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MONTE-CARLO FORWARD-FOLRING

'm using a neutrino oscillation fit as an example throughout this talk, but the method ts completely general!
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= Find parameters @ that optimize test statistic
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MONTE-CARLO FORWARD-FOLRING

'm using a neutrino oscillation fit as an example throughout this talk, but the method ts completely general!

4 Weight ) =Y Iy, € biniyw,0)
J

X = true neutrino properties

- — = —_— —

w(x, 0) =

% But where is the detector resfonse?

40

30 Vinimizer

Events

20
= Find parameters @ that optimize test statistic

between data and MC histograms

10

101

Reconstructed Energy (GeV)




PDF

DETECTOR SYSTEMATICS

Obh no, it’s afl baked in togetﬁer!

true ener
1 reconstructed 0y
reco energy

Energy (GeV)

a = detector properties

Probability that event with

‘ I true properties X is accepted

Expectation value in bin i:

pi(0) = J

dy deP(y | x, a)P(acc | x, a)w(x, 6)
yebini

‘ Probability that event with true properties X is

reconstructed with reconstructed properties y




Fitin One Bin
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 Simplest method: Bin-wise gradients in
reconstructed event properties

e Problem: Depend on physics parameters €
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MORELING OF RETECTOR EFFECTS

Bin-wise weigﬁting method

—_— N ominal

_‘ — a =1.05
a=1.025

a=0.975
— = 0.95
-
 — Toy example:

Reconstructed Energy (GeV)

Parameter a =
detector efficiency
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BIN-WISE WEIGHTING METHORS

Gradients’ z{cfend'cnce on P @/.fics Parameters
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Need to re-fit the detector systematics every time we change the injected physics parameters 6.

= We need a method to decouple detector effects from physics! Lght talk!
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DECOUPLING RETECTOR EFFECTS

Event weigl; ts should model the re[ationsﬁif between true and reco variables

Example: a = detector efficiency, a, ., = 1

[ P(y|x, a)P(acc|x, a)
[ P Ix, ayom)P(acc| X, @)

An event with
E_ .. >FE_ should

rcco true
get less weight

true Energy

Reconstructed Energy

o < 1: Reconstructed energy tends
to be smaller than true energy
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An event with
E .. >FE_  should

IrcCo frue
get more weight

true Energy

Reconstructed Energy

o > 1: Reconstructed energy tends
to be larger than true energy
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Event weig/;ts should model

Example: o = detector efficiency, a,

f

DECOUPLING RETECTOR EFFECTS

the re[ationsﬁif between true and veco variables
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= — — == e —

But W5£1‘L’ ‘[0 ngff P(y | x, a)P(acc | x, a)

P(y | x, a)P(acc|x, a) P(Y | X, Qyom)P(acc | X, Qo)

P(y ‘ X’ anom)P(aCC ‘ X’ anom)

Reconstructed Energy

o < 1: Reconstructed energy tends
to be smaller than true energy

An event with
E .. >FE_  should

reco true
get more weight

Reconstructed Energy

o > 1: Reconstructed energy tends
to be larger than true energy




THE LIKELIHOOR-FREE INFERENCE TRICK

Weigﬁting from Nominal to Any q]fN ominal MC Set

Applying Bayes’' Theorem: index k = index of MC set
P(y|x,apP(acc|x,a)  P(ag|x,y)
P(y ‘ X, anOm)P (aCC X, anom) P (anom ‘ X, y) \
35 — —— nominal - — f - 71

] — a=1.05 Train a classifier to estimate posterior that an

1

I
‘»

30 a=1.025 | , , ;
— @ =0.975 'event with given X, y belongs to set k ‘

2 25 ] —— =095 —— e E——
o)
S we convert the difficult problem of

15 Learning conditional probability

10 , Treat each MC set distributions to the easy problem of

I as one discrete class training a classifier!
101 102
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KNN CLASSIFIER EXAMPLE

.Simf le and Robust Posterior Estimate

Sum over indices in neighborhood

KNN Classifier Equation:

around (X, y) belonging to set k

.
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MAKING EVENT-WISE GRADIENTS

Int‘m?o[m‘ing between Discrete MC Sets

e Probability estimate using softmax to normalize
CXp ( zn 8 jnAnk)

- Z k' eXp( Z 1 8 jnAnk’)

gi, = gradient w.r.t. a,, for event

T~
I nominal set systematic sets

}A’(ak | X, ¥;) = softmax (ng>

Ank = &k~ % nom W/

density

« Loss function to fit gradients 8in IS cross-entropy:

H = — Z log(P(ay| X, Y)Prnn(% | X5 ¥))
k

e Interpolated weight for every MC event during evaluation
P(a|x;y))

Fla) = = Ui ) = exp ( Z gin(a, — a, nom))

P(anom ‘ Xja yj

For each event, we train the last layer of a newral network with one weight per systematic parameter.
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Events

TOY MC EXAMPLE

Reweig/; ﬁng between and in between MC sets

= = nominal
- nominal reweighted

- Ssample at a =1.05

Reconstructed Energy (GeV)

Events

Sweep over
detector
efficiency

Reconstructed Energy (GeV)

Note: The classifier was trained on the unweighted events!
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Reconstructed Energy (GeV)

PERFORMANCE ON TOY MC

Gradients make Sense and Produce Accurate Predictions

]

2 5 """ blIlWlSG

Fitted . Event-wise
: - eventwise .
gradients make gradients are
. — Am?=2.3 x 1073 eV’
physical sense! o 20 , N accurate at any
5 I= ’, Am*=2.4 X 1077 eV* | mags splitting!
F% f 15 % — Am2=25 X 10_3 eV2 .i :‘
o q) . “ _ Q. 0.
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* N . ‘0 v :
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SUNHARY OF THE PROCEDIRE
How you can agply this in your analysis



1.

» Systematic sets may be arranged arbitrarily!

SUMMARY OF THE P RQCF:“"RF
How you can agply this in your analysis

Generate MC sets at various realizations of the detector
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. Generate MC sets at various realizations of the detector
» Systematic sets may be arranged arbitrarily!
. Fit the classifier
- Any classifier giving calibrated posteriors may be used
. Fit gradients for all nominal MC events

- Polynomial features of parameters may be used

SUMMARY OF THE PROCERURE

How you can aﬂv_[y this in  your analysis

. Weight your MC by w; = exp ( Z gin(a, — a, nom)) to get expectation values for any

detector realization! Awnalyzers need only the last step! |
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BENEFITS OF THE METHOD

Final Takeaways

*

v Learn event-wise gradients to re-weight MC events to any detector
configuration decoupled from physics

v' Change your binning’! Change your Physics! Gradients stay valid!
v Allow anyone to use detector effects by adding gradients to MC data-release
v' No assumption of linearity of detector effects or Gaussian error distribution

v' Can model any number of detector effects

Happy Halloween!

‘Re-binning or selection changes may only use variables that are included in the classifier training
14
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POWER OF THE METHOR

How genem[ is this, rm{y

How many systematic variations can be used?
= Any number of MC sets, at any location!

= Even continuous variation of detector parameters
Is possible!”

How many true/reco parameters should |l include
per event?

i - . P X
= | ower limit: at least those variables used in the (1%, y)
analysis binning and those that are used by the The tnputs to the

' ' lasst are th
physics model must be included classifier ave the
concatenated true

= Upper limit: as many as your classifier can handle! and reco variables

*Explaining how this works goes beyond the scope of this talk, talk to me if you're interested
16



Goal of this Work

Decoupling Detector Response Weight from Physics Parameters

Basic intuition: Detector response should not depend on the physics model!
= Detector reacts to final state of each particle, doesn’t know about flux, oscillations, etc.

= Detector properties determine relationship between true and reconstructed variables

= |f we knew P(y | X, a)P(acc | X, a), we should be able to get the correct expectation
value at any setting of @ independently from @

P(y;|x, @)P(acc | x;, a)

f0,a) = ) I(y; € bin i)

j P(Yj ‘ Xja anom)P(aCC ‘ Xja anom)

Event weight independent of 6
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MC Event Weighting

How we get an expectation value in each bin

r p
. « o . — 1 — ominal
Full expression for expectation in each bin i: 3500 _‘ 1 11 ok
p(0) = J dy deP(y | X, a)P(acc | X, a) . a=0.975
yebin i (I)sim(X) 4”53 2500 — = 0.95
- J 9 J
o 2000
- Flux, cross-sections, oscillations: 500 —
- Estimate bin count by weighting events: Toy example:
O(x,| ) 1000 Parameter a =
A O — . J — detector efficienc
fi(0) = ) I(y; € bin i) y
- Uncertainties of detector properties: Reconstructed Energy (GeV)

- How can we get P(acc |x, )P(y | X, a)?
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