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Physics motivation

&0, CP violation in neutrinos — Potential source of the matter-antimatter asymmetry
&, Hyper-K: 10 years to reach
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Water Cherenkov Detector principles

Cherenkov light

“T2K 2021 syst.”: Phys. Rev.D 103, 112008
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CPV search

NeutrinO - ¢ + o (ND constrained) 2.7 |
»Q—> o = ¢ + o (ND unconstrained) 1.2
005 o Nucleon removal energy 3.6
C h a rg e d B T re-interactions 1.6
article o(ve), o(Ve) 30
ﬁ] water i NCy+other IND Fit 15
' SK far detector 1.5
Photosensors | Total | 6.0

Goal for HK: 3%

= Traditionally use Monte Carlo (MC) simulations tuned with calibration data to
generate observables with which we use to analyze real physics data =
Hard but necessary to reduce detector uncertainties to <1%
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https://doi.org/10.1103/PhysRevD.103.112008

Detector Physics Modeling: Challenges

Curse of Dimensionality Example

8

= Quality due to limitation in the traditional calibration
= ”one-by-one” (sequential) parameter calibration assumes weak/no correlations
= Non-optimizable routines (e.g.look-up tables)
= Not directly minimizing the “data-simulation discrepancy’” metrics
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= Speed for modeling a large and complex detectors without loss of quality
= Seconds to minutes per event prevents high statistics O(10°) simulations
= Faster = can unlock new analysis techniques (e.g. simulation-based inference)

= Resources for software development and maintenance
= Same detector physics, separate software (simulation vs. calibration/reconstruction)
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Proposal: Differentiable Detector Simulator (DDSim)

= Automation of physics model tuning (via backpropagation)
= “End-to-end”: gradient-based optimization using calibration and physics datasets

= Interpretable: analytical physics models for well-understood physics
= Flexible: neural representations to incorporate complex features in real data
= Fast: utilization of modern computing accelerators (e.g. GPUs)

= Proof of concept: Differentiable Optical Detector Simulation
= OpticSiren (this talk), LUCID (Omar’s talk on Thu)

Detector simulation
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® ([
OpticSiren |
Siren
Sinusoidal Representation Network

= Differentiable surrogate model for Optical processes

= ~ Look-up Table: a database of per-PMT photon “visibility”
for binned positions/directions

= Scales poorly for a large detector
= Created with simulation. Difficult to tune with data

= Siren: fully connected deep neural network with
sinusoidal activations

= Implicitly defined, continuous, differentiable signal representations . /ﬁ\‘"
= “smooth” = model the underlying physics gradient Can better represent‘ﬁﬁd‘ef]}}ﬁ;q
= Optimizable directly on real calibration dataset! distributions and their derivative

compared to other networks
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| Conventional photon libraries are
discrete and sampled

# 0] | SIREN

Training and validation

Provides continuous and
differentiable photon library

= Demonstration in WCTE (cylinder of length ~ 3 m)

= Simulate PMT response (~2000) with WCSim Photon
for O(1M) photon starting positionxdirection Propagation
—> Look-up table as training data

= Spatial/angular resolution matched with PMT spacing

= Direct check of physical behavior “"I
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https://arxiv.org/abs/2006.09661

Calibration

= Fine-tuning with (fake) calibration data
= Fixed isotropic light sources: “overfit” around the given positions

= On going work on cosmics = span whole detector

Fake calibration data with charge X 1.5
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Reconstruction

= Connect the Differentiable Optical Detector Simulation with another
differentiable model of Cherenkov photon production (Cherenkov Siren)
—> optimization of track parameters
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= Muon momentum reconstruction with OpticSiren, on WCTE MC data
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2.1% momentum resolution (assuming fixed position & direction,
bias-corrected, but charge only), relative to:

e ResNet (WatChMal, charge+time): 2.5%

e Traditional likelihood (fiTQun, charge+time): ~4%




Summary

= Future long-baseline neutrino oscillation experiments will become systematics
limited
= New near detector technologies will mitigate flux+interaction systematics
— Reducing detector systematics becomes crucial

= Differentiable detector simulator (DDSim) proof of concept demonstrated for both
water Cherenkov and liquid argon detectors

= Already competitive performance with current traditional algorithms

= Ongoing developments to improve performance and speed of the DDSim
= Aiming for applications to real data (WCTE, DUNE ND prototypes) this FY
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