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The JUNO experiment
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What is JUNO (Jiangmen Underground Neutrino Observatory)? [1]

• Large-scale, next-generation liquid scintillator (LS) detector

• It features a massive 20-kiloton LS target

• Monitored by over 43,000 Photomultiplier Tubes (PMTs) to detect light

Primary Physics Goals [2, 3]

• Determine the Neutrino Mass Ordering (NMO).

• Measure three neutrino oscillation parameters (Δ𝑚𝑚21
2 , Δ𝑚𝑚31

2 ,sin2 𝜃𝜃12) 

with sub-percent precision

• Broad physics program including geoneutrinos, supernovae, and more

The Core Challenge

• Unprecedented <3% @ 1 MeV energy resolution and 

<1% control over energy-scale systematic uncertainties

 need for on highly accurate and well-tuned Monte Carlo (MC) simulations!
[1] JUNO Collaboration 2016 J. Phys. G: Nucl. Part. Phys. 43 030401
[2] JUNO Collaboration 2022 Chinese Phys. C 46 123001
[3] JUNO Collaboration 2025 Chinese Phys. C 49 3, 033104
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How JUNO Detects Events

• JUNO is a calorimeter: a particle deposits energy in the scintillator.

• The scintillator emits light collected by PMTs and measured as a total 

number of photo-electrons (NPE)  our proxy for the visible energy
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The Problem: A Non-Linear Response

• The relationship between true deposited energy and NPE is not linear.

• Non-linearity in the MC modeled by three key physical parameters:

• Birks' Coefficient (𝒌𝒌𝑩𝑩) ↓: models quenching (energy lost as heat 

instead of light at high ionization) reducing the signal.

• Cherenkov Factor (𝒇𝒇𝑪𝑪) ↑ : models the fraction of Cherenkov light 

produced by secondary particles absorbed and re-emitted.

• Light Yield (𝒀𝒀) ↑: models the overall scaling factor for the number 

of scintillation photons emitted per unit energy (after quenching).
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How JUNO Detects Events

• JUNO is a calorimeter: a particle deposits energy in the scintillator.

• The scintillator emits light collected by PMTs and measured as a total 

number of photo-electrons (NPE)  our proxy for the visible energy

The Problem: A Non-Linear Response

• The relationship between true deposited energy and NPE is not linear.

• Non-linearity in the MC modeled by three key physical parameters:

• Birks' Coefficient (𝒌𝒌𝑩𝑩) ↓: models quenching (energy lost as heat 

instead of light at high ionization) reducing the signal.

• Cherenkov Factor (𝒇𝒇𝑪𝑪) ↑ : models the fraction of Cherenkov light 

produced by secondary particles absorbed and re-emitted.

• Light Yield (𝒀𝒀) ↑: models the overall scaling factor for the number 

of scintillation photons emitted per unit energy (after quenching).

Our Task: tune (𝒌𝒌𝑩𝑩, 𝒇𝒇𝑪𝑪, 𝒀𝒀) so that our MC matches real calibration data.

↓𝒌𝒌𝑩𝑩

↓

𝒇𝒇𝑪𝑪

𝒀𝒀

↓



Monte Carlo tuning strategy
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Results
best fit {𝑘𝑘𝐵𝐵 ,𝑓𝑓𝐶𝐶 ,𝑌𝑌}

MC
𝜙𝜙 = {𝑘𝑘𝐵𝐵,𝑓𝑓𝐶𝐶 ,𝑌𝑌}g

JUNO

Fitter
 Minuit
 MCMC
 Nested sampling

Likelihood

Calibration data 𝑫𝑫

Simulated data 𝑴𝑴

The most straightforward approach would be...

ℒ(𝑀𝑀(𝜙𝜙)|𝐷𝐷)
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Results
best fit {𝑘𝑘𝐵𝐵 ,𝑓𝑓𝐶𝐶 ,𝑌𝑌}

MC
𝜙𝜙 = {𝑘𝑘𝐵𝐵,𝑓𝑓𝐶𝐶 ,𝑌𝑌}g

JUNO

Fitter
 Minuit
 MCMC
 Nested sampling

Likelihood

Calibration data 𝑫𝑫

Simulated data 𝑴𝑴

At each step of the fit, we generate a lot of 
events with full MC to build spectra of the 
sources with the corresponding kBg fCg LYg

The most straightforward approach would be...
 too impractical and slow! Can we replace it with a surrogate model?

Analytically intractable

ℒ(𝑀𝑀(𝜙𝜙)|𝐷𝐷)
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The most straightforward approach would be...
 too impractical and slow! Can we replace it with a surrogate model?

Approximated with SBI

ML generated data 𝑴𝑴

Training
Fast ML model to 
get spectra for 𝝓𝝓

𝒑𝒑(𝒙𝒙|𝝓𝝓)
(able to interpolate 
in param space)

ℒ(𝑀𝑀(𝜙𝜙)|𝐷𝐷)
Results

best fit {𝑘𝑘𝐵𝐵 ,𝑓𝑓𝐶𝐶 ,𝑌𝑌}

MC
𝜙𝜙 = {𝑘𝑘𝐵𝐵,𝑓𝑓𝐶𝐶 ,𝑌𝑌}g

JUNO

Fitter
 Minuit
 MCMC
 Nested sampling

Likelihood

Calibration data 𝑫𝑫

Neural Likelihood 
Estimation (NLE)
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The most straightforward approach would be...
 too impractical and slow! Can we replace it with a surrogate model?

Approximated with SBI

ML generated data 𝑴𝑴
Training

Fast ML model to 
get spectra for 𝝓𝝓

𝒑𝒑(𝒙𝒙|𝝓𝝓)
(able to interpolate 
in param space)

ℒ(𝑀𝑀(𝜙𝜙)|𝐷𝐷)
Results

best fit {𝑘𝑘𝐵𝐵 ,𝑓𝑓𝐶𝐶 ,𝑌𝑌}

MC
𝜙𝜙 = {𝑘𝑘𝐵𝐵,𝑓𝑓𝐶𝐶 ,𝑌𝑌}g

JUNO

Fitter
 Minuit
 MCMC
 Nested sampling

Likelihood

Calibration data 𝑫𝑫

Neural Posterior 
Estimation (NPE)
directly outputting 
the posterior for 𝜙𝜙,

𝑞𝑞(𝜙𝜙|𝐷𝐷)

WHY NOT?

We wanted to:
1. keep model under control
2. use std. inference techniques
3. eventually use NLE as spectra 

generator (MC surrogate) 



Two Neural Likelihood Estimators

11[1] Vaswani A et al, arxiv: 1706.03762

Multi-output regressor

Aims to directly learn a mapping from 
the parameters and a source type to the 
histogram representing the spectra PDF

Provides PDF 
estimation by 
outputting a 
histogram

Conditions:
kB, fC, LY + source

type S

+ straight and reliable model
- requires pre-defined binning

+ exact probability density function
+ no pre-defined binning
+ opens a possibility of an unbinned fit

Normalizing Flow-based model

Aims to learn the exact conditional 
probability of the energies* for a given set 
of parameters and a source type:

*represented by amount of light collected

We use Normalizing Flows-based model [2] to evaluate the 
exact conditional probability for the events and build the PDF

Provides the exact 
conditional PDF for 
any energy value:

We use a Transformer encoder-based model [1] as the 
density estimator (TEDE)

[2] R. J. Rezende et al, arxiv: 1505.05770

TEDE

NFDE



Transformer Encoder-based Density Estimator (TEDE)
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Multi-output regressor is based on the Transformer's [1] encoder :

o A powerful architecture, well known for NLP and CV applications

o Each condition (MC parameter or source type) is treated as a token

o Regressor Head block to convert outputs to the spectra PDF with pre-defined 

binning (bin size of 20 PEs)
[1] Vaswani A et al, arxiv: 1706.03762



Normalizing Flows-based Density Estimator (NFDE)

13[1] R. J. Rezende et al, arxiv: 1505.05770

Normalizing flows [1]:

o generative ML model aimed to explicitly model a density estimation

o generalizable for modeling a conditional density estimation as well

o based on an idea of transforming a simple known distribution 

(e.g. standard Gaussian) to the complex, desired distribution by applying 

multiple learnable (using data) and invertible transformations called flows.
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Normalizing Flows-based Density Estimator (NFDE)

15[1] R. J. Rezende et al, arxiv: 1505.05770

Normalizing flows [1]:

o generative ML model aimed to explicitly model a density estimation

o generalizable for modeling a conditional density estimation as well

o based on an idea of transforming a simple known distribution 

(e.g. standard Gaussian) to the complex, desired distribution by applying 

multiple learnable (using data) and invertible transformations called flows.

“Normalizing” direction

“Generative” direction
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Y and kB example

Training data
• 21 points per param (213 combs)
• 10k events x 5 sources per point (~500M events)
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Y and kB example

Training data
• 21 points per param (213 combs)
• 10k events x 5 sources per point (~500M events)

Validation data #1
• 10 points per param (103 combs)
• 10k x 5 events per point (50M events)
 cover most of parameter space
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Validation data #2
• 3 points in total
• 10M x 5 events per point (150M events)
 anchor PDF  to high-stat spectra
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Y and kB example

Training data
• 21 points per param (213 combs)
• 10k events x 5 sources per point (~500M events)

Validation data #1
• 10 points per param (103 combs)
• 10k x 5 events per point (50M events)
 cover most of parameter space

Validation data #2
• 3 points in total
• 10M x 5 events per point (150M events)
 anchor PDF  to high-stat spectra

Testing data #1
• 10 points per param (103 combs)
• 10k x 5 events per point (50M events)
 check possible biases over parameter space

Testing data #2
• 1 point
• 1000 x [1k; 2k; 5k; 10k; 25k] events x 5 with diff. seeds 
 Analysis of systematic uncertainty of the model
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Y and kB example

Training data
• 21 points per param (213 combs)
• 10k events x 5 sources per point (~500M events)

Validation data #1
• 10 points per param (103 combs)
• 10k x 5 events per point (50M events)
 cover most of parameter space

Validation data #2
• 3 points in total
• 10M x 5 events per point (150M events)
 anchor PDF  to high-stat spectra

Testing data #1
• 10 points per param (103 combs)
• 10k x 5 events per point (50M events)
 check possible biases over parameter space

Testing data #2
• 1 point
• 1000 x [1k; 2k; 5k; 10k; 25k] events x 5 with diff. seeds 
 Analysis of systematic uncertainty of the model

1k events

25k events
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 Analysis of systematic uncertainty of the model



Training and validation of the models
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• For both models we use Kullback–Leibler divergence as the loss function for training: 

• As validation metrics we use p-norm distances between distributions' CDFs: 

  

as it is applicable for both TEDE and NFDE cases

p = 1: Wasserstein distance
p = 2: Cramer-von Mises distance
p = ∞: Kolmogorov-Smirnov distance
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• For both models we use Kullback–Leibler divergence as the loss function for training: 

• As validation metrics we use p-norm distances* between distributions' CDFs: 

  

as it is applicable for both TEDE and NFDE cases

p = 1: Wasserstein distance
p = 2: Cramer von Mises distance
p = ∞: Kolmogorov-Smirnov distance



Parameter estimation
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Example with NFDE:

• Combined fit on all sources together

• Cost function: Extended unbinned likelihood

• Optimizer: Nested Sampling (ultranest)*

 Estimate the kB, fC, LY best parameters

 Explores full phase space, provides full posterior

 Shows correlations between the parameters

9.6 10.5

0.200 0.250

11600 1180011700

0.225

10.05
kB

fC

LY

the testing dataset №1 point is between the 
points from the training dataset: interpolation

training points

*all fits performed with Minuit, MCMC (emcee), Nested Sampling (ultranest)  consistent results
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*all fits performed with Minuit, MCMC (emcee), Nested Sampling (ultranest)  consistent results

Model interpolation smooth and denoised

Model provides spctra estimates for any 
continuous values of the parameters

9.6 10.5

0.200 0.250

11600 1180011700

0.225

10.05
kB

fC

LY

Example with NFDE:

• Combined fit on all sources together

• Cost function: Extended unbinned likelihood

• Optimizer: Nested Sampling (ultranest)*

 Estimate the kB, fC, LY best parameters

 Explores full phase space, provides full posterior

 Shows correlations between the parameters
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Example with NFDE:

• Combined fit on all sources together

• Cost function: Extended unbinned likelihood

• Optimizer: Nested Sampling (ultranest)*

 Estimate the kB, fC, LY best parameters

 Explores full phase space, provides full posterior

 Shows correlations between the parameters

*all fits performed with Minuit, MCMC (emcee), Nested Sampling (ultranest)  consistent results

Parameters estimation combined:
o kB: 10.13  +- 0.26    10.05 [g/cm2/GeV]
o fC: 0.238  +- 0.029    0.225 
o LY: 11701 +-  23        11700 [1/MeV]

 well within 1σ (fluctuations expected for 1 fit)



Learned dependences
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1) PDF vs. parameter

(almost linear)

2) PDFs vs. energy (NPE)

(energy non-linearity)



Evaluate ML-driven systematic uncertainty
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uncertainties estimated by the fit can be compared 
with the actual variability of the best fit values 

To perform systematic uncertainty estimation analysis, we use the testing dataset 2:

o Unseen during training point in the parameter space: kB, fC, LY = (15.45, 0.525, 10100)

o 5 different exposures: 1k, 2k, 5k, 10k, 25k events

o 1000 datasets with different MC generator seed per each exposure



Estimation of ML-driven systematic uncertainty
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To perform systematic uncertainty estimation analysis, we use the testing dataset 2:

o Unseen during training point in the parameter space: kB, fC, LY = (15.45, 0.525, 10100)

o 5 different exposures: 1k, 2k, 5k, 10k, 25k events

o 1000 datasets with different MC generator seed per each exposure

 Estimated uncertainty matches observed variability Estimated Stat. Unc.
Observed Std. Dev.



Estimation of ML-driven systematic bias
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Using the testing dataset 1, one can check the bias across different points:

o Run MCMC fits per each testing point of the dataset

o Compare bias with the uncertainty obtained by the previous analysis for the 10k exposure point

 Observed biases are well within the uncertainty
Observed bias
Stat unc.
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Challenge: systematics investigation for precision neutrino physics with JUNO and accurate energy calibration 

 requires an extremely well tuned MC, but the traditional MC tuning process is computationally prohibitive.
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and NFDE) that replace the slow MC simulation with a fast, accurate surrogate models.
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Challenge: systematics investigation for precision neutrino physics with JUNO and accurate energy calibration 

 requires an extremely well tuned MC, but the traditional MC tuning process is computationally prohibitive.

Solution: we developed a Simulation-Based Inference framework using two neural likelihood estimators (TEDE 

and NFDE) that replace the slow MC simulation with a fast, accurate surrogate models.

Key Achievements: 

• our models successfully learn the complex, non-linear energy response of the JUNO detector MC, 

including the strong correlations between 𝒌𝒌𝑩𝑩, 𝒇𝒇𝑪𝑪 and 𝒀𝒀 parameters in the MC.

• when integrated with Bayesian inference, our method recovers all parameters with near-zero systematic bias.

• parameter uncertainties are limited purely by statistics and scale correctly as 1/ √N 

 possible to achieve <1% systematics

This provides a flexible (binned or unbinned) framework for MC tuning with data! 



Thanks!
Pre-printRepo



TEDE vs. NFDE (uncertainty)
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TEDE vs. NFDE (bias)
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Hyperparameters optimization

40



How LS parameters impact the calibration data

• Light yield is the most 
influential parameter

• All sources are highly 
affected

• kB and fC are fixed:
o kB = 15.45 [g/cm2/GeV]
o fC = 0.525

• LY is varying

Cs137

K40

Co60

Am-Be

Am-C

Only main peaks are shown

LY effect

Arsenii Gavrikov, Andrea Serafini, et al –  NeuroMCT



• kB effect is smaller than 
LY and anticorrelated 
with the photo peak

• All sources are affected

• LY and fC are fixed:
o LY = 10100 [1/MeV]
o fC = 0.525

• kB is varying

Cs137

K40

Co60

Am-Be

Am-C

Only main peaks are shown

How LS parameters impact the calibration data

kB effect

Arsenii Gavrikov, Andrea Serafini, et al –  NeuroMCT



• fC has a minor effect to the 
spectra

• Cs137 is not affected at all
• Slight effect for Co60 and 

K40

• kB and LY are fixed:
o kB = 15.45 [g/cm2/GeV]
o LY = 10100 [1/MeV]

• fC is varying

Cs137

K40

Co60

Am-Be

Am-C

Only main peaks are shown

How LS parameters impact the calibration data

fC effect

Arsenii Gavrikov, Andrea Serafini, et al –  NeuroMCT



The JUNO detection process
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JUNO will measure the antineutrinos (𝜈̅𝜈e) 
generated in the fissions occurring in 
8 nuclear cores at 52.5 km

The detection is based on a charged 
current interaction named Inverse 
Beta Decay (IBD) on protons (p)

 sensitive only to electron �𝝂𝝂𝒆𝒆

Detection relies on a double coincidence:

• prompt signal: positron (e+) annihilation
• delayed signal: neutron (n) capture

 strong handle against most backgrounds

�𝝂𝝂𝒆𝒆 + 𝒑𝒑 → 𝒆𝒆+ + 𝒏𝒏

(0.5 𝑀𝑀𝑀𝑀𝑀𝑀)

(0.5 𝑀𝑀𝑀𝑀𝑀𝑀)

(2.2 𝑀𝑀𝑀𝑀𝑀𝑀)

𝐸𝐸𝑒𝑒+ ∼ 𝐸𝐸�𝜈𝜈 − 0.78 𝑀𝑀𝑀𝑀𝑀𝑀



The JUNO detector
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35.4 m

43.5 m

Target mass 
[kton]

Energy 
resolution

Light yield
[PE/MeV]

Daya Bay 0.02 8%/√E 160
Borexino 0.3 5%/√E 500

KamLAND 1 6%/√E 250
JUNO 20 3%/√E ~1600

Main requirements:

• high statistics
 20 kton of liquid scintillator acrylic sphere 

• <3% energy resolution @ 1 MeV
 photocoverage ~78%

• energy-scale systematics below 1%
 17612 20" Large-PMT 
 25600 3" Small-PMT 

[Prog. Part. Nucl. Phys. 2021.103927]



Detector response: what JUNO actually sees
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interaction light emission light detection

𝑬𝑬𝝂𝝂 𝑬𝑬𝒅𝒅𝒅𝒅𝒅𝒅 𝑬𝑬𝒗𝒗𝒗𝒗𝒗𝒗 𝑬𝑬𝒓𝒓𝒓𝒓𝒓𝒓
Antineutrino energy Deposited energy Visible energy Reconstructed energy

Calibration campaigns
• automated multiple-position and 

multi-source calibration (link)
• periodic calibration campaigns
• dual-calorimetry system (link)

Energy resolution
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6 years

https://agenda.infn.it/event/33107/contributions/205087/
https://agenda.infn.it/event/33107/contributions/205095/


Detector response: what JUNO actually sees

47

interaction light emission light detection

𝑬𝑬𝝂𝝂 𝑬𝑬𝒅𝒅𝒅𝒅𝒅𝒅 𝑬𝑬𝒗𝒗𝒗𝒗𝒗𝒗 𝑬𝑬𝒓𝒓𝒓𝒓𝒓𝒓
Antineutrino energy Deposited energy Visible energy Reconstructed energy

Calibration campaigns
• automated multiple-position and 

multi-source calibration (link)
• periodic calibration campaigns
• dual-calorimetry system (link)

Energy resolution

𝝈𝝈
𝐸𝐸 =

𝒂𝒂
𝐸𝐸

2

+ 𝒃𝒃2 +
𝒄𝒄
𝐸𝐸

2

Stochastic term: light yield 
(from source calibration)

Dominated by non-uniformity
(from multi-source calibration)

PMT dark noise

𝒂𝒂

𝒃𝒃

𝒄𝒄

https://agenda.infn.it/event/33107/contributions/205087/
https://agenda.infn.it/event/33107/contributions/205095/
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𝝈𝝈
𝐸𝐸

=
𝒂𝒂
𝐸𝐸

2

+ 𝒃𝒃2 +
𝒄𝒄
𝐸𝐸

2

Updated values based on commissioning 
data and realistic MC simulation 

Realistic MC simulation Measured data



IBD backgrounds in JUNO
JUNO employs various selection cuts to retain high 
efficiency and assure high purity in the IBD signal:

• Cosmogenic backgrounds  muon veto

• Accidental coincidences  fiducial volume + IBD cuts

• Irreducible backgrounds  negligible (~1/20 of signal)

49

IBD selection cuts Efficiency 
[%]

IBD rate 
[day-1]

All IBDs 100.0 57.4
Fiducial volume 91.5 52.5

IBD selection 98.1 51.1

Energy range 99.8 -

Time correlation (∆Tp-d) 99.0 -

Spatial correlation (∆Rp-d) 99.2 -

Muon veto (Time+spatial) 91.6 47.1

Combined selection 82.2 47.1

Residual 
backgrounds

Rate 
[day-1]

Rate unc. 
[%]

Shape 
unc. [%]

Geoneutrinos 1.2 30 5

World reactors 1.0 2 5

Accidentals 0.8 1 negligible
9Li/8He 0.8 20 10

Atmospheric 
neutrinos 0.16 50 50

Fast neutrons 0.1 100 20
13C(α,n)16O 0.05 50 50

Total background 4.11 - -



Detection channels in JUNO

𝜈̅𝜈𝑒𝑒 + 𝑝𝑝 → 𝑒𝑒+ + 𝑛𝑛

𝜈𝜈 + 𝑝𝑝 → 𝜈𝜈 + 𝑝𝑝

𝜈𝜈 + 𝑒𝑒 → 𝜈𝜈 + 𝑒𝑒

𝜈̅𝜈𝑒𝑒 + 12𝐶𝐶 → 𝑒𝑒+ + 12𝐵𝐵

𝜈𝜈𝑒𝑒 + 12𝐶𝐶 → 𝑒𝑒− + 12𝑁𝑁
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Liquid scintillator:
Linear alkylbenzenes

C – 88%
H – 12%

CH
(CH2)HH(CH2)

n m  

NC recoil threshold: 200 keV



Photomultiplier Tubes
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Dual calorimetry system
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JUNO employs the dual calorimetry system to correct 
for electronics non-linearity
Sources of non-linear response:
- Non-uniformity (NU)
- Liquid scintillator non-linearity (LSNL)
- Charge non-linearity (QNL) of L-PMTs

Simulations with extreme channel-level 
non-linearity of 50% over 100 PE show that 
L-PMT response (𝑅𝑅) non-linearity can be 
corrected using S-PMT as calibration reference: 

𝑅𝑅𝐿𝐿−𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 � 𝑅𝑅𝑁𝑁𝑁𝑁𝐿𝐿−𝑃𝑃𝑃𝑃𝑃𝑃 � 𝑅𝑅𝑄𝑄𝑄𝑄𝑄𝑄𝐿𝐿−𝑃𝑃𝑃𝑃𝑃𝑃

𝑅𝑅𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 � 𝑅𝑅𝑁𝑁𝑁𝑁𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃 � 𝑅𝑅𝑄𝑄𝑄𝑄𝑄𝑄𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃

𝑅𝑅𝐿𝐿−𝑃𝑃𝑃𝑃𝑃𝑃

𝑅𝑅𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃
=
𝑅𝑅𝑄𝑄𝑄𝑄𝑄𝑄𝐿𝐿−𝑃𝑃𝑃𝑃𝑃𝑃

𝑅𝑅𝑄𝑄𝑄𝑄𝑄𝑄𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃

Zero instrum. nonlin.

Uncalibrated instrum. nonlin.

Calibrated instrum. nonlin.
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True electron energy [MeV]
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Other non-linearities
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Detector non-uniformity
The detector response to the same charge deposition 
depends on the position at which the event occurs and 
needs to be properly characterized.

Liquid scintillator non-linearity
Light emission has an intrinsic non-linearity because of:
- Birks’ quenching effect in scintillation photon yield;
- Velocity-dependent Cherenkov emission.

Data
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Calibration of the JUNO detector
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Radioactive sources (100-200 Hz) + Laser sources

• 1D: Automatic Calibration Unit (ACU)

• 2D: Cable Loop System (CLS)

• 3D: Remotely Operated under-LS Vehicles (ROV)

• Boundary: Guide Tube Calibration  System (GTCS)

Slide credits D. Basilico

250 calibration points

JHEP 03 (2021) 004



Calibration strategy
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Comprehensive calibration (250 points, ~48h)
 basic understanding of the CD performance

Monthly calibrations (~100 points, ~11h)
 monitor non-uniformity

Weekly calibrations (~15 points, ~2.4h)
 track variations in LY of LS, PMT gains, and electronics

Slide credits D. Basilico

JHEP 03 (2021) 004



Normalizing flows-based density estimation

[1] R. J. Rezende et al, arxiv: 1505.05770

x: input data

Arsenii Gavrikov, Andrea Serafini, et al –  NeuroMCT 8.1
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• Normalizing flows [1]:

o Generative machine learning model

o Aims to explicitly model a density estimation

o Can be generalized for modeling a conditional density 

estimation as well

o To obtain a value from the target distribution:

 sample a value from the base distribution and passing it 

through all the flows



Normalizing flows-based density estimation

• Normalizing flows are based on an idea of transforming a simple 

known distribution (e.g. standard Gaussian) to the complex, 

desired distribution by applying multiple learnable (using data) 

transformations

• Each transformation is called Flow and must be invertible

[1] R. J. Rezende et al, arxiv: 1505.05770

x: input data

Arsenii Gavrikov, Andrea Serafini, et al –  NeuroMCT 8.2

• Normalizing flows [1]:

o Generative machine learning model

o Aims to explicitly model a density estimation

o Can be generalized for modeling a conditional density 

estimation as well

o To obtain a value from the target distribution:

 sample a value from the base distribution and passing it 

through all the flows
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Normalizing flows-based density estimation
x: input data

[1] R. J. Rezende et al, arxiv: 1505.05770

Arsenii Gavrikov, Andrea Serafini, et al –  NeuroMCT 8.3
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• Normalizing flows [1]: 

o Transformations can be very diverse as long as they follow the 

invertibility condition

o We use Planar flow: 

  



Normalizing flows-based density estimation
• Normalizing flows [1]: 

o Transformations can be very diverse as long as they follow the 

invertibility condition

o We use Planar flow: 

  

 where parameters                      are parametrized by neural 

networks to include the conditions (MC parameters + source 

type): conditional probability

x: input data

Arsenii Gavrikov, Andrea Serafini, et al –  NeuroMCT 8.4
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[1] R. J. Rezende et al, arxiv: 1505.05770



• Normalizing flows [1]: 

o Transformations can be very diverse as long as they follow the 

invertibility condition

o We use Planar flow: 

  

 where parameters                      are parametrized by neural 

networks to include the conditions (MC parameters + source 

type): conditional probability

• How to perform the inference with the model?

Normalizing flows-based density estimation
x: input data

[1] R. J. Rezende et al, arxiv: 1505.05770

Arsenii Gavrikov, Andrea Serafini, et al –  NeuroMCT 8.5
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• Normalizing flows [1]: 

o Transformations can be very diverse as long as they follow the 

invertibility condition

o We use Planar flow: 

  

 where parameters                      are parametrized by neural 

networks to include the conditions (MC parameters + source 

type): conditional probability

• How to perform the inference with the model?

Normalizing flows-based density estimation
x: input data

[1] R. J. Rezende et al, arxiv: 1505.05770

Arsenii Gavrikov, Andrea Serafini, et al –  NeuroMCT 8.6
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MC parameters + 
source type

Data
well-known
(e.g. standard 
Gaussian)

Computed based on the 
learned transformations
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