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Monte-
Carlo

Data

Minimizer 

➡ Find parameters  that optimize test statistic 
between data and MC histograms

θ

Weight 
true neutrino properties x =

w(x, θ) =
Φ(x |θflux)

Φsim(x)
×

σ(x, θxsec)
σsim(x)

× . . . × f (x, θphysics)
nuisance parameters physics

Monte-Carlo Forward-Folding

̂μi = ∑
j

I(yj ∈ bin i)wj(θ)

I’m using a neutrino oscillation fit as an example throughout this talk, but the method is completely general!
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Monte-Carlo Forward-Folding

̂μi = ∑
j

I(yj ∈ bin i)wj(θ)

But where is the detector response?

I’m using a neutrino oscillation fit as an example throughout this talk, but the method is completely general!



Detector Systematics
Oh no, it’s all baked in together!
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Expectation value in bin : i

μi(θ) = ∫y∈bin i
dy∫ dxP(y |x, α)P(acc |x, α)w(x, θ)

PD
F

Energy

reconstructed
true

x

y

Probability that event with 
true properties  is acceptedx

Probability that event with true properties  is 
reconstructed with reconstructed properties 

x
y

 = detector propertiesα



Modeling of Detector Effects
Bin-wise weighting method
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Fit in One Bin

• Simplest method: Bin-wise gradients in 
reconstructed event properties 

• Problem: Depend on physics parameters θ

Toy example: 
Parameter  = 
detector efficiency

α



Bin-wise Weighting Methods
Gradients’ dependence on Physics Parameters
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Injected Δm2 = 2.76 × 10−3 eV2Injected Δm2 = 2.55 × 10−3 eV2

Need to re-fit the detector systematics every time we change the injected physics parameters . 

➡ We need a method to decouple detector effects from physics!

θ

Luckily, you’re in the right talk!



Decoupling Detector Effects
Event weights should model the relationship between true and reco variables
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Example:  = detector efficiency, α αnom = 1
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: Reconstructed energy tends 
to be smaller than true energy
α < 1
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: Reconstructed energy tends 
to be larger than true energy
α > 1

An event with 
 should 

get more weight
Ereco > Etrue

An event with 
 should 

get less weight
Ereco > Etrue
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from?

P(y |x, α)P(acc |x, α)
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The Likelihood-free Inference Trick
Weighting from Nominal to Any Off-Nominal MC Set

Applying Bayes’ Theorem: 

P(y |x, αk)P(acc |x, αk)
P(y |x, αnom)P(acc |x, αnom)

=
P(αk |x, y)

P(αnom |x, y)
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index  = index of MC setk

Train a classifier to estimate posterior that an 
event with given  belongs to set x, y k

Treat each MC set 
as one discrete class

We convert the difficult problem of 
learning conditional probability 
distributions to the easy problem of 
training a classifier!



KNN Classifier Example
Simple and Robust Posterior Estimate

KNN Classifier Equation: 

 P(α = αk |x, y) =
1
N ∑

j∈𝒩k(x,y)

1

9

Sum over indices in neighborhood 
around  belonging to set (x, y) k



Making Event-Wise Gradients
Interpolating between Discrete MC Sets

• Probability estimate using softmax to normalize 

 

 = gradient w.r.t.  for event   

  

• Loss function to fit gradients  is cross-entropy: 

 

• Interpolated weight for every MC event during evaluation 

̂P(αk |xj, yj) = softmax (gjA) =
exp(∑n gjnAnk)

∑k′￼
exp(∑n gjnAnk′￼)

gjn αn j

Ank = αn,k − αn, nom

gjn

Hj = − ∑
k

log( ̂P(αk |xj, yj))PKNN(αk |xj, yj)

̂rj(α) =
̂P(α |xj, yj)

̂P(αnom |xj, yj)
= exp (∑

n

gjn(αn − αn, nom))
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For each event, we train the last layer of a neural network with one weight per systematic parameter.



Toy MC Example
Reweighting between and in between MC sets
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Note: The classifier was trained on the unweighted events!

Sweep over 
detector 
efficiency



Performance on Toy MC
Gradients make Sense and Produce Accurate Predictions
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Event-wise 
gradients are 
accurate at any 
mass splitting!

Fitted 
gradients make 
physical sense!



Summary of the Procedure
How you can apply this in your analysis
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Summary of the Procedure
How you can apply this in your analysis

1. Generate MC sets at various realizations of the detector 

• Systematic sets may be arranged arbitrarily!

2. Fit the classifier 

• Any classifier giving calibrated posteriors may be used

3. Fit gradients for all nominal MC events 

• Polynomial features of parameters may be used

4. Weight your MC by  to get expectation values for any 

detector realization!

wj = exp (∑
n

gjn(αn − αn, nom))
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How you can apply this in your analysis
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Analyzers need only the last step!

Δα1

Δα2

XX

X X

X

X

X
X

X

X
X

X

Δα2

Δα 1



Benefits of the method
Final Takeaways

14



Benefits of the method
Final Takeaways

✓ Learn event-wise gradients to re-weight MC events to any detector 
configuration decoupled from physics

14



Benefits of the method
Final Takeaways

✓ Learn event-wise gradients to re-weight MC events to any detector 
configuration decoupled from physics

✓ Change your binning*! Change your Physics! Gradients stay valid!

14

*Re-binning or selection changes may only use variables that are included in the classifier training



Benefits of the method
Final Takeaways

✓ Learn event-wise gradients to re-weight MC events to any detector 
configuration decoupled from physics

✓ Change your binning*! Change your Physics! Gradients stay valid!

✓ Allow anyone to use detector effects by adding gradients to MC data-release

14

*Re-binning or selection changes may only use variables that are included in the classifier training



Benefits of the method
Final Takeaways

✓ Learn event-wise gradients to re-weight MC events to any detector 
configuration decoupled from physics

✓ Change your binning*! Change your Physics! Gradients stay valid!

✓ Allow anyone to use detector effects by adding gradients to MC data-release

✓ No assumption of linearity of detector effects or Gaussian error distribution

14

*Re-binning or selection changes may only use variables that are included in the classifier training



Benefits of the method
Final Takeaways

✓ Learn event-wise gradients to re-weight MC events to any detector 
configuration decoupled from physics

✓ Change your binning*! Change your Physics! Gradients stay valid!

✓ Allow anyone to use detector effects by adding gradients to MC data-release

✓ No assumption of linearity of detector effects or Gaussian error distribution

✓ Can model any number of detector effects

14

*Re-binning or selection changes may only use variables that are included in the classifier training



Benefits of the method
Final Takeaways

✓ Learn event-wise gradients to re-weight MC events to any detector 
configuration decoupled from physics

✓ Change your binning*! Change your Physics! Gradients stay valid!

✓ Allow anyone to use detector effects by adding gradients to MC data-release

✓ No assumption of linearity of detector effects or Gaussian error distribution

✓ Can model any number of detector effects
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*Re-binning or selection changes may only use variables that are included in the classifier training

Happy Halloween!



Backup



Power of the method
How general is this, really?

How many systematic variations can be used?  

➡ Any number of MC sets, at any location! 

➡ Even continuous variation of detector parameters 
is possible!* 

How many true/reco parameters should I include 
per event? 

➡ Lower limit: at least those variables used in the 
analysis binning and those that are used by the 
physics model must be included 

➡ Upper limit: as many as your classifier can handle!
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The inputs to the 
classifier are the 
concatenated true 
and reco variables

*Explaining how this works goes beyond the scope of this talk, talk to me if you’re interested



Goal of this Work
Decoupling Detector Response Weight from Physics Parameters

Basic intuition: Detector response should not depend on the physics model! 

➡ Detector reacts to final state of each particle, doesn’t know about flux, oscillations, etc. 

➡ Detector properties determine relationship between true and reconstructed variables 

➡ If we knew , we should be able to get the correct expectation 
value at any setting of   independently from 

P(y |x, α)P(acc |x, α)
α θ
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̂μi(θ, α) = ∑
j

I(yj ∈ bin i)
P(yj |xj, α)P(acc |xj, α)

P(yj |xj, αnom)P(acc |xj, αnom)
w(x, θ)

Event weight independent of θ



MC Event Weighting
How we get an expectation value in each bin

• Flux, cross-sections, oscillations: 

• Estimate bin count by weighting events: 

  

• Uncertainties of detector properties: 

• How can we get ?

̂μi(θ) = ∑
j

I(yj ∈ bin i)
Φ(xj |θ)
Φsim(xj)

P(acc |x, α)P(y |x, α)
18

Full expression for expectation in each bin : i

μi(θ) = ∫y∈bin i
dy∫ dxP(y |x, α)P(acc |x, α)

Φ(x |θ)
Φsim(x)

Toy example: 
Parameter  = 
detector efficiency

α


