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The Neutrino 𝝂
- Lepton that only interacts via the weak force

- Oscillates between flavors (𝑒, 𝜇, 𝜏) → has a 

- Is created in 𝛽-decay (e.g. of Tritium)
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Strong 𝑇" source
MAC-E Filter
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The Neutrino 𝝂
- Lepton that only interacts via the weak force

- Oscillates between flavors (𝑒, 𝜇, 𝜏) → has a 

- Is created in 𝛽-decay (e.g. of Tritium)
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KATRIN measures:

- The kinematic 
endpoint region

- A low number of 
counts (<1 CPS)

- In integral mode
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The Sterile Neutrino 𝝂𝟒
- Hypoth. particle, no interaction via weak force

- Excellent dark matter candidate if 𝑚" on a keV-
scale
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The Sterile Neutrino 𝝂𝟒
- Hypoth. particle, no interaction via weak force

- Excellent dark matter candidate if 𝑚" on a keV-
scale

- Appears as a kink in the spectral shape

The TRISTAN Detector and DAQ System

- Silicon Drift Detector

- Consists of ~1000 pixels

- Can handle very high rates (~10! CPS 
total)

- Differential measurement



30.10.25 Luca Fallböhmer – NPML 2025 10



30.10.25 Luca Fallböhmer – NPML 2025 11



30.10.25 Luca Fallböhmer – NPML 2025 12

While…

Percent-level systematic effects
(e.g. Backscattering @ Detector)

Trying to be sensitive to ppm-level 
signal (collecting 𝒪(10&') events)
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Model systematic effects via Monte Carlo simulations
(need to be very precise)

Fit prediction to data

𝑀𝑜𝑑𝑒𝑙 = 𝑨×Γ 𝐸,𝒎𝟒, 𝐬𝐢𝐧𝟐𝜽, 𝒚𝒏𝒖𝒊𝒔

free
amplitude

Sterile 
parameters

Nuisance
parameters



30.10.25 Luca Fallböhmer – NPML 2025 14

Model systematic effects via Monte Carlo simulations
(need to be very precise)

Fit prediction to data

𝑀𝑜𝑑𝑒𝑙 = 𝑨×Γ 𝐸,𝒎𝟒, 𝐬𝐢𝐧𝟐𝜽, 𝒚𝒏𝒖𝒊𝒔

free
amplitude

Sterile 
parameters

Nuisance
parameters

But…
- Limited accuracy of MC
- Limited statistics of MC
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First Ideas (work in progress)
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→„Directly“ Search for kink-like 
signature with Neural Networks
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𝑚&, sin"𝜃

Limited Accuracy of MC:

Neural 
Network

Catch 
Mismodelling

First Ideas (work in progress)



30.10.25 Luca Fallböhmer – NPML 2025 17

→ Speed Up MC sampling using
Normalizing Flows
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Feasibility study on simple example:

Are the flows:

- Accurate Enough?

- Fast Enough?

- Can we draw more samples than we
train with?

𝐸!"# in eV

𝑝$% 𝐸!"# 𝐸&

Empirical Detector Response for different initial electron energies
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Feasibility study on simple example:

Are the flows:

- Accurate Enough?

- Fast Enough?

- Can we draw more samples than we
train with?

Training Data
1.  𝐸" ~𝒰 0, 18.6 keV
2. 𝐸#$% ~ 𝑝&' 𝐸#$% 𝐸"

𝐸!"# in eV

𝑝$% 𝐸!"# 𝐸&

Empirical Detector Response for different initial electron energies

repeat N-times 
for N samples
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Feasibility study on simple example:

Are the flows:

- Accurate Enough?

- Fast Enough?

- Can we draw more samples than we
train with?

Training Data
1.  𝐸" ~𝒰 0, 18.6 keV
2. 𝐸#$% ~ 𝑝&' 𝐸#$% 𝐸"

𝑬𝒊 𝑬𝒐𝒖𝒕Analytical 
Response

NN

𝐸!"# in eV

𝑝$% 𝐸!"# 𝐸&

Empirical Detector Response for different initial electron energies

Models / Techniques
1. Discrete Normalizing Flow (RQ-Spline)
2. MLP trained in Flow-Matching scenario (OT CFM)

repeat N-times 
for N samples



Flow Based Monte Carlo - Results
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Preliminary, WIP

Analytical Truth
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Preliminary, WIP

Analytical Truth

Samples from
Analytical Truth used
as training data
(„MC-truth“)
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Analytical Truth

Samples from
Analytical Truth used
as training data
(„MC-truth“)

Samples from
trained Flow

(@ same statistic
of MC Truth)

@ same statistic of MC Truth: Inference speedup by 500x with virtually no quality loss

Preliminary, WIP
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What happens at 
large statistics N?

Dataset Sizes become
prohibitive (e.g. 10'(
events → PB-scale)

Training Times become
prohibitive

Can we draw more
samples than we

train with ?
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(FM) Sample quality for 𝑛'4()*+,!- = const.

Preliminary, WIP

Quality metric
based on residual 
truth - sample

What happens at 
large statistics N?

Dataset Sizes become
prohibitive (e.g. 10'(
events → PB-scale)

Training Times become
prohibitive

Can we draw more
samples than we

train with ?
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(FM) Sample quality for 𝒏𝜽−𝒖𝒑𝒅𝒂𝒕𝒆𝒔 = const.

Preliminary, WIP

Quality metric
based on residual 
truth - sample

Expected MC scaling

„Bias floor“

∃ Limit when keeping 𝒏𝜽−𝒖𝒑𝒅𝒂𝒕𝒆𝒔 = const! 

Diminishing returns for increased effort

What happens at 
large statistics N?

Dataset Sizes become
prohibitive (e.g. 10'(
events → PB-scale)

Training Times become
prohibitive

Can we draw more
samples than we

train with ?
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Full Beamline MC

Normalizing Flow

Geant 4

Full Beamline MC

Geant 4 Geant 4

Flow

Highest speedup

not modular

Only speed up bottleneck MCs

Highly modular

Conclusion & Outlook
- Accuracy & speed of sample generation demonstrated
- Currently scalable to datasets with 𝒪(10)) events

→ fast generator suitable for sensitivity studies & smaller calibration measurements
- still very early in development, lots of work in progress
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→ Speed Up MC sampling using
Normalizing Flows
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MC Simulation
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Flow

1. train 2. substitute

First Ideas (work in progress)

→„Directly“ Search for kink-like 
signature with Neural Networks
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Motivation:

NN could learn higher-order correlations to
“semantically“ learn the kink-like signature

First Check:

Are Neural Networks even sensitive to the
sterile neutrino signature?

~1 yr.

LHR in stat. only case

Preliminary, WIP
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Motivation:

NN could learn higher-order correlations to
“semantically“ learn the kink-like signature

First Check:

Are Neural Networks even sensitive to the
sterile neutrino signature?

Add Bias ∉ {Training Data} → No sensitivity loss for NN

Preliminary, WIP
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Another Example:

Can do bin-wise tests for the stat. significance of
sterile signature or mismodelling, etc.

Idea:

Train bin-wise classifier, NN will learn LHR for
each bin when minimizing BCE („LHR-trick“)

How to get p-values:

Use a MC estimate, for a global p-value: take care 
to include “look-elsewhere-effect“!

Bin-Wise stat. Significance of sterile signature

Preliminary, WIP



Search for Sterile Signature with NN - Outlook
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Fit

Observed
Spectrum

𝜒*-value

Robust under smooth mismodelling

NN MC
train

𝑚", sin*𝜃 Crosscheck & Catch mismodelling

Where would this be used?

Limitations - Still somewhat reliant on the MC (used as training data, cant be too far off)

- Still to be tested for non-smooth / larger group of perturbations
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Real Response of TRISTAN Detector
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To a monoenergetic electron beam
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z-score norm
„en

ergy“ norm

Simple Standardization

„Choice of units“ 𝑥⃑ → ,⃑-./01(,⃑)
405(,⃑)

with 𝑥⃑ = (𝐸678, 𝐸9)
(also called z-score normalization)

Energy-based Standardization
Want to mitigate sharp cutoffs in 𝐸#$% close to 𝐸"

𝑢 =
𝐸#$%
𝐸"

∈ 0, 1

<𝑢 = 𝛼 + 1 − 2𝛼 𝑢 with 𝛼 = 1001

𝑢2"345 = log67(
<𝑢

1 − <𝑢
)

Preliminary, WIP

Preliminary, WIP
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(Conditional) Discrete Normalizing Flows

NN just learns the
positions & derivatives 
@ these positions, 
constraining the RQ-
spline

Additional Conditional Info 
concatenated to NN input

NN
[1]

[1] https://udlbook.github.io/udlbook/

How do they work?

• Minimize KL-Div. between model and target density by
minimizing NLL of samples!

• NNs learn series of invertible transforms while keeping
Jacobians in check (Jacobian <-> „density info“)

• Allows sampling & density estimation!

How does a RQS transform look like?
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[1]

[1] https://udlbook.github.io/udlbook/

Continuous limit (𝒇𝒏 w/ 𝒏 → ∞)

Going from discrete transformations to
continuous field

Updates to latent variable z
become infinitesimally small

:;(8,ctxt)
:8

= 𝑢(𝑧, 𝑡, ctxt); 𝑡 ∈ [0, 1]

w/ 𝑧 𝑡 = 0 = 𝑧= and 𝑧 𝑡 = 1 = 𝑥

Neural ODE: train NN to predict
u(𝑧, 𝑡, ctxt), call it 𝑣7(𝑧, 𝑡, ctxt)

To do training / density est.:

𝑧= = 𝑥 − C
=

'
𝑣>(𝑧, 𝑡, ctxt)𝑑𝑡

Integration @ 
Training Time!

Preliminary, WIP
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Do regression on the ODE velocity field!

[2] Nicole Hartman, ODSL GenAI Days

[2]

Integration @ training time: 

- Very time consuming

- (doesn‘t scale nicely to higher D)

𝑢(𝑧, 𝑡, ctxt)

𝑣F(𝑧, 𝑡, ctxt)
(Conditional) Flow Matching to the Rescue!

(no integration required for training)

ℒFGH = 𝔼I,J8,K 𝑣L 𝑧, 𝑡, ctxt − 𝑢(𝑧, 𝑡, ctxt | 𝑧M, 𝑥) N
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Do regression on the ODE velocity field!

[2] Nicole Hartman, ODSL GenAI Days

[2]

Integration @ training time: 

- Very time consuming

- (doesn‘t scale nicely to higher D)

𝑢(𝑧, 𝑡, ctxt)

𝑣F(𝑧, 𝑡, ctxt)
(Conditional) Flow Matching to the Rescue!

(no integration required for training)

ℒFGH = 𝔼I,J8,K 𝑣L 𝑧, 𝑡, ctxt − 𝑥 − 𝑧M N

& straight line approx.
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CFM

CFM w/ (batch-wise) optimal 
transport coupling

Conditional Flow Matching with:
- Velocity Field Predictor: MLP with Unet-

like Structure & self attn. at bottleneck
- Optimal Transport Coupling between

Source and Target

What we want:

- Accurate sampling

- Fast sampling
Lightweight model

Straight prob. paths

Architecture

Unet-like to retain info
from different scales

X

X

+

+

+ +

+

+

MHA

Input 
Layer

Hidden 
Layers

Output 
head

Concat.
Element-
wise Add.

X

+

𝑥 !
, t

, 
co

n
te

xt

𝑣 #
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Gridscan over 𝒎𝟒, sin𝟐 𝜽

- 𝜒<	computed at every gridpoint 𝑘𝑙
- Contour drawn at 95% CL

- 𝜒!"#$%	= 5.99 if Wilks‘ theorem holds

- Nuisance parameters: global signal
amplitude

𝝌𝟐-based approach

Exclusion Lines
Goal: Compare NN to “traditional” 
method -> draw an exclusion line

1 yr.
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Scan through 𝒎𝟒, sin𝟐 𝜽  grid

si
n"
𝜃
=
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n"
𝜃
=
0	
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n"
𝜃
=
0	

si
n"
𝜃
=
0	

si
n"
𝜃
=
0	

si
n"
𝜃,
𝑚
&
=
𝐺𝑃

0.901
0.902

0.899
0.903

0.901
…si
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𝑚
&
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𝑚
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𝑚
&
=
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𝑚
&
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0.001
0.002

0.001
0.002

0.000
…

Exclusion Lines using Neural Networks
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Binary Classification

NNs are very sensitive to the
sterile neutrino signature

Three Takeaways
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Binary Classification

NNs are very sensitive to the
sterile neutrino signature

Can handle detector related syst. 
effects and uncertainties

Can handle small smooth 
modelling inaccuracies

Three Takeaways
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Binary Classification

Not completely model independent (training
data has to come from somewhere)

Not 100% transparent 
(only likelihood-ratio estimator)

Caveats



30.10.25 Luca Fallböhmer – NPML 2025 51

Training Data
𝒎𝒔 = 𝟓 𝐤𝐞𝐕
𝐬𝐢𝐧𝟐𝜽 = 𝟏𝟎-𝟔 

𝒎𝒔 = 𝟏𝟎 𝐤𝐞𝐕
𝐬𝐢𝐧𝟐𝜽 = 𝟏𝟎-𝟔 

Training Data should include:
- Different sterile signatures
- Statistical fluctuations



30.10.25 Luca Fallböhmer – NPML 2025 52

Training Data
𝒎𝒔 = 𝟓 𝐤𝐞𝐕
𝐬𝐢𝐧𝟐𝜽 = 𝟏𝟎-𝟔 

𝒎𝒔 = 𝟏𝟎 𝐤𝐞𝐕
𝐬𝐢𝐧𝟐𝜽 = 𝟏𝟎-𝟔 

Training Data should include:
- Different sterile signatures
- Statistical fluctuations
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Training Data
Th

eo
re

tic
al

 P
re

di
ct

io
n

Sample m=, sin<(θ) Statistically fluctuate sample

Repeat 
𝑁 times50% probability

to set sin" 𝜃 = 0



Training Data
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Add labels for
each sample

Label 0 for sin"𝜃 = 0

Label 1 for sin"𝜃 > 0

Optionally add
syst. effects

Done via convolution with
Response Matrices

e.g.

Feature 
standardization

Training Dataset

T



Backup: Sterile Neutrino Parameter Space
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Backup: Sensitivity Studies – Contour Uncertainty
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Statistical 
fluctuations in 
spectra

Statistical 
fluctuations in 
histograms


