Treatment of Detector Systematics via Likelihood-free Inference

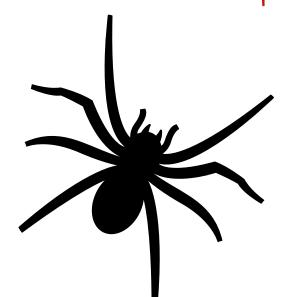
NPML Workshop, Oct. 31st, 2025

Alexandra Trettin, University of Manchester Leander Fischer, DESY Richard Naab, DESY

Paper: JINST 18 (2023) 10, P10019

GitHub: <u>LeanderFischer/ultrasurfaces</u>

TREATMENT OF DETECTOR SYSTEMATICS VIA LIKELIHOOD-FREE INFERENCE



NPML Workshop, Oct. 31st, 2025

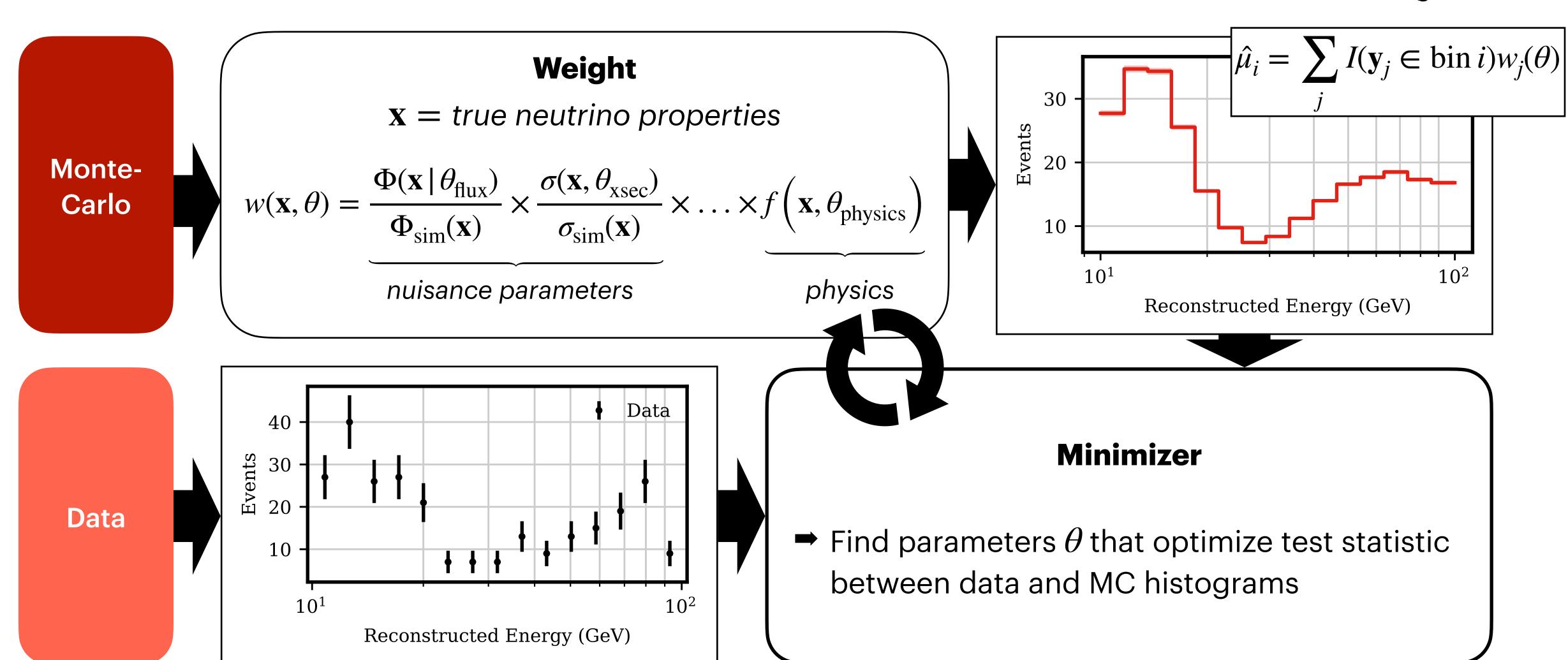
Alexandra Trettin, University of Manchester Leander Fischer, DESY Richard Naab, DESY

Paper: JINST 18 (2023) 10, P10019

GitHub: LeanderFischer/ultrasurfaces

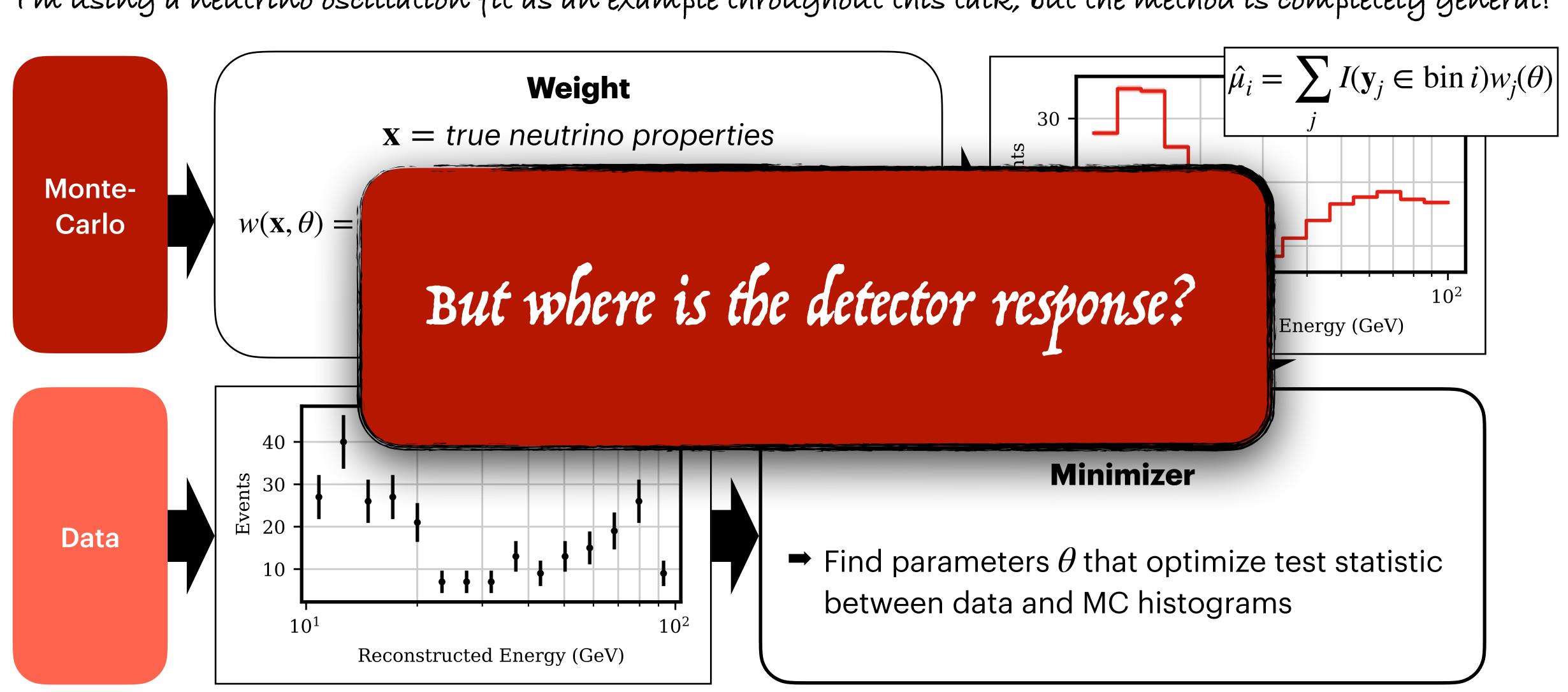
MONTE-CARLO FORWARD-FOLDING

I'm using a neutrino oscillation fit as an example throughout this talk, but the method is completely general!

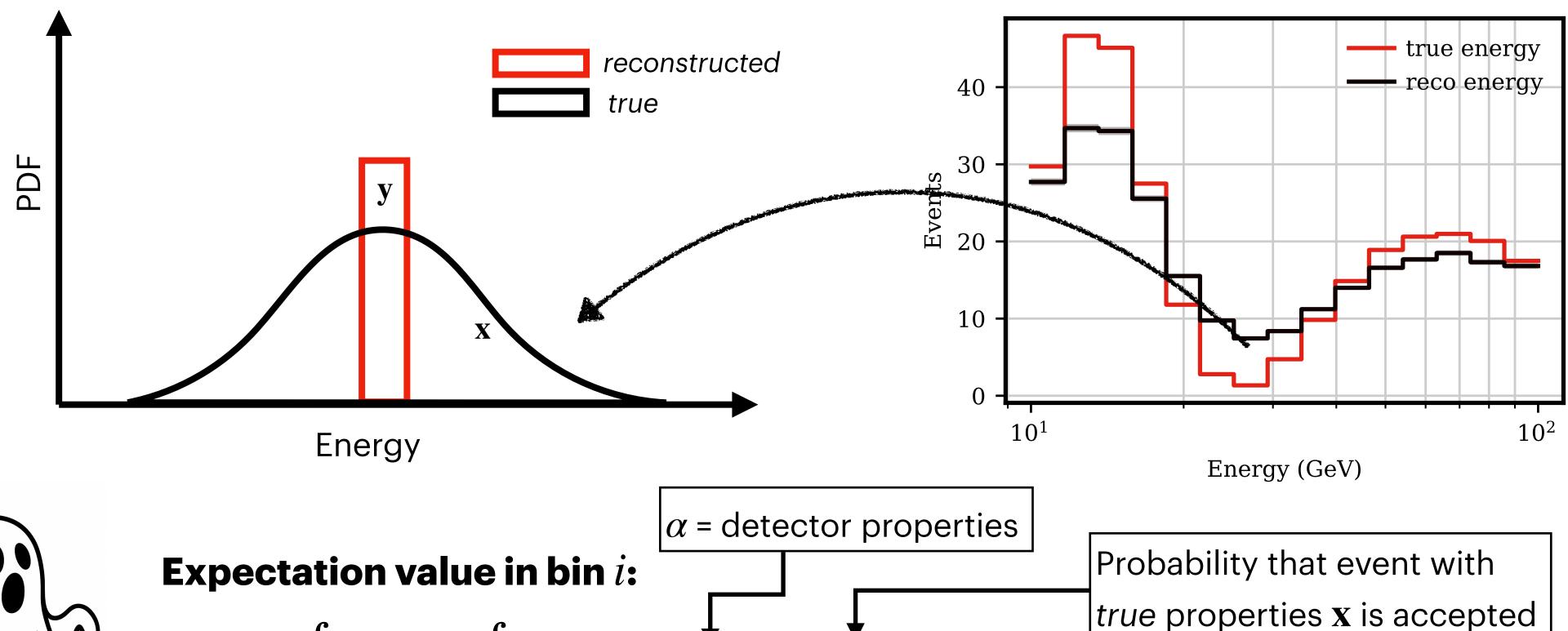


MONTE-CARLO FORWARD-FOLDING

I'm using a neutrino oscillation fit as an example throughout this talk, but the method is completely general!



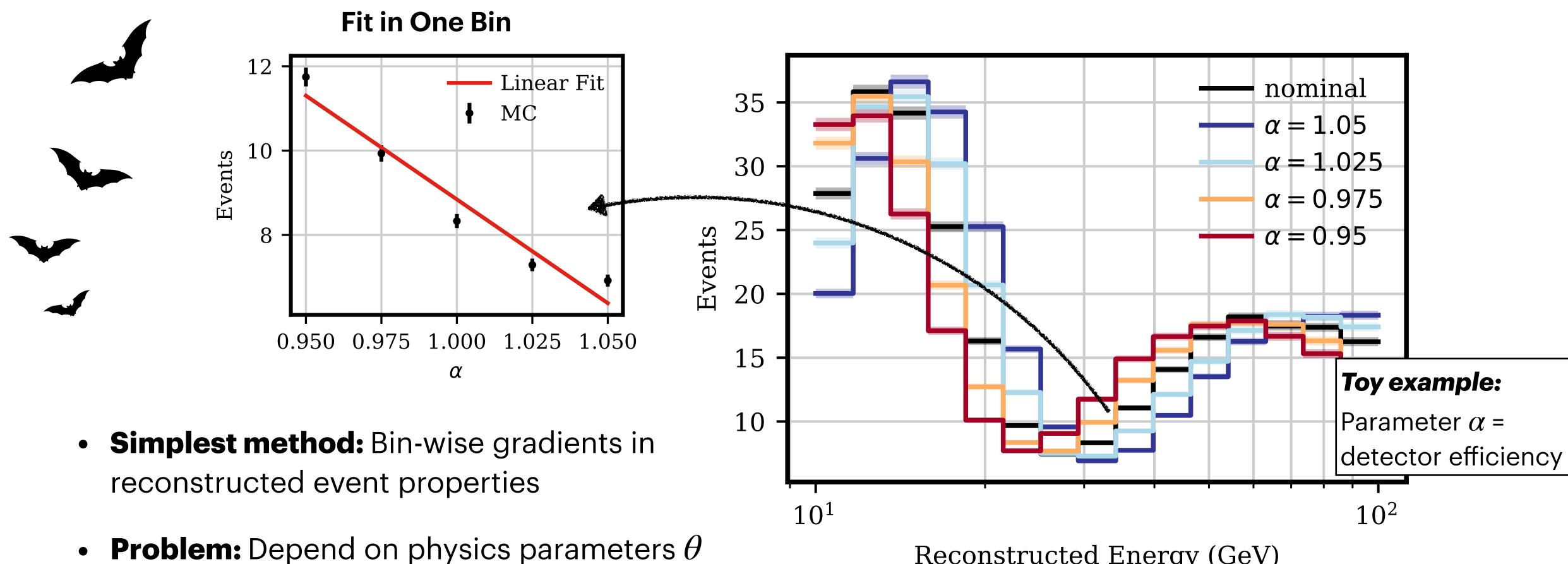
DETECTOR SYSTEMATICS Oh no, it's all baked in together!



dy $\int d\mathbf{x} P(\mathbf{y} \mid \mathbf{x}, \alpha) P(\text{acc} \mid \mathbf{x}, \alpha) w(\mathbf{x}, \theta)$

Probability that event with true properties x is reconstructed with reconstructed properties y

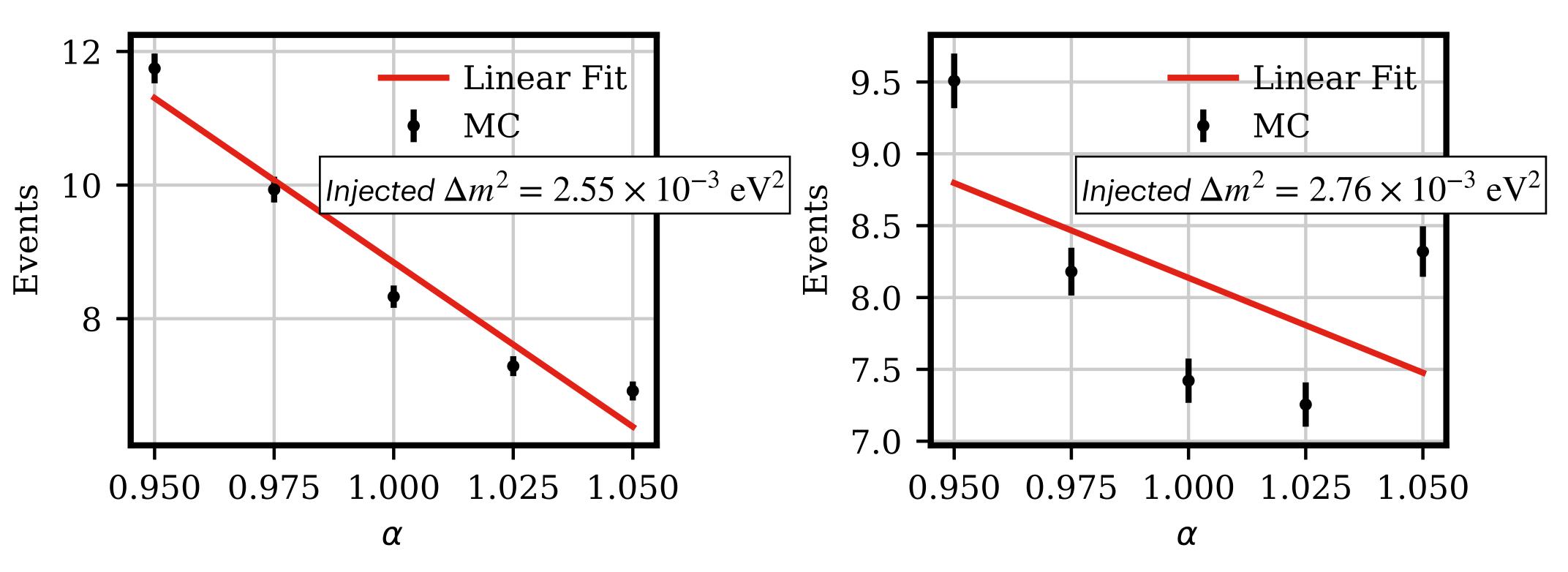
MODELING OF DETECTOR EFFECTS Bin-wise weighting method



Reconstructed Energy (GeV)

BIN-WISE WEIGHTING METHODS

Gradients' dependence on Physics Parameters



Need to re-fit the detector systematics every time we change the injected physics parameters θ .

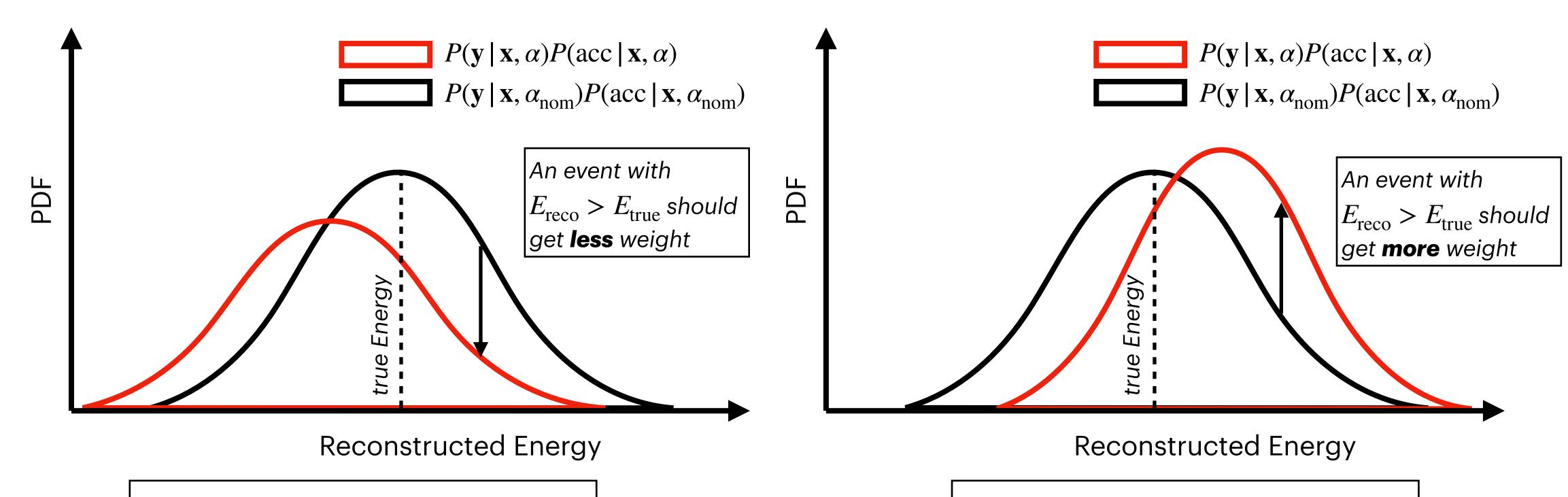
→ We need a method to decouple detector effects from physics!

Luckily, you're in the right talk!

DECOUPLING DETECTOR EFFECTS

Event weights should model the relationship between true and reco variables

Example: α = detector efficiency, $\alpha_{\rm nom} = 1$



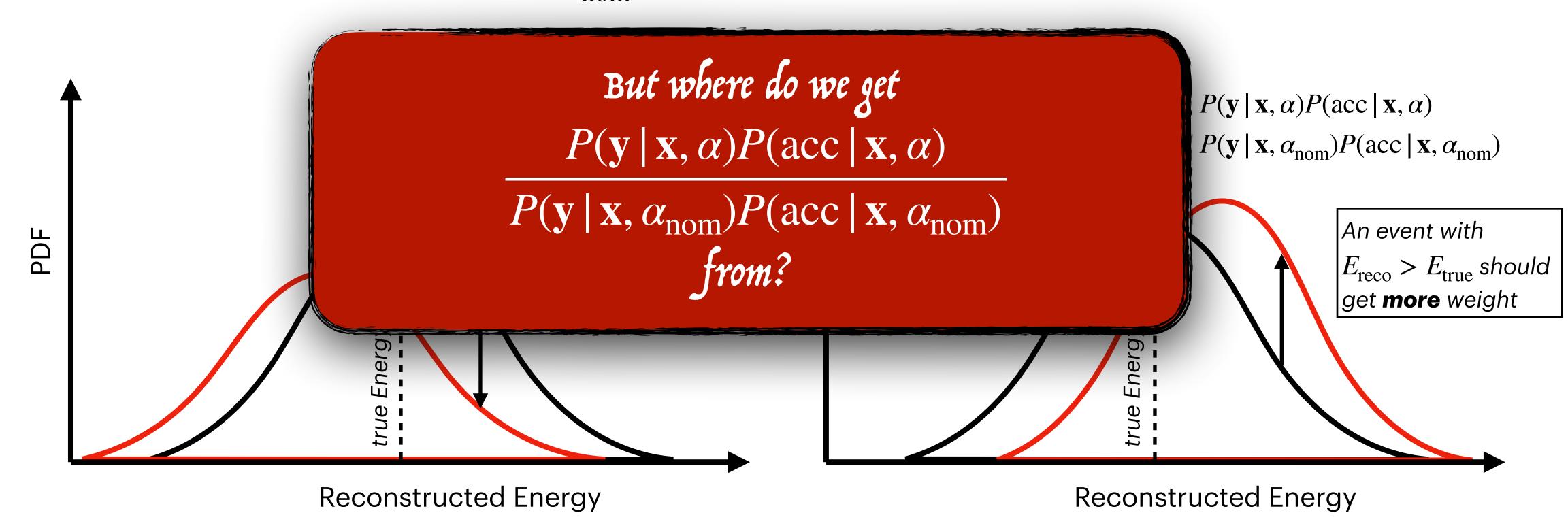
 $\alpha < 1$: Reconstructed energy tends to be smaller than true energy

lpha > 1: Reconstructed energy tends to be larger than true energy

DECOUPLING DETECTOR EFFECTS

Event weights should model the relationship between true and reco variables

Example: α = detector efficiency, $\alpha_{nom} = 1$



 $\alpha < 1$: Reconstructed energy tends to be smaller than true energy

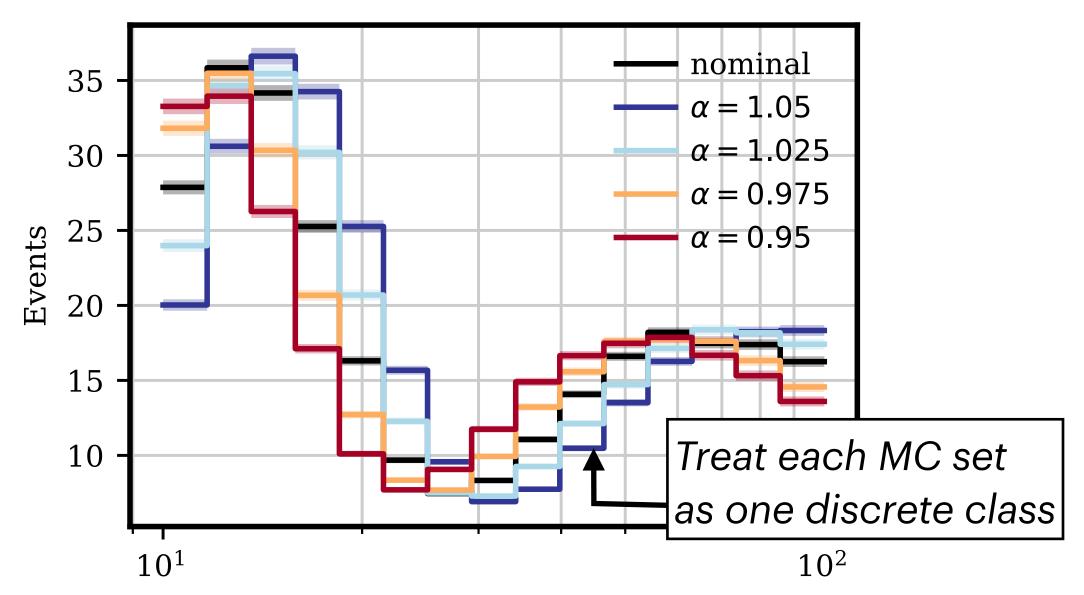
 $\alpha > 1$: Reconstructed energy tends to be larger than true energy

THE LIKELIHOOD-FREE INFERENCE TRICK

Weighting from Nominal to Any Off-Nominal Mc Set

Applying Bayes' Theorem:

$$\frac{P(\mathbf{y} \mid \mathbf{x}, \alpha_k) P(\text{acc} \mid \mathbf{x}, \alpha_k)}{P(\mathbf{y} \mid \mathbf{x}, \alpha_{\text{nom}}) P(\text{acc} \mid \mathbf{x}, \alpha_{\text{nom}})} = \frac{P(\alpha_k \mid \mathbf{x}, \mathbf{y})}{P(\alpha_{\text{nom}} \mid \mathbf{x}, \mathbf{y})}$$

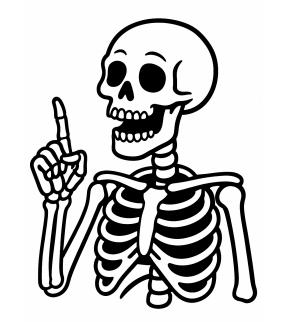


Reconstructed Energy (GeV)

Train a classifier to estimate posterior that an event with given \mathbf{x} , \mathbf{y} belongs to set k

index k = index of MC set

We convert the difficult problem of learning conditional probability distributions to the easy problem of training a classifier!



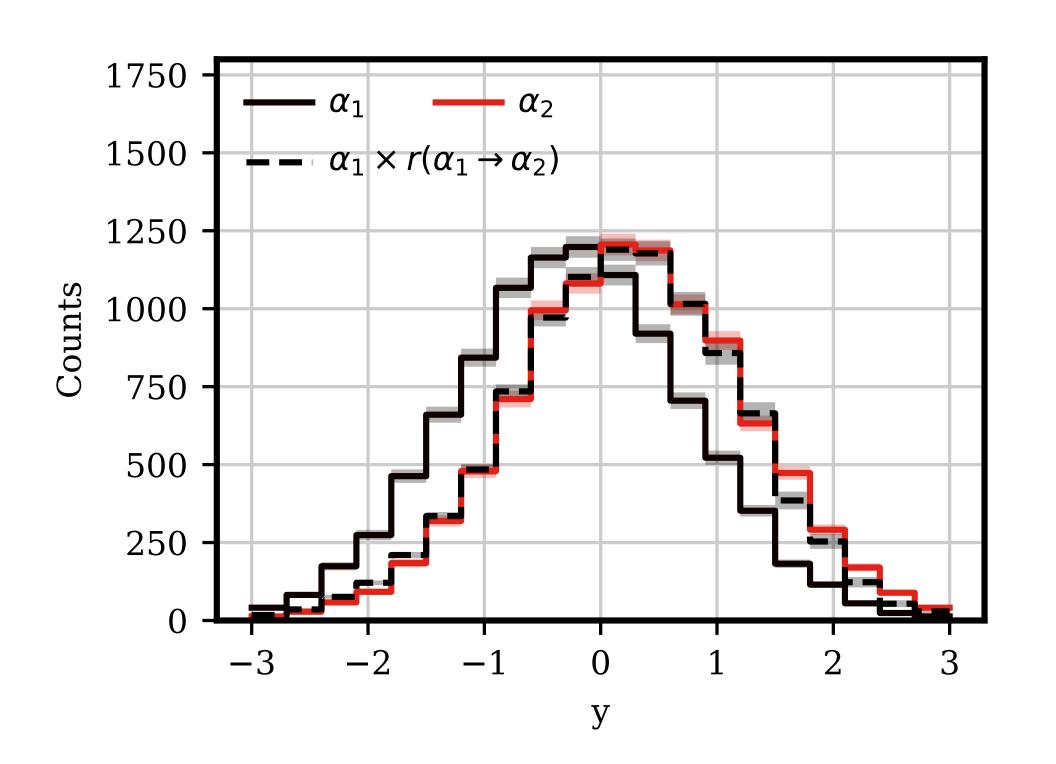
KMN CLASSIFIER EXAMPLE

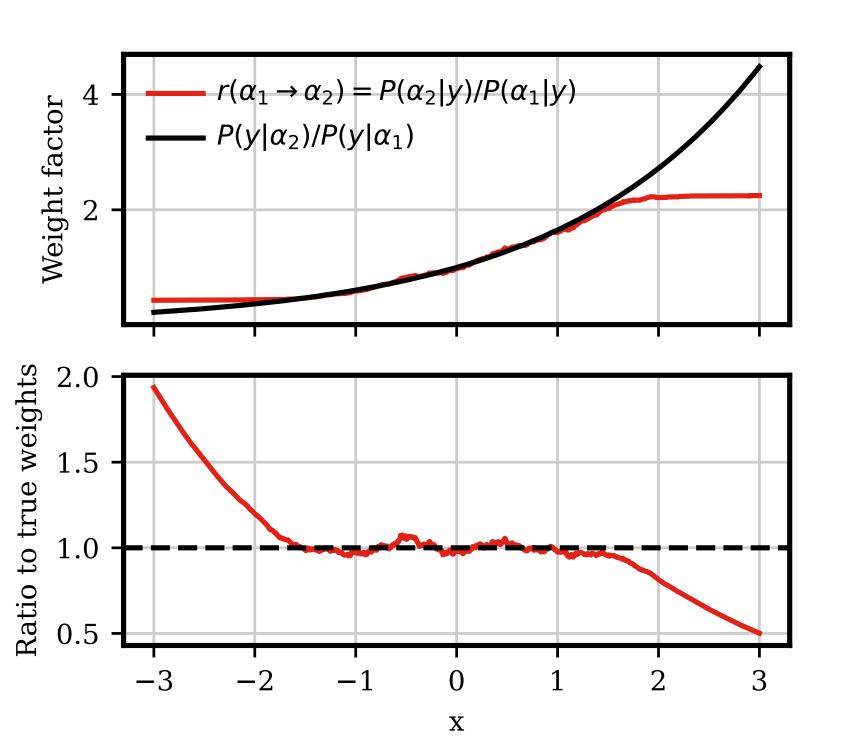
Simple and Robust Posterior Estimate

KNN Classifier Equation:

$$P(\alpha = \alpha_k | \mathbf{x}, \mathbf{y}) = \frac{1}{N} \sum_{j \in \mathcal{N}_k(\mathbf{x}, \mathbf{y})}^{1} 1$$

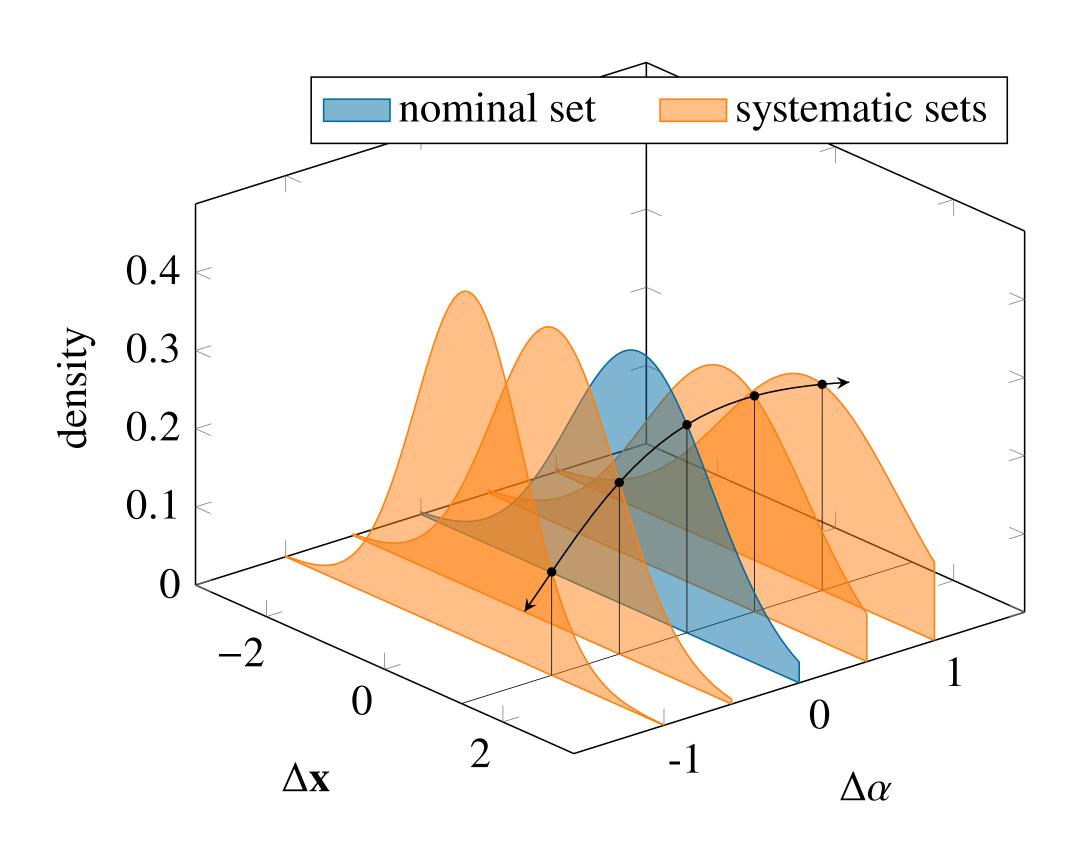
Sum over indices in neighborhood around (\mathbf{x}, \mathbf{y}) belonging to set k





MAKING EVENT-WISE GRADIENTS

Interpolating between Discrete MC Sets



Probability estimate using softmax to normalize

$$\hat{P}(\alpha_k | \mathbf{x}_j, \mathbf{y}_j) = \operatorname{softmax}\left(\mathbf{g}_j A\right) = \frac{\exp(\sum_n g_{jn} A_{nk})}{\sum_{k'} \exp(\sum_n g_{jn} A_{nk'})}$$

$$g_{jn}$$
 = gradient w.r.t. α_n for event j

$$A_{nk} = \alpha_{n,k} - \alpha_{n,\text{ nom}}$$

• Loss function to fit gradients g_{jn} is cross-entropy:

$$H_j = -\sum_{k} \log(\hat{P}(\alpha_k | \mathbf{x}_j, \mathbf{y}_j)) P_{KNN}(\alpha_k | \mathbf{x}_j, \mathbf{y}_j)$$

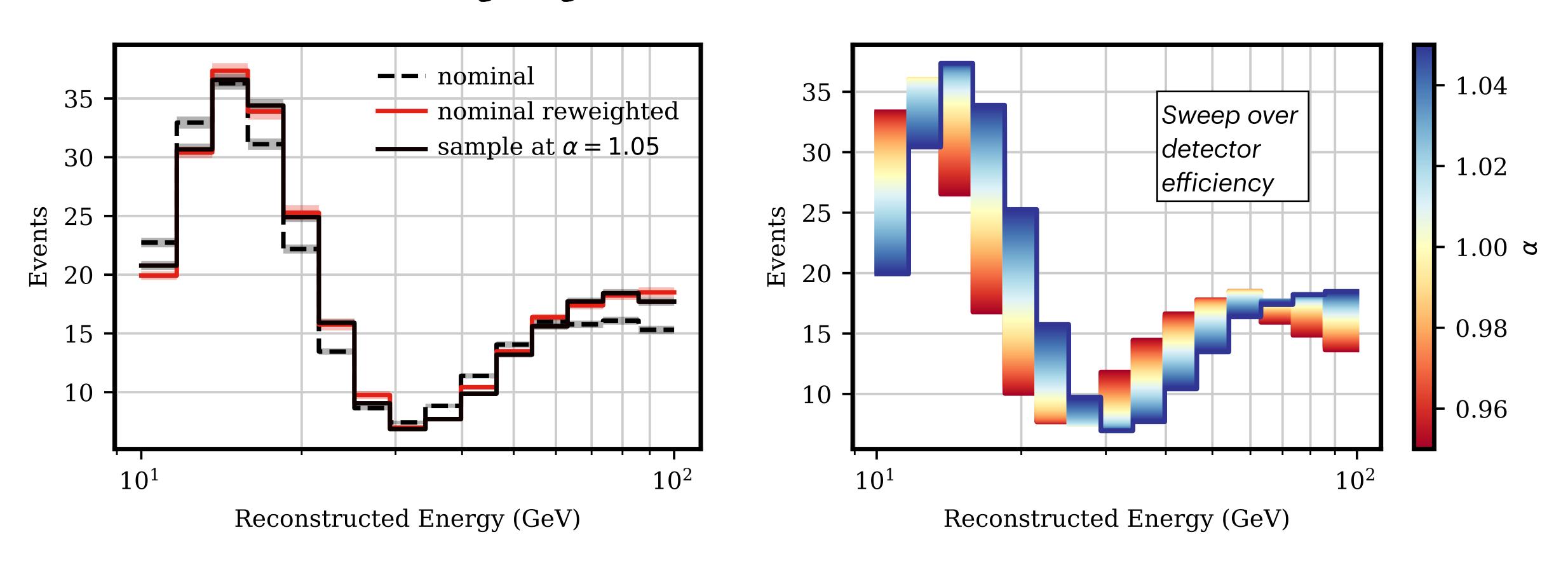
Interpolated weight for every MC event during evaluation

$$\hat{r}_{j}(\alpha) = \frac{\hat{P}(\alpha \mid \mathbf{x}_{j}, \mathbf{y}_{j})}{\hat{P}(\alpha_{\text{nom}} \mid \mathbf{x}_{j}, \mathbf{y}_{j})} = \exp\left(\sum_{n} g_{jn}(\alpha_{n} - \alpha_{n, \text{nom}})\right)$$

For each event, we train the last layer of a neural network with one weight per systematic parameter.

TOY MC EXAMPLE

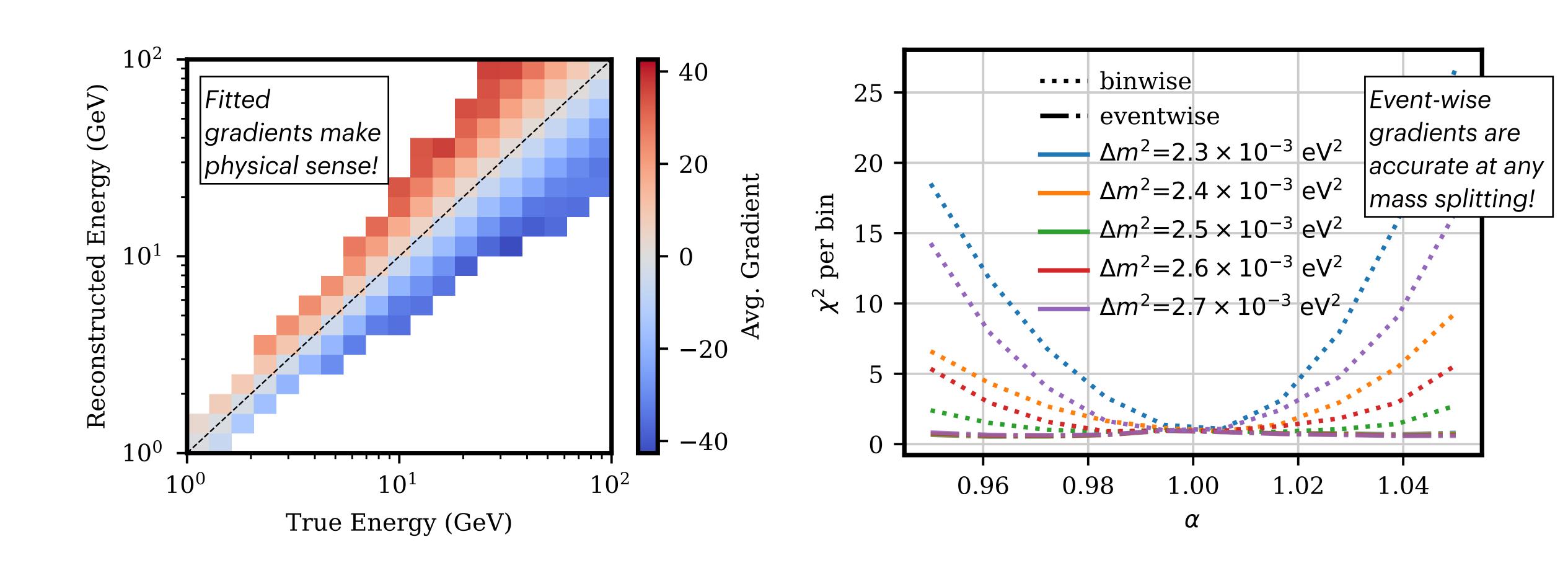
Reweighting between and in between MC sets

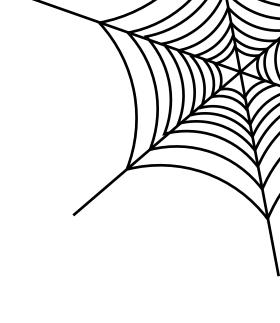


Note: The classifier was trained on the unweighted events!

PERFORMANCE ON TOY MC

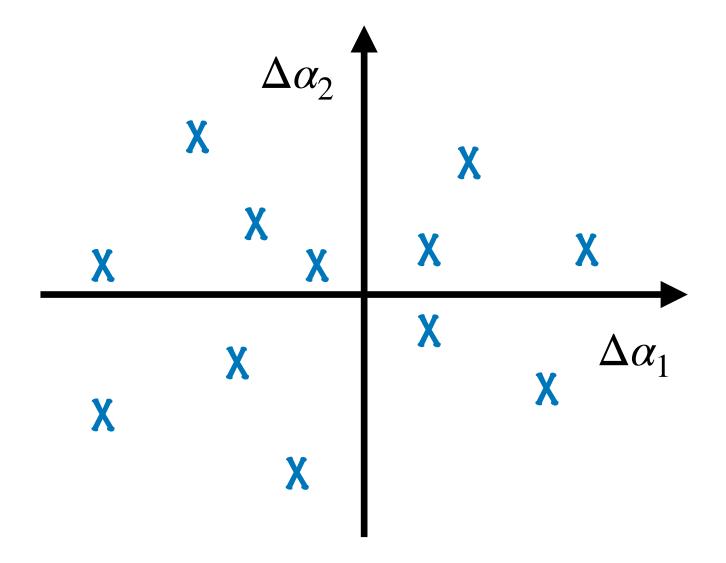
Gradients make Sense and Produce Accurate Predictions



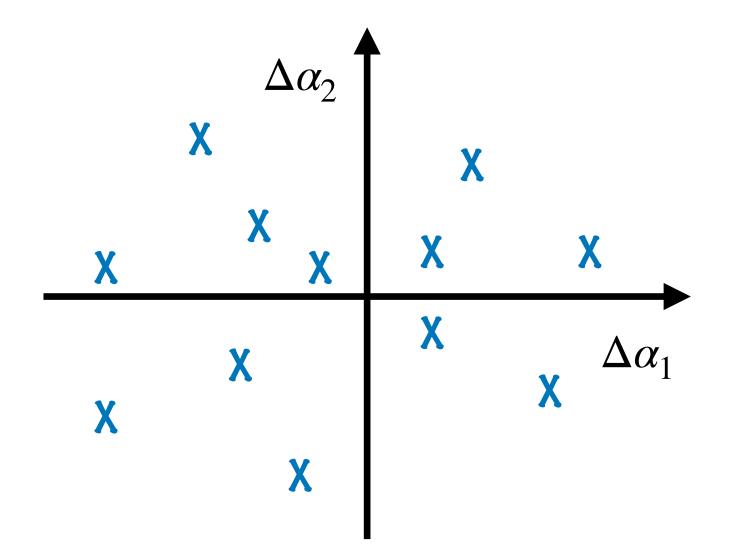


SUMMARY OF THE PROCEDURE How you can apply this in your analysis

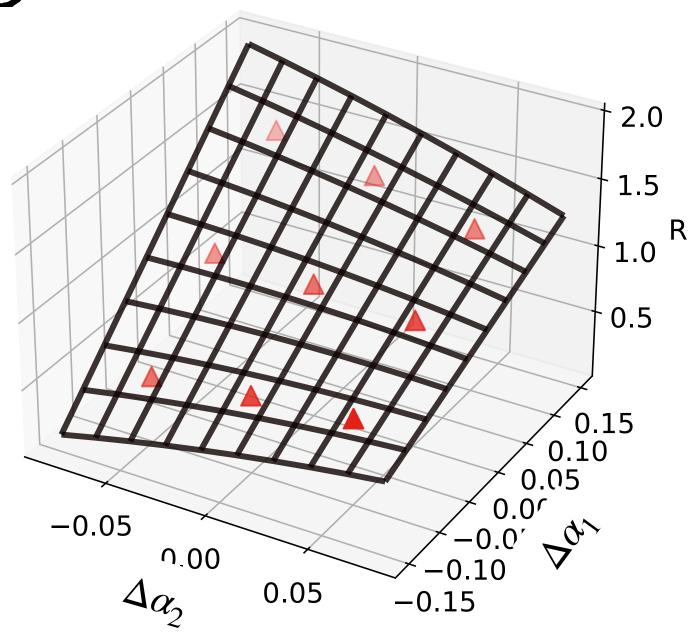
- Generate MC sets at various realizations of the detector
 - Systematic sets may be arranged arbitrarily!



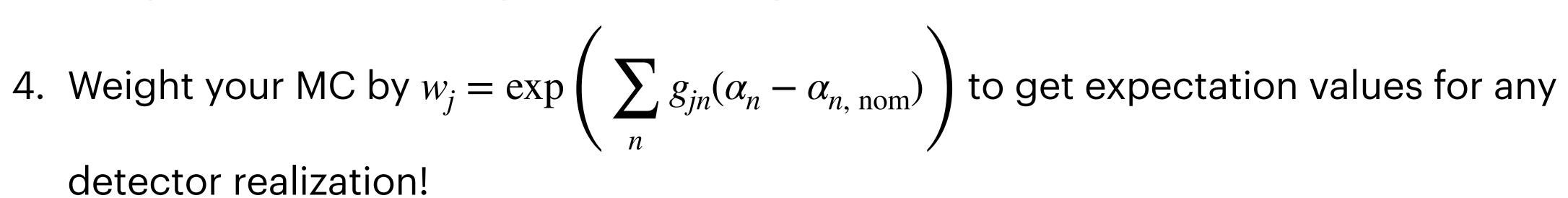
- 1. Generate MC sets at various realizations of the detector
 - Systematic sets may be arranged arbitrarily!
- 2. Fit the classifier
 - Any classifier giving calibrated posteriors may be used

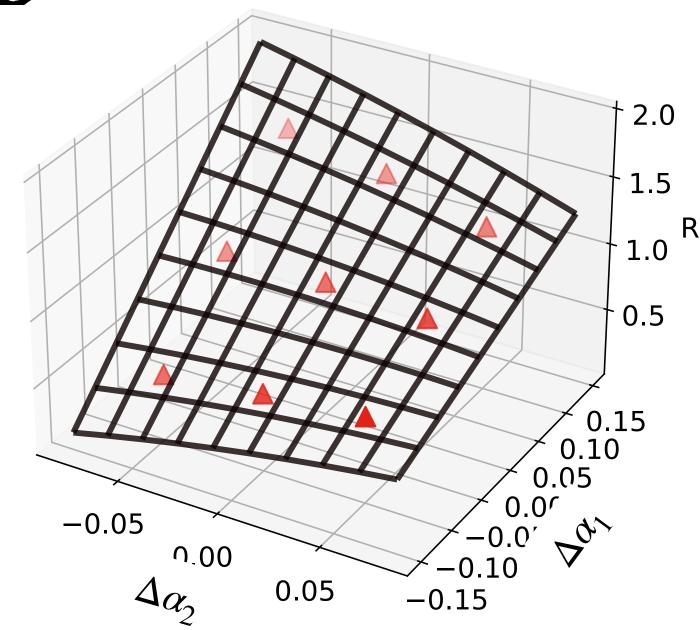


- 1. Generate MC sets at various realizations of the detector
 - Systematic sets may be arranged arbitrarily!
- 2. Fit the classifier
 - Any classifier giving calibrated posteriors may be used
- 3. Fit gradients for all nominal MC events
 - Polynomial features of parameters may be used



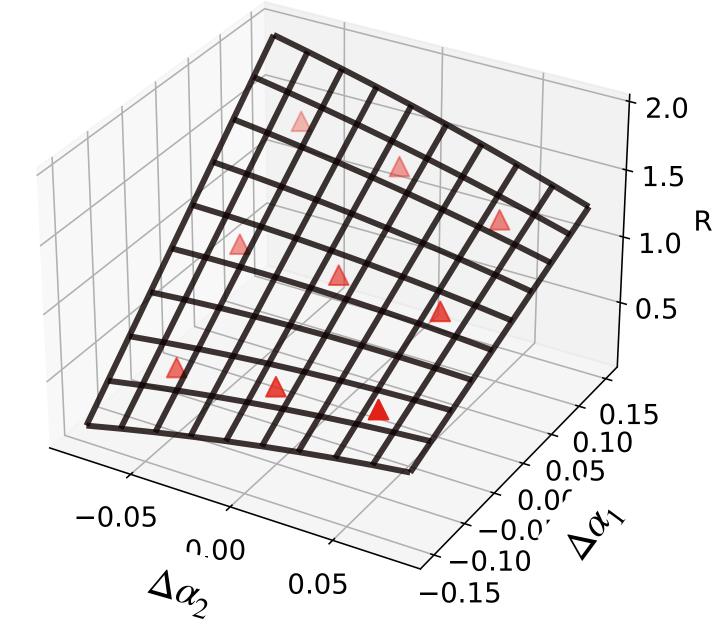
- 1. Generate MC sets at various realizations of the detector
 - Systematic sets may be arranged arbitrarily!
- 2. Fit the classifier
 - Any classifier giving calibrated posteriors may be used
- 3. Fit gradients for all nominal MC events
 - Polynomial features of parameters may be used





How you can apply this in your analysis

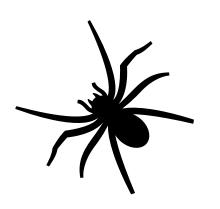
- 1. Generate MC sets at various realizations of the detector
 - Systematic sets may be arranged arbitrarily!
- 2. Fit the classifier
 - Any classifier giving calibrated posteriors may be used
- 3. Fit gradients for all nominal MC events
 - Polynomial features of parameters may be used



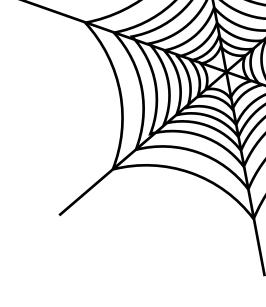
4. Weight your MC by $w_j = \exp\left(\sum_n g_{jn}(\alpha_n - \alpha_{n, \text{nom}})\right)$ to get expectation values for any

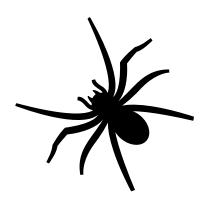
detector realization!

Analyzers need only the last step!

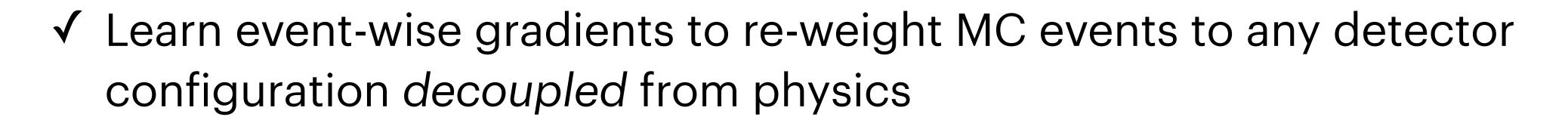


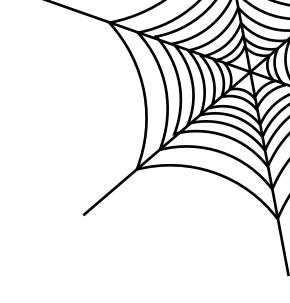
BENEFITS OF THE METHOD Final Takeaways

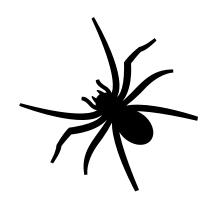




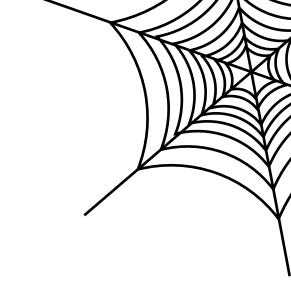
BENEFITS OF THE METHOD Final Takeaways

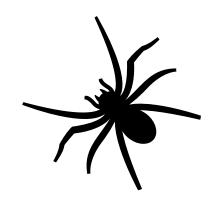




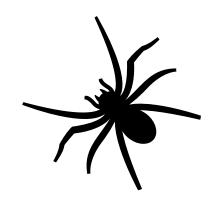


- ✓ Learn event-wise gradients to re-weight MC events to any detector configuration decoupled from physics
- √ Change your binning*! Change your Physics! Gradients stay valid!

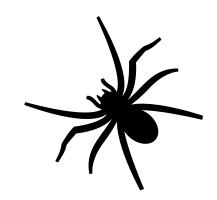


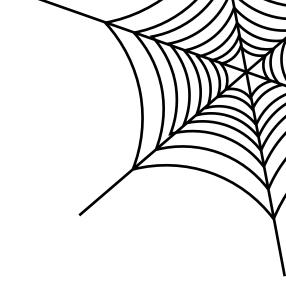


- ✓ Learn event-wise gradients to re-weight MC events to any detector configuration decoupled from physics
- √ Change your binning*! Change your Physics! Gradients stay valid!
- ✓ Allow anyone to use detector effects by adding gradients to MC data-release

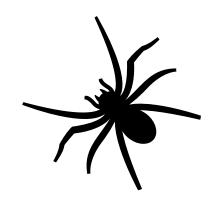


- ✓ Learn event-wise gradients to re-weight MC events to any detector configuration decoupled from physics
- √ Change your binning*! Change your Physics! Gradients stay valid!
- ✓ Allow anyone to use detector effects by adding gradients to MC data-release
- √ No assumption of linearity of detector effects or Gaussian error distribution





- ✓ Learn event-wise gradients to re-weight MC events to any detector configuration decoupled from physics
- √ Change your binning*! Change your Physics! Gradients stay valid!
- ✓ Allow anyone to use detector effects by adding gradients to MC data-release
- √ No assumption of linearity of detector effects or Gaussian error distribution
- √ Can model any number of detector effects



BENEFITS OF THE METHOD Final Takeaways

- Learn event-wise gradients to re-weight MC events to any detector configuration decoupled from physics
- ✓ Change your binning*! Change your Physics! Gradients stay valid!
- ✓ Allow anyone to use detector effects by adding gradients to MC data-release
- ✓ No assumption of linearity of detector effects or Gaussian error distribution
- √ Can model any number of detector effects

*Re-binning or selection changes may only use variables that are included in the classifier training

Backup

POWER OF THE METHOD

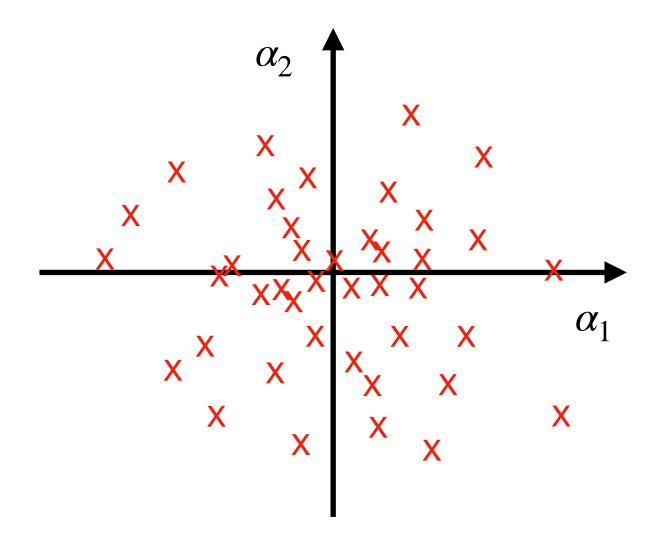
How general is this, really?

How many systematic variations can be used?

- → Any number of MC sets, at any location!
- → Even continuous variation of detector parameters is possible!*

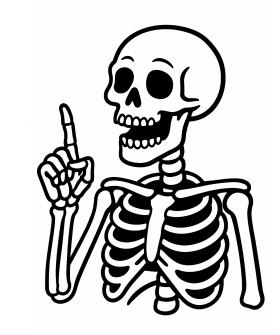
How many true/reco parameters should I include per event?

- → Lower limit: at least those variables used in the analysis binning and those that are used by the physics model *must* be included
- → Upper limit: as many as your classifier can handle!



$$P(\alpha_k | \mathbf{x}, \mathbf{y})$$

The inputs to the classifier are the concatenated true and recovariables



Goal of this Work

Decoupling Detector Response Weight from Physics Parameters

Basic intuition: Detector response should not depend on the physics model!

- → Detector reacts to final state of each particle, doesn't know about flux, oscillations, etc.
- → Detector properties determine relationship between true and reconstructed variables
- If we knew $P(\mathbf{y} | \mathbf{x}, \alpha)P(\text{acc} | \mathbf{x}, \alpha)$, we should be able to get the correct expectation value at any setting of α independently from θ

$$\hat{\mu}_i(\theta, \alpha) = \sum_j I(\mathbf{y}_j \in \text{bin } i) \frac{P(\mathbf{y}_j | \mathbf{x}_j, \alpha) P(\text{acc} | \mathbf{x}_j, \alpha)}{P(\mathbf{y}_j | \mathbf{x}_j, \alpha_{\text{nom}}) P(\text{acc} | \mathbf{x}_j, \alpha_{\text{nom}})} w(\mathbf{x}, \theta)$$

Event weight independent of heta

MC Event Weighting

How we get an expectation value in each bin

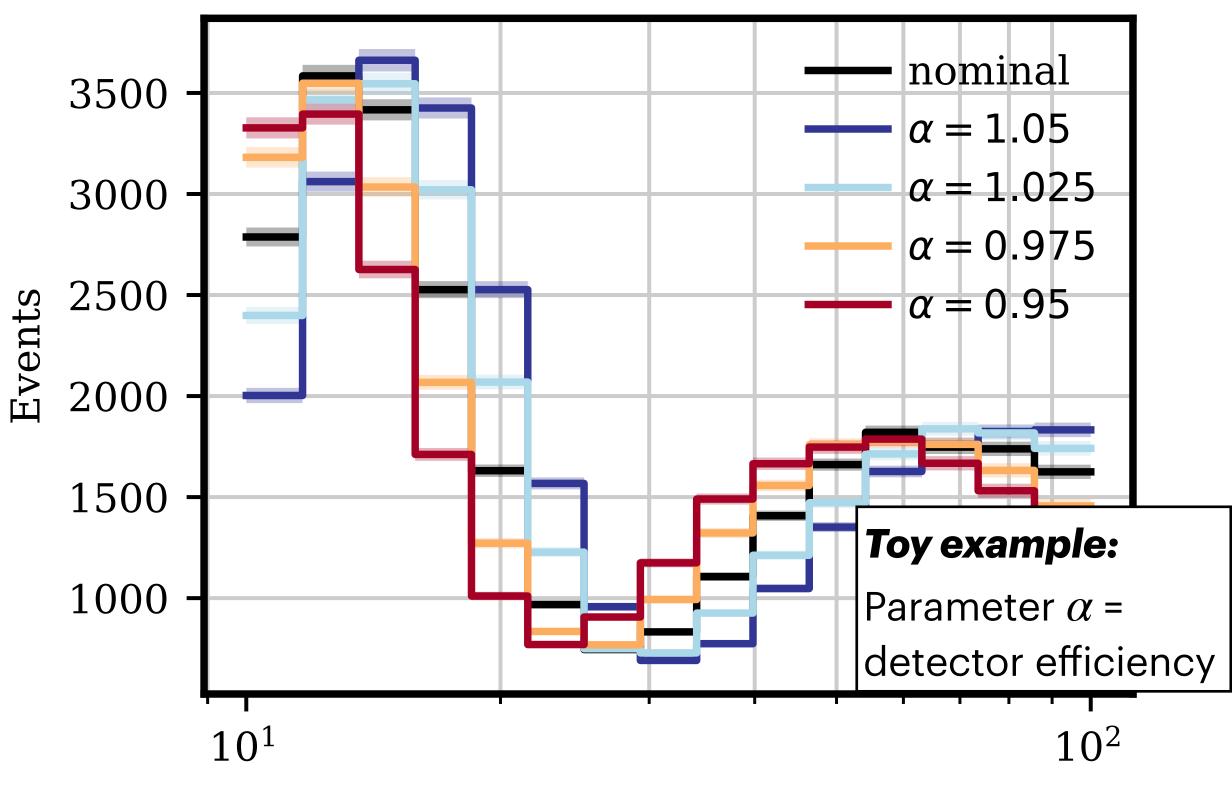
Full expression for expectation in each bin i:

$$\mu_i(\theta) = \int_{\mathbf{y} \in \text{bin } i} d\mathbf{y} \int d\mathbf{x} P(\mathbf{y} \mid \mathbf{x}, \alpha) P(\text{acc} \mid \mathbf{x}, \alpha) \frac{\Phi(\mathbf{x} \mid \theta)}{\Phi_{\text{sim}}(\mathbf{x})}$$

- Flux, cross-sections, oscillations:
 - Estimate bin count by weighting events:

$$\hat{\mu}_i(\theta) = \sum_j I(\mathbf{y}_j \in \text{bin } i) \frac{\Phi(\mathbf{x}_j | \theta)}{\Phi_{\text{sim}}(\mathbf{x}_j)}$$

- Uncertainties of detector properties:
 - How can we get $P(\text{acc} | \mathbf{x}, \alpha)P(\mathbf{y} | \mathbf{x}, \alpha)$?



Reconstructed Energy (GeV)