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The Deep Underground Neutrino Experiment

« Characteristics:  Physics goals:
- Under construction long baseline - Neutrino mass ordering
neutrino oscillation experiment - CP violating phase in the leptonic
- Up to 2.4 MW wideband neutrino secto.r o
beam peaked at 2.5 GeV - Neutrino mixing angles
- Near facility + 40 kt LAr Far - Low energy neutrinos from

astrophysical sources
- Physics beyond the Standard Model
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System for on-Axis Neutrino Detection

 SAND is one of the three detector components of the Near Detector complex.

* Multipurpose detector capable of detecting neutrino interactions on different target
materials, performing precision tracking and calorimetry measurements.

It will continuously monitor the beam on-axis, to constrain systematic
uncertainties for the oscillation analysis and perform precise cross-section
measurements.
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GRanular Argon for Interactions of Neutrinos

GRAIN will be a ~1 ton liquid Argon active target placed upstream in the
magnetized volume of SAND.

Synergy with Argon target in Far Detector to constrain nuclear effects.

» The expected event rate and pile-up (~10 tracks/spill, 10 us spill time) is
challenging for a traditional TPC.

Stainless steel
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Scintillation light in LAr

 When charged particles cross
Liquid Argon, part of their
€ deposited energy excites Ar atoms
inducing photon emission, yielding
40,000 photons per MeV.

escape

* Imaging of scintillation light with
> Y photographic cameras may offer a
suitable alternative to charge
collection.

Ar Ar+Ar*  Moreover, such a detector would
not require an electric field or its
associated hardware.

Charge drift time (Ar, GRAIN dimensions): > 1 us
Scintillation light emission time (Ar): ~ 7 ns
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Coded Aperture Imaging

* One possible design of the cameras is based on coded aperture masks: arrays
of opaque and transparent elements, positioned at a fixed distance from the
SiPM sensor matrix.

» Aclassic pinhole camera can deliver excellent angular resolution, but it is
inefficient owing to count loss caused by the opaque material.

Pinhole camera Coded mask system « A coded aperture mask
camera registers an
overlapping set of
multiple images, each set
associated with one point
source, preserving
angular resolution while
improving efficiency.

On-axis shadow
B Of-azis shadow
- Overlap of both shadows
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Reconstruction algorithm

The goal is to reconstruct the 3D distribution of the scintillation light source
recorded by the sensors, combining views from multiple cameras, using the
Maximum Likelihood Expectation Maximization iterative algorithm.

For this computation, the fiducial detector volume is divided into voxels.

Measured photons from all Mask

cameras are propagated back
into the LAr volume with an /
appropriate weight, which is a | oe

projection
added to the voxel value.

Intersection

This weight represents the
Bayesian probability of the voxel
to be a source of the detected
photons.

Sensor

Voxel center
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Maximum Likelihood Expectation Maximization

* The likelihood of the resulting photon source distribution is maximized through
an iterative process.

iterationn, 0 T i i v IR . :
| I iterationn, 150 iteration n. 300 o

» Currently, each iteration takes about 1.5 s on NVIDIA H100 80GB VRAM
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Reconstructed v, interaction (MC)

Display of a charged current
quasi-elastic scattering v,

interaction
| o < 60 cameras are placed across the
R || | H detector surface.
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Deep Neural Network prior

A Log-likelihood per iteration step

 The MLEM algorithm uses a uniform g o
104 + - —&— Uniform

distribution as a prior. : = = = Uniform convergence
] x DUNE preliminary

10°

» Using a reasonable estimation of
the photon source distribution as a
prior could save some iterations
to reach convergence, defined as
a log likelihood change < 50
between iterations.

A Log-likelihood

10* 4
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« Afully connected Deep Neural Network (DNN) was trained to provide such
prior on 3 x 10° simulated charged-current v, interactions within the GRAIN

LAr volume.
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Data features and thruths

The average hit times for each camera were used as data features.

The Monte Carlo energy deposits, voxelized into 200 mm voxels, were employed as
ground truth.

Although these voxels are significantly larger than the 18 mm voxels used in the
MLEM reconstruction, this coarse resolution provides a sufficiently accurate prior.
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DNN training

The full dataset was split into 70% / 15% / 15%
training / validation / test samples.

The DNN hyperparameters were explored and
optimized using OPTUNA, resulting in a mean
average error (on the normalized voxel

score) of 0.01.
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A Log-likelihood
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Performance evaluation

The trained model was evaluated on 600 events as a prior for MLEM

reconstruction.

Preliminary results show that likelihood convergence is reached approximately
20 iterations earlier with the DNN prior compared to a uniform prior.

A Log-likelihood per iteration step

—8— Uniform

= Uniform convergence
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= DNN convergence
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Mean: 24.36
Median: 15.00
Std: 28.89
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Conclusions

Photographic cameras with Coded Aperture Masks exploit Argon scintillation
light to detect tracks associated to charged particles.

The iterative reconstruction algorithm, based on Maximum Likelihood
Expectation-Maximization, combines the views of ~60 cameras providing a
three-dimensional map of the energy deposited by charged particles.

A fully connected Deep Neural Network was trained on simulated charged-
current muon neutrino interactions, using timing information from the cameras, to
provide a reasonable prior for the reconstruction.

Preliminary results show reconstruction convergence is reached approximately
10% iterations earlier.
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Backup: MLEM

Photon counting is described by a Poissonian pdf:

[1.] [/15]1‘15 H, number of detected photons by sensor s

f(Hs|[As]) = e™ Vs

H,! A; unknown photon emission in voxel j

[A,] detected photons expectation value

[As] = 2 Aiw(j,s) w(j,s) is the weight — probability of a photon
3 that originated in voxel j is detected by pixel s

The likelihood for all sensors must be maximized iteratively:

k .
He—[ﬂs] 5] AeH = b Hs-wi,s) .
. H,! ! > w(j,s) ij(/,s) A
k iteration
number S
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Backup: DNN model

Input shape: (None, 60) | Output shape: (None, 128) BatchNormalization

Input shape: (None, 128) | Output shape: (None, 128)

BatchNormalization

Input shape: (None, 128) | Qutput shape: (None, 128) Dropout

Input shape: (None, 128) | Output shape: (None, 128)

Dropout

Input shape: (None, 128} | Output shape: (None, 128)

Input shape: (None, 128) | Output shape: (None, 64)

Input shape: (None, 128) | Qutput shape: (None, 128)

BatchNormalization

Input shape: {(None, 64) | Output shape: (None, 126)

Input shape: (None, 128) | Output shape: (None, 128)

MaxNormalizelD
Dropout

Input shape: (None, 128} | Output shape: (None, 128) Input shape: (None, 126) | Output shape: (None, 126)

Res hape

Input shape: (None, 128) | Output shape: (None, 128)

Input shape: {(None, 126) | Cutput shape (None, 3, 6, 7)
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