Nuclear recoil detection with color centers in bulk lithium fluoride

based on arXiv:2503.20732 for the PAssive Low Energy Optical Color CEnter Nuclear rEcoil (PALEOCCENE) collaboration

Co-funded by the European Union

This project has received funding from the European Union's Horizon Europe research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 101081355

U.S. National Science Foundation award 2428507

Universität Gabriela A. Arauio. Laura Raudis

Jordan Chapman. Mariano Guerrero Perez Samuel Hedges, Patrick Huber Vsevolod Ivanov Giti Khodaparast Brenden Magill, Maverick Morrison, Thomas O'Donnell Nicholas W.G. Smith Keegan Walkup

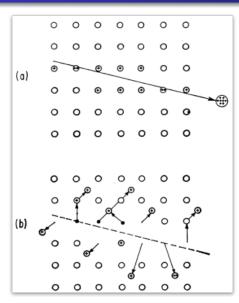
submitted for publication in Physical Review X

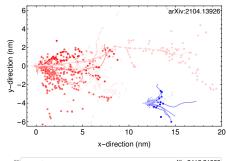
Physics > Instrumentation and Detectors

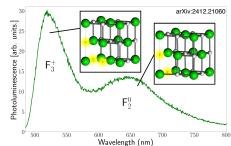
[Submitted on 28 Aug 2025]

Mineral Detection of Neutrinos and Dark Matter 2025 Proceedings

Shigenobu Hirose, Patrick Stengel, Natsue Abe, Daniel Ang, Lorenzo Apollonio, Gabriela R. Araujo, Yoshihiro Asahara, Laura Baudis, Pranshu Bhaumik, Nathaniel Bowden, Joseph Bramante, Lorenzo Caccianiga, Mason Camp, Qing Chang, Jordan Chapman, Reza Ebadi, Alexey Elykov, Anna Erickson, Valentin Fondement, Katherine Freese, Shota Futamura, Claudio Galelli, Andrew Gilpin, Takeshi Hanyu, Noriko Hasebe, Adam A. Hecht, Samuel C. Hedges, Shunsaku Horiuchi, Yasushi Hoshino, Patrick Huber, Yuki Ido, Yohei Igami, Yuto Iinuma, Vsevolod Ivanov, Igor Jovanovic, Ayuki Kamada, Takashi Kamiyama, Takenori Kato, Yoji Kawamura, Giti A. Khodaparast, Yui Kouketsu, Yukiko Kozaka, Emilie M. LaVoie-Ingram, Matthew Leybourne, Gavishta Liyanage, Brenden A. Magill, Paolo Magnani, William F. McDonough, Katsuyoshi Michibayashi, Naoki Mizutani, Kohta Murase, Tatsuhiro Naka, Taiki Nakashima, Kenji Oguni, Mariano Guerrero Perez, Noriaki Sakurai, Lukas Scherne, Maximilian Shen, Joshua Spitz, Kai Sun, Katsuhiko Suzuki, Koichi Takamiya, Jiashen Tang, Erwin H. Tanin, Ethan Todd, Atsuhiro Umemoto, Keegan Walkup, Ronald Walsworth, Alexis M. Willson, Norihiro Yamada, Seiko Yamasaki, Wen Yin, Akihiko Yokoyama

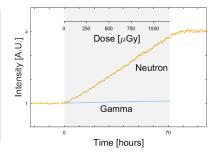

$MD\nu DM$ community


- Groups across Europe, North America and Japan
- Astroparticle theorists, experimentalists, geologists, and materials scientists

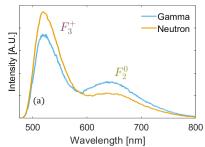

Also check out the whitepaper! arXiv:2301.07118, 2405.01626

- History of mineral detectors
- Review of scientific potential for particle physics, reactor neutrinos and geoscience

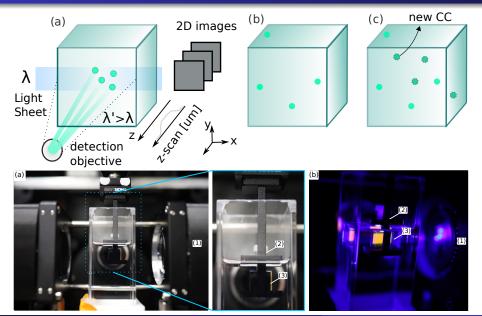
Damage induced by nuclear recoils in mineral detectors



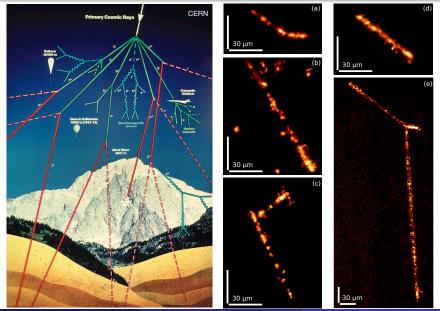
Mineral detectors alternative to conventional experiments

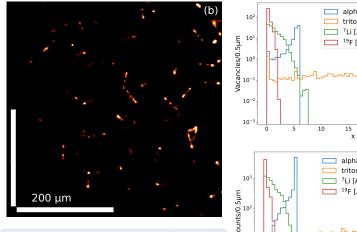

Irradiation of LiF samples

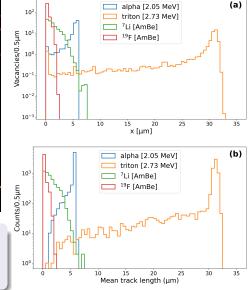
- Gammas from ⁶⁰Co for response to ionizing radiation
- Fast neutrons from AmBe for background calibration
- Thermal neutrons moderated by high-density polyethylene



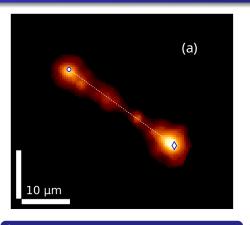
Imaging color centers in cm³ samples

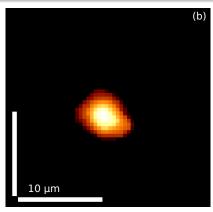

- Bulk florescence measurements at VT showed LiF \sim 50x more responsive to fast neutrons
- • Localize color centers to $\sim \mu \rm m^3$ voxels using SPIM at UZH


Selective plane illumination microscopy for color centers


Spallation from cosmic ray muons interacting in samples

Compare SPIM data to TRIM simulations of nuclear recoils



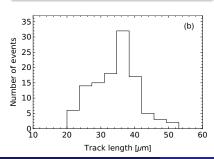

- 3D imaging of CCs in bulk
- Low ionizing CC tracks
- Could scan ∼cm³ in hours

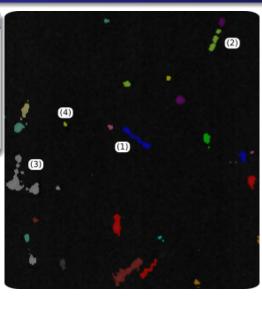
Color center tracks from irradiation of LiF with neutrons

Neutrino Physics and Machine Learning

$^{6}\mathrm{Li} + n \rightarrow \alpha(2.1\mathrm{MeV}) + \mathrm{T}(2.7\mathrm{MeV})$

- Predict track length $30 35 \mu m$
- ullet Sparse CCs along track $\sim 4 \mu \mathrm{m}^{-1}$
- Bragg peaks brighter at the ends

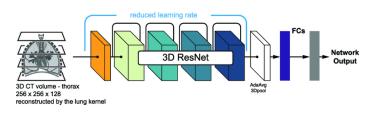

Elastic scattering of n off (Li,F)


- Calibrate LiF response with fast neutrons from AmBe
- Detect cosmogenic neutrons

Classification of ⁶Li fission events and CR background

Data analysis pipeline

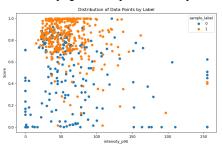
- Raw data selection and pre-processing for ML
- Voxel segmentation using random forest in Ilastik
- Extract feature properties
- Post-processing and analysis

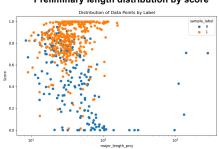


Trying out deep learning techniques for track classification

Training the CNN model

- slide from Xianvi Zhang and Jason Brodsky Model is trained upon the 1-channel 3D Resnet
- All samples are 16x128x128 volumes, all light intensity are baseline subtracted
- Trainings were done on LLNL HPC, each 200-epoch training cycle takes 8 hours with a single GPU.

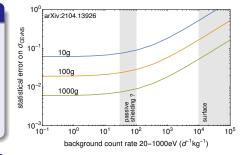



Preliminary analysis of classified sample properties

- Quantify properties based on scores
 - Use scikit image to calculate sample volume, length, shape slide from Xianyi Zhang and Jason Brodsky
 - Calculate median brightness

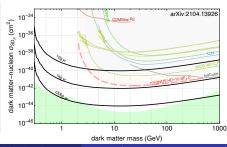
Preliminary light intensity distribution by score

Preliminary length distribution by score



- Currently, segmented data are labeled based on its data types
 - − 0: features in non-irradiated crystals, including cosmogenic tracks and optical features
 - $\,-\,$ 1: features in fast neutron irradiated crystals, predominantly neutron-nucleus recoils
 - $\,-\,$ 2: features in thermal neutron irradiated crystals, predominantly n-Li capture tracks

Mineral detectors could probe rare and/or previous events

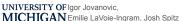

Low energy nuclear recoils in LiF

- CEνNS measurement at nuclear reactor to probe neutrino interactions
- Dark matter scattering detection with sensitivity to low mass dark matter

Foundation for natural minerals

- Record nuclear recoils over geological timescales
- Need geological history of rock
- Radiopure samples from depth
- Could probe stellar evolution and substructure of Milky Way

NSF GCR Mineral Detection of Dark Matter



Arianna Gleason. ATOR Sulgive Park, Kazu Terao

Katie Freese.

Dionysius Theodosopoulos

Jožef

Chris Kelso. NORTH FLORIDA Greg Wurtz

Laura Baudis. Nikita Vladimirov. Christian Wittweg Robert Bodnar, Judah DiStefano. Samuel Hedges, Patrick Huber, Vsevolod Ivanov, Giti Khodaparast, Brenden Magill, Maverick Morrison, Thomas O'Donnell, Abigael Parks, Ariun Uppal, Keegan Walkup

Fission fragments can be seen by TEM/optical microscopes

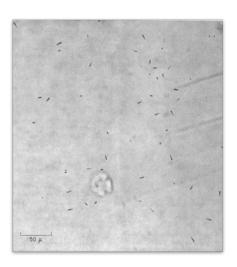
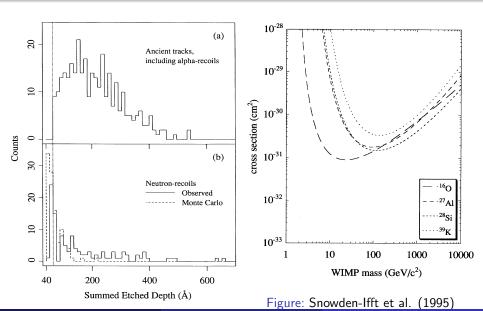
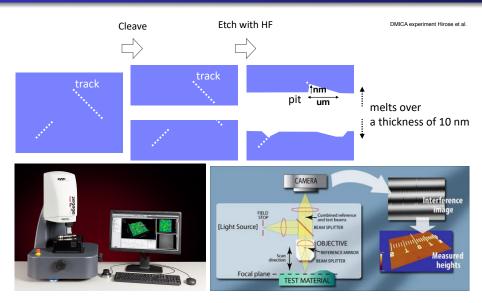
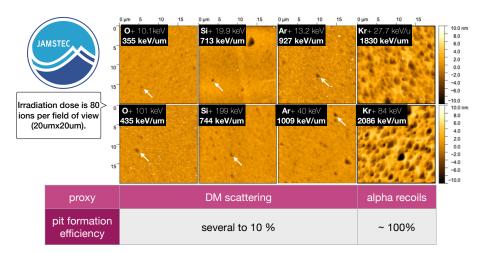
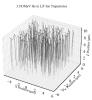




Figure: Price+Walker '63

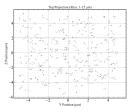

Mineral detectors used to constrain WIMPs before

New techniques allow for much larger readout capacity

Increase throughput from AFM to optical profilometry

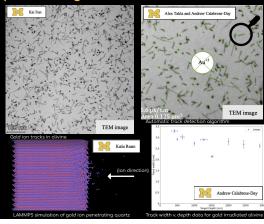

Karlsruhe Institute of Technology

Contact: alexev.elvkov@kit.edu


Sample preparation & imaging

Track simulation & analysis

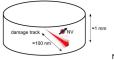
- Collaborative project KIT institutes (astroparticle, microscopy) & Uni. Heidelberg (geology)
- Experimental studies of natural & artificial samples (irradiated & blank), accompanied by simulations
- · Establish the techniques for imaging & analysis of particle-induced tracks in minerals


Atmospheric Neutrino and Dark Matter Detection at the University of Michigan

MOORE GROUP

PI: Josh Spitz, spitzi@umich.edu RA: Emilie LaVoie-Ingram, emlavoie@umich.edu

- Ion irradiation of various minerals to study morphology of nuclear recoil damage tracks
- TEM imaging for high resolution measurements
 - Currently testing x-rays for high throughput, high resolution track imaging at U-M and SLAC
- Automatic track detection algorithm
- LAMMPS molecular dynamics simulations to study track formation
- GEANT4 simulations to study cosmogenic neutron background in ancient minerals as a function of rock overburden

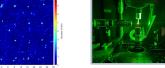


Mineral detection at the University of Maryland:

atc.umd.edu

Directional detection of neutrinos and dark matter with quantum diamond sensors

Lead personnel: Prof. Ronald Walsworth, Dr. Daniel Ang (dga@umd.edu)


Nitrogen-vacancy center

- · WIMP dark matter particles and neutrinos can induce nuclear recoils that leave 10-100 nm damage tracks in diamond
- . Goal: locate and characterize damage track with nitrogenvacancy (NV) quantum sensors embedded in the diamond to deduce energy and direction of initial particle
- · Directionality allows distinguishing WIMPs from the solar neutrino background
- · Requires state-of-the-art quantum diamond microscopy techniques at the micro- and nanoscales
- See Ebadi et al., AVS Quantum Sci. 4 (4): 044701 (2022)

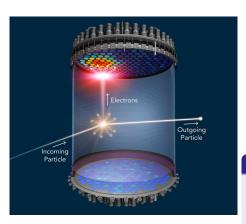
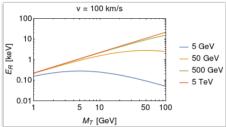
Current research activities

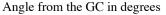
- Experiments creating and detecting artificial ion-induced damage tracks (at Sandia National Lab)
- Developing light-sheet quantum diamond microscope (LS-ODM) for high-speed, high-resolution diamond scanning
- · Developing NV super-resolution imaging techniques to resolve and characterize individual damage tracks at the nanoscale

Single ion impact damage sites

LS-ODM @ UMD

Direct detection experiments for low energy nuclear recoils


Figure: LUX-ZEPLIN (LZ) Collaboration / SLAC National Accelerator Laboratory

Scattering kinematics \Rightarrow event rate

- Interactions with quarks, gluons
 ⇒ with nucleons ⇒ with nuclei
- Convolute with dark matter flux inferred from stellar observations
- Sensitivity depends on nuclear recoil energy threshold

Dark matter density in the galaxy

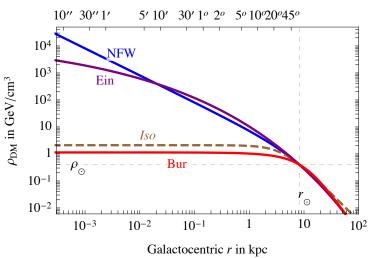
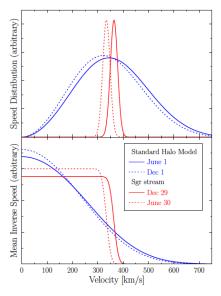



Figure: 2406.01705

WIMP velocity distribution and induced recoil spectra

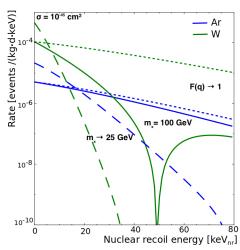
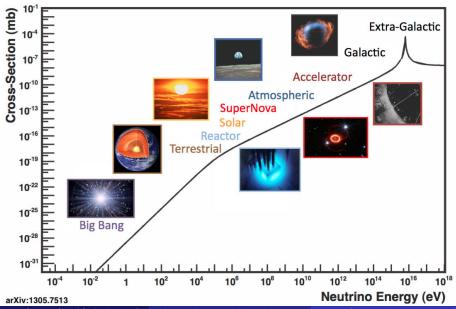



Figure: (left) 1209.3339 (right) 1509.08767

Neutrinos come from a variety of sources

Reactor ν 's produced in β decays of fission fragments

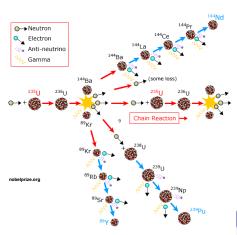
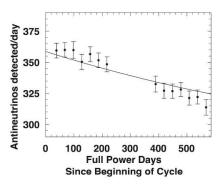



Figure: Processes yielding reactor ν 's and time dependence over the course of reactor fuel cycle for $^{239}{\rm Pu}$ (1605.02047)

Nuclear non-proliferation safeguards

- Measure soft nuclear recoils
- Passive and robust detectors operable at room temperature

Solar ν 's produced in fusion chains from H to He

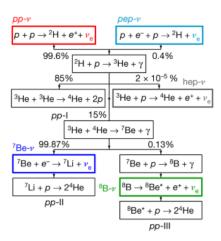
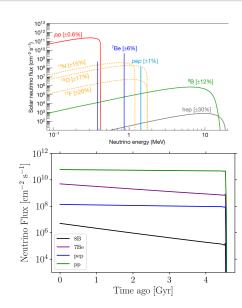



Figure: Today's flux at Borexino (Nature, 2018) and time dependence of GS metallicity model, 2102.01755

Galactic contribution to ν flux over geological timescales

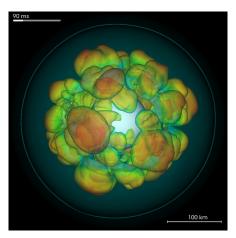


Figure: Supernova simulation after CC

Only \sim 2 SN 1987A events/century

- Measure galactic CC SN rate
- Traces star formation history

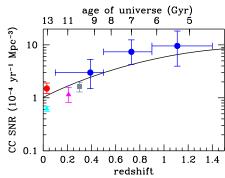
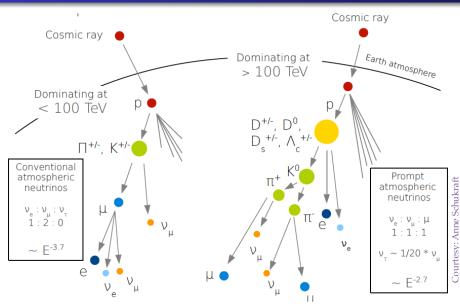



Figure: Cosmic CC SNR, 1403.0007

Atmospheric ν 's originating from CR interactions

Nuclear recoil spectrum depends on neutrino energy

$$\frac{dR}{dE_R} = \frac{1}{m_T} \int dE_{\nu} \, \frac{d\sigma}{dE_R} \frac{d\phi}{dE_{\nu}}$$

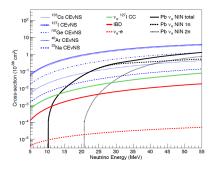


Figure: COHERENT, 1803.09183

- Quasi-elastic for $E_{
 u} \gtrsim 100\,{
 m MeV}$
- Resonant π production at $E_{\nu} \sim {\sf GeV}$
- Deep inelastic for $E_{\nu} \gtrsim 10 \, \text{GeV}$

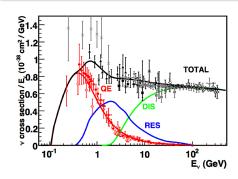


Figure: Inclusive CC $\sigma_{\nu N}$, 1305.7513