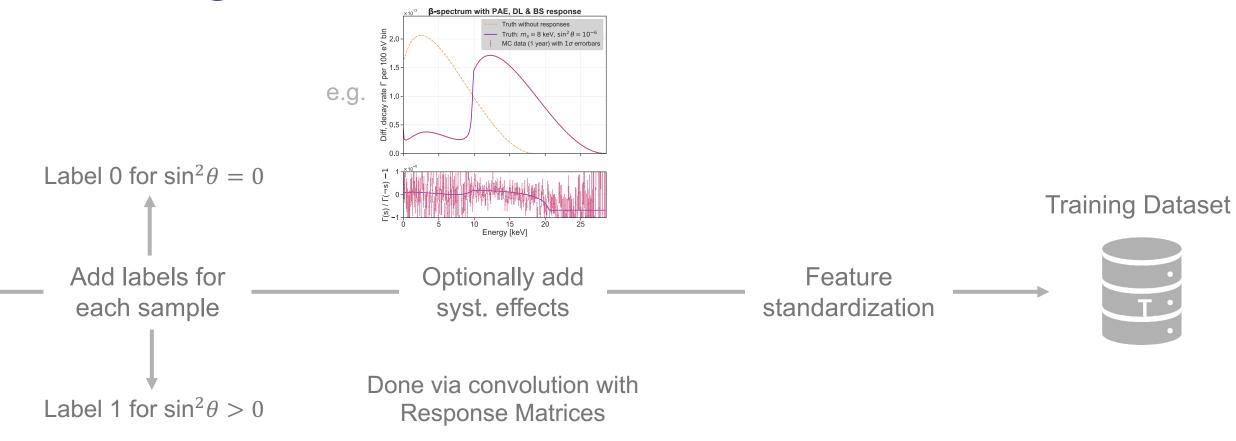




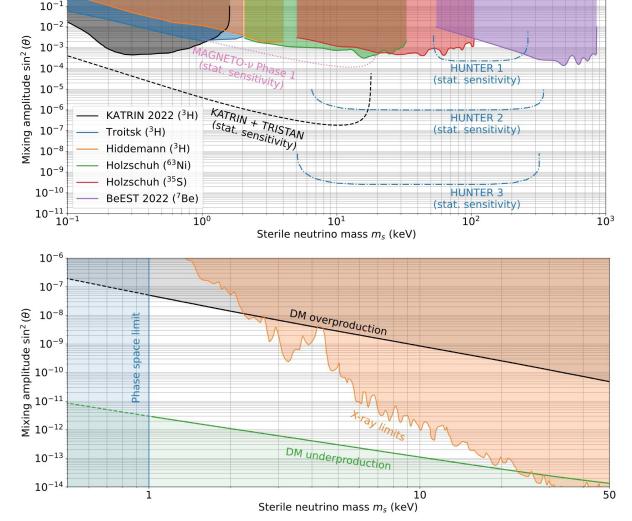
Training Data should include:

- Different sterile signatures
- Statistical fluctuations

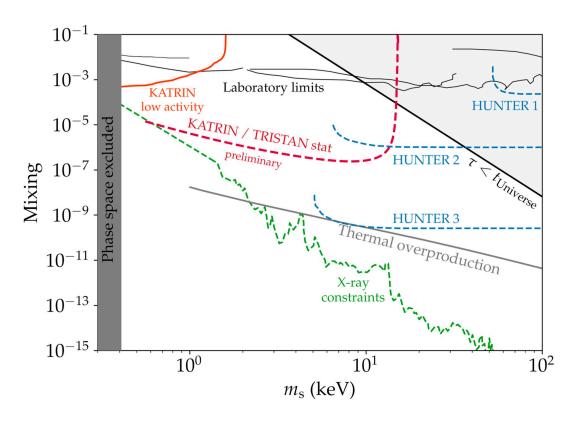




Backup: Sterile Neutrino Parameter Space



 10^{0}



30.10.25 Luca Fallböhmer – NPML 2025 55

Backup: Sensitivity Studies – Contour Uncertainty

