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Ø Jiangmen Underground Neutrino Observatory: next-
generation multipurpose Liquid Scintillator (LS) 
detector with 20 kton target mass

Ø Locates at baseline 52.5 km from nuclear reactors

JUNO Overview
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Central Detector (CD) 
• 20 kton of liquid scintillator 
• 17612 20-inches large-PMTs and 25600 3-inches 

small-PMTs ensure a 78% photo-coverage
• Earth’s magnetic field compensation coils
• Unprecedented energy resolution: ~3% @ 1 MeV

Water Cherenkov Detector (WCD)
• 35 kton of high pure water as shield
• 2400 20-inches large-PMTs for active veto

Top Tracker (TT)
• 3 plastic scintillator layers (cover ~30% of muons) 

Calibration system
• More than 6 sources + laser

PPNP 123 (2022): 103927

JUNO Overview

https://inspirehep.net/files/eb7aeafdd0e6b63a5b1d78bebc72041a
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Ø Neutrino Mass Ordering (NMO) measurements
   - Reactor will determine NMO with 3σ significance in 6 years of data taking
   - Atmospheric neutrino: combined analysis with reactor further improve NMO sensitivity

Ø Precision measurement of oscillation parameters
   - for sin! 𝜃"!, Δm!"

!  and Δm#!
!  => world leading precision in 100 days and precision <0.5% in 6 years

Ø Rich physics program with neutrinos from several sources
   - Solar neutrinos
   - Supernovae 
   - Geo-neutrinos
   - BSM physics
   ...

JUNO Physics

6 years data

PPNP 123 
(2022): 103927

https://inspirehep.net/files/eb7aeafdd0e6b63a5b1d78bebc72041a
https://inspirehep.net/files/eb7aeafdd0e6b63a5b1d78bebc72041a
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Ø Neutrino oscillation probabilities are function of neutrino 
energy, path length traversed, flavour identity and density of 
the medium

Ø Multi-GeV neutrinos undergo matter effect (MSW effect) 
while passing Earth's matter

Ø Atmospheric multi-GeV neutrino and antineutrino passing 
through Earth offer complementary channel to measure NMO
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• Neutrino oscillation probability 
𝑃 = 𝑓 𝐿/𝐸 , 𝐿~ cos 𝜃, depends on 
the neutrino energy, incident 
zenith angle 𝜃 and flavour

• Neutrino energy, flavour and 
incoming angle need to be 
reconstructed.

Atmospheric neutrino
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Atmospheric neutrino vs Cosmic muons

Ø Around 650 m rock overburden suppress muon background
Ø Expected muon rate ~ 5 Hz ; Neutrino interactions in JUNO LS ~ 10/day
Ø Correlation between CD and WP and TT is used to reject muons
Ø Remaining muons can be removed using PMT features (charge and time 

patterns)

FC : Fully Contained / PC : Partially Contained

FC 𝝂 PC 𝝂
Cosmic
muons

Two red area 
correspond to an 
entry and an exit 
points of muon

FC atmospheric 
neutrino only have 
one high nPE patch

nPE

nPE
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Scintillation light at the detector

Ø Detected light is superposition of photon emissions along the particle track
Ø No direct track information
Ø Isotropic scintillation dominating over directional Cherenkov light
Ø Waveform received by each PMT will depend on the angle w.r.t. to the track direction, the track 

starting and stopping point and the particle type (inducing different 𝑑𝐸/𝑑𝑥)

arXiv:2503.21353
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Systematic Uncertainties

From Q. Yan talk at NuFact 2025

Number of 
events 

(Observables)

Neutrino Flux

Honda flux with 
normalization and 

shape 
uncertainties

Oscillation 
Probabilities

Oscillation parameter 
uncertainties from PDG

Cross-sections

Different generators 
and models (GENIE, 

NuWro, GiBUU, NEUT) 
And ReWeight

External data 
constraints (MiNERvA, 

T2K, NOvA…)

Detector 
responses

Cross-check with 
different ML 

models and non-ML 
methods

Ø A dedicated group is established to study the neutrino 
interactions for JUNO’s atmospheric neutrino studies

14
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Methodology
Ø Event reconstruction with Deep-learning and Waveform INformation (EDWIN)
Ø Current machine learning approach to find neutrino directions from feature patterns through 

training 
Ø Investigation on both PMT level features and event level features (neutron multiplicity, n-capture, 

...)

ML model 
(DeepSphere, ...)

Hybrid ML model 
(DGCNN)

Direction

Energy

Track

Vertex

Flavour

OR

ML model 
(PointNet++) 

PMT 
features

Event 
level 

features
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Machine Learning Model
EfficientNetV2
• CNN model adapted for spherical data by projecting it onto a 2D grid
• High performance for short training time
• PMTs are seen as pixels, with each feature projected from the sphere 

to the planar surface

DeepSphere
• Graph-CNN: developed for processing spherical data 

originally developed for cosmology studies
• Maintains rotation co-variance and avoid distortions caused 

by projection to planar surface

PointNet++
• Directly taking 3D point clouds as inputs 
• Captures both global and local features.
• Detector signal more resemble point clouds
• Minimise information loss during projection
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Original Model

Ø Physics-aware on the sphere. ORION treats the PMT array as a spherical graph and uses attention 
guided by detector geometry and timing – no 2D projection

Ø Fuse delays as tokens. Delayed activity (neutrons/Michels) is handled as separate tokens that 
interact with the prompt PMT field, rather than being merged or tacked on at the end

Ø One model, many tasks. A single fused representation drives PID, direction, and energy/vertex 
reconstruction, trained jointly for consistency and robustness

Ø ORION (On-sphere Reconstruction with Interacting tOkens & Neutrons) is a physics-aware spherical 
Transformer for JUNO atmospheric 𝜈
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Simplified Architecture

INPUTS: LPMT maps: 
(x,y,z) + features

Graph Builder: kNN on sphere 
(k=16/32/64)

PM
T 

En
co

de
r

Sph. Transformer ×2

--------- Pool ×1/4 ---------

Sph. Transformer ×2

--------- Pool ×1/4 ---------

Sph. Transformer ×2

-- Global Attention Pool --

sPMT 
Tokens

Ne
ut

ro
n 

Br
an

ch Neutron MLP

Cross-Attention ×2

Pooling max+mean

Neutron 
Tokens

PID head: 5-label + 3-
label + 2× binary 

(3+2)

Direction head: von 
Mises–Fisher

Energy heads: 𝑬𝒗𝒊𝒔: 
Huber + 𝑬𝝂: regressor

Vertex head

FUSION: Concat [𝑧%&', 
𝑧()*, 𝑒𝑣𝑡] → FC 256
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Updated Workflow

Deconvolution 

gain-aware 
thresholds, time-

offset unify

EDWIN per 
PMT 

features

- nPE
- FHT
- Slope/nPE
- Slope4/nPE
- MaxSlope
- 0–4ns ratio
- PeakCharge
- PeakTime
- mean/median/ 
std/skew/kurt 
- PMT type; 
coords (x,y,z).

Waveform AE 
/ VQ-VAE

 
8–16D 

embedding 
per PMT

Event file 
(HDF5/NPZ)

• LPMT matrix 
(17612×C)

• secondary 
tokens 
(neutrons; 
Michels later)

• optional 
event-level 
scalars

Pipeline Training

Build multi-scale 
kNN graphs; 

SO(3) rotations, 
PMT dropout, 
timing jitter

Training

Output

Ø ORION (On-sphere Reconstruction with Interacting tOkens & Neutrons) is a physics-aware spherical 
Transformer for JUNO atmospheric 𝜈
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Performance of direction reconstruction
MC data sample
Ø Statistic: 

Ø Training sample: 
• ~40k for each flavour (𝜈+ − 𝐶𝐶, 𝜈+ − 𝐶𝐶, 𝜈+ − 𝐶𝐶, 5𝜈) − 𝐶𝐶) 
• Flat visible energy distribution [0,20] GeV (+ inclusion of 

additional NC) = each flavour has similar statistics
• (avoid biases by energy shape dependence and uneven 

statistics among flavours for PID)

Ø Testing sample: ~20k for each flavour 

Te
st

Tr
ai

n

Directionality
Ø Angle between the true and the reconstructed directional vector is

defined as 𝛼 ∈ 0,180 ° => performance quantified by 68% quantile

Ø Model performance for direction reconstruction evaluated over 
resolutions 𝜎, and 𝜎-!

Phys. Rev. D 
112, 012018 
(2025)
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Performance of direction reconstruction

Ø 𝛿𝜃! distribution 
within each 
1GeV 𝐸! bin is 
approximately 
Gaussian.

𝝂𝒆/𝝂𝒆
(4-5 GeV)

𝝂𝝁/𝝂𝝁
(4-5 GeV)

Ø ORION
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Performance of direction reconstruction

Ø 𝜃! resolution

Ø Scintillation light from both leptons 
and hadrons are capable to directly 
reconstructing atmospheric neutrino 
direction. 

Ø Angular resolution results with ORION 
are consistent with PointNet++ and 
DeepSphere for both flavour

Ø Slightly better result with PointNet++ 
and DeepSphere: Expect to improve 
ORION performances with tuning of 
Graph/attention hyperparams, ...
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Performance of direction reconstruction

Ø 𝛼 resolution

Ø Scintillation light from both leptons 
and hadrons are capable to directly 
reconstructing atmospheric neutrino 
direction. 

Ø Angular resolution results with ORION 
are consistent with PointNet++ and 
DeepSphere for both flavour

Ø Slightly better result with PointNet++ 
and DeepSphere: Expect to improve 
ORION performances with tuning of 
Graph/attention hyperparams, ...
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Performance of energy reconstruction

Ø ORION is aiming to have two energy 
heads trained jointly: 
• Visible energy 𝐸"#$ - directly from 

the PMT representation.
• Neutrino energy 𝐸! - a “physics-

guided” head that takes the shared 
representation plus the PID logits 
and the neutron/Michel summary

Ø Each head uses heteroscedastic Huber 
loss and the multi-task weighting is 
learned

Ø For now, we report FC-CC events: we 
output 𝐸! as the primary estimate Ø 𝐸(!,'()*) − 𝐸 !,,(-) /𝐸 !,,(-)  fitted with Gaussian
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Performance of energy reconstruction

Ø Preliminary results
Ø For 𝐸! > 3GeV:

• Better than 6% resolution for electron neutrinos (<5% for both PointNet++ and DeepSphere) 
• Better than 6% resolution for muon neutrinos (comparable to PointNet++ and DeepSphere) 

WORK IN PROGESS WORK IN PROGESS
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Importance of PID

Ø Why PID is also important for 
directionality and energy 
reconstruction ?

Ø Strong correlations as 𝜈/𝜈̅ have 
different behaviour in direction and 
energy reconstruction

Ø Overall, 𝜈̅-like events have better 
resolution

ORION
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Performance of PID

Ø Event topology information are reflected in the PMT waveforms so we use PMT waveforms to 
classify: 𝜇-like, e-like and NC-like

Ø Motivation: Direction/energy reconstruction and PID are correlated. The events identified as 𝜈̅-
like transfer less energy to hadrons (less hadronic interaction) in general, inducing a better 
resolution.

Ø 2 cross-check alternatives: 3-label + 2-label / 5-label

3-label

2-label
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Performance of PID
Ø Reminder: Only fully contained events
Ø 5-level classification is using both PMT features from prompt trigger and delayed trigger information
Ø For the oscillation analysis the score can be tuned depending on the requirement
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Performance of PID
Ø Reminder: Only fully contained events
Ø 5-level classification is using both PMT features from prompt trigger and delayed trigger information
Ø For the oscillation analysis the score can be tuned depending on the requirement

PointNet++ DeepSphere

Ø The results are consistent between the 3 models. 
Ø Strong difference for high energetic events because 

sample is different (Honda flux + ratio of neutrino 
different)

arXiv:2503.21353
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Performance of PID
Ø Reminder: Only fully contained events
Ø 5-level classification is using both PMT features from prompt trigger and delayed trigger information
Ø For the oscillation analysis the score can be tuned depending on the requirement

arXiv:2503.21353



Milo Charavet, UHH Hamburg – NPML 2025 33

1. Overview of the JUNO Experiment

2. Motivation for the reconstruction of atmospheric neutrinos

3. Methodology
  (Workflow: feature engineering and new ML model)

4. Performances
  (Direction reconstruction)
  (Energy reconstruction)
  (Particle Identification)

5. Summary

Table of Contents



Milo Charavet, UHH Hamburg – NPML 2025 34

1. Overview of the JUNO Experiment

2. Motivation for the reconstruction of atmospheric neutrinos

3. Methodology
  (Workflow: feature engineering and new ML model)

4. Performances
  (Direction reconstruction)
  (Energy reconstruction)
  (Particle Identification)

5. Summary

Table of Contents



Milo Charavet, UHH Hamburg – NPML 2025 35

Summary
Ø Improvements in detector response

Optimistic 
estimate

Recent Improvements
(Machine Learning)

Directionality 𝜎.! = 10°
𝜎." = 1°

𝜎.! < 10° for all ML models based on PMT 
features

Energy 𝜎/#$% = 1%/ 𝐸"#$ 
𝐸" is reconstructed instead of 𝐸"#$ (FC events): 
resolution < 6% for 𝐸! > 3GeV (even better for 

𝜈)/ 5𝜈) with PointNet++ and DeepSphere)

Classification NC/CC-𝜈)/CC-𝜈0: 
100%

70-95% efficiency for all ML models using PMT 
features based on primary and secondary 

triggers

Sensitivity To be updated
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Summary

Ø In this talk, we presented a machine learning approach for the reconstruction of atmospheric
neutrinos in JUNO

Ø JUNO aimed at precision oscillation physics and the neutrino mass ordering - Atmospheric
neutrinos provide :
• Broad L/E and matter-effect leverage, 
• Independent cross-check to reactor results
• Control samples (cosmics, Michels, spallation n) to validate reconstruction and systematics

Ø Here, we introduced ORION, a physics-aware spherical ML model that processes PMTs natively on 
the sphere and exploits delayed activity; competitive on energy, direction, and PID with other ML 
models for cross-check

Ø Outlook: JUNO has started taking data!
• Real data integration & calibration
• Robustness/systematics (optical/electronics, generators, θ-bias checks)
• Reproducibility via shared baselines and standard metrics



Thank you for your attention!
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Scheme from A. Garfagnini @ TAUP 2025

18/12/2024
Start of Water 

Filling

02/02/2025
Start of Water 

Filling

01/2025
Start of TT Installation

08/02/2025
Start of LS 

Filling

22/08/2025
End of LS Filling

Full detector 
calibration

26/08/2025
Start of Data Taking

JUNO Timeline
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Methodology
Ø Event reconstruction with Deep-learning and Waveform INformation (EDWIN)
Ø Current machine learning approach to find neutrino directions from feature patterns through 

training 
Ø Investigation on both PMT level features and event level features (neutron multiplicity, n-capture, 

...)

Ø First Hit Time 
Ø Total charge: The total number of 

PEs before electronic effects
Ø Charge ratio: Charges in the first 4ns 

divided by the total
Ø Slope: Describes the average slope in 

the first 4ns. 
Ø nPE
Ø nPE slope
Ø nPE ratio
Ø Max charge, Peak Time
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New strategy
Ø ORION (On-sphere Reconstruction with Interacting tOkens & Neutrons) is a physics-aware spherical 

Transformer for JUNO atmospheric 𝜈

geodesic distance 
on the sphere

relative bearing
𝐹𝐻𝑇" − 𝐹𝐻𝑇#  after 

a coarse TOF 
correction

Ø Native sphere + global attention 
with physics-biased edges 
(geodesic, bearing, Δt after TOF, 
PMT type).

Ø Learned waveform embedding 
(8–16D) per PMT in addition to 
EDWIN features.

Ø Tokenized secondaries (neutrons, 
Michels) fused by cross-attention 
instead of late concatenation / 
merge.

Ø Multi-task training with angle-
aware vMF and heteroscedastic 
energy losses. 

Ø Attention with physic-bias

Ø vMF direction loss

Predict unit vector 𝜇̂	and concentration 𝜅	for a von Mises–Fisher likelihood in 𝕊$



Milo Charavet, UHH Hamburg – NPML 2025

New strategy
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Architecture

INPUTS

• PMT tokens: active LPMTs 𝑁 = 3 − 8𝑘 ; 
features = (coords + EDWIN + embedding).

• Graph builder: kNN on sphere at 𝑘 =
16/32/64; edge attrs = {geodesic, bearing, 
Δt(TOF), type}.

• Positional encodings Yℓm (ℓ≤4, 25d) + 16 
Laplacian eigenvectors → Linear(32).

ENCODER

• Stage-1: 2× Transformer blocks, 
width 96, heads 8 → Pool ×¼.

• Stage-2: 2× blocks, width 128, 
heads 8 → Pool ×¼.

• Stage-3: 2× blocks, width 192, 
heads 8 → Global attention 
pooling → 𝑧%&' ∈ ℝ()$. 

Transformer blocks
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Architecture

ENCODER

• Stage-1: 2× Transformer blocks, 
width 96, heads 8 → Pool ×¼.

• Stage-2: 2× blocks, width 128, 
heads 8 → Pool ×¼.

• Stage-3: 2× blocks, width 192, 
heads 8 → Global attention 
pooling → 𝑧%&' ∈ ℝ()$. 

INPUTS

• PMT tokens: active LPMTs 𝑁 = 3 − 8𝑘 ; 
features = (coords + EDWIN + embedding).

• Graph builder: kNN on sphere at 𝑘 =
16/32/64; edge attrs = {geodesic, bearing, 
Δt(TOF), type}.

• Positional encodings: Yℓm (ℓ≤4, 25d) + 16 
Laplacian eigenvectors → Linear(32).
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Architecture

• Today (realistic): ~11 features per neutron (t, ΣPE, Δt, 
cluster size/spread, early-charge ratio, flags; position if 
available).

• Future (ideal): 22 neutron + 20 Michel features—drop-
in richer tokens.

• Masking: geometry terms in the attention bias are 
dropped when positions are missing/coarse. 

• Token MLP: 12→64→96. 
• Cross-attention ×2: Q = secondaries 

(96), K/V = Stage-2 PMTs (128) → 
pool across tokens → 𝑧*+, ∈ ℝ)-.

• Fusion: 𝑧%&' 192 𝑧*+, 96 𝑒𝑣𝑡 → FC 
256 (GELU).

OUTPUT
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Architecture

Hyperparameter Module / Symbol Search space Default Rationale / effect

Learning rate all log-uniform [1e{-}5, 5e{-}3] 1,00E-03 Controls convergence; interacts with OneCycle/cosine scheduler.
Batch size data loader {16, 24, 32, 48, 64} 32 Memory vs. stability; larger with AMP if GPU allows.

Dropout all blocks/heads uniform [0.00, 0.30] 0.10 Regularizes attention & FFN; reduces overfit at high E.
Stage blocks PMT stages {(1,1,1), (2,2,2)} (2,2,2) Depth vs. speed; (2,2,2) is default used here.

Widths C PMT stages (80-112,112-160,160-224) (96, 128, 192) Capacity allocation across scales.
Heads H PMT/cross-attn {6, 8} 8 More heads → finer angular partitions, higher cost.

FFN expansion r PMT/cross-attn {2, 3} 2 GEGLU width; r=2 is good trade-off.

kNN per scale Graph k_1 in {12,16,20}, k_2 in 
{24,32,40}, k_3 in {48,64,80} 16/32/64 Neighborhood size; too small misses context, too big adds noise.

Cross-attn depth Secondary branch {1, 2} 2 More depth helps neutrino/antineutrino with many captures.
Token-MLP width Secondary MLP {64, 96, 128} 96 Encodes neutron/Michel features.

Waveform emb dim PMT features {0, 8, 16} 8 0 = ablation; >0 captures residual timing info.
Label smoothing PID {0.0, 0.05} 0.05 Helps robust multi-class calibration.
Focal γ (binary) PID (3+2 binaries) {0.0, 1.0, 2.0} 0.0 Use >0 if class imbalance in neutrino/antineutrino.

Scheduler all {OneCycle, Cosine} Cosine Both work; Cosine simpler for BO.
vMF κ cap Direction {None, clip(κ≤100)} clip Stabilizes training at early epochs.

Ø Bayesian optimization plan (Optuna)
Ø Objective (multi-task): maximize macro-AUC (5-way PID) and minimize visible energy and mean 

opening-angle, with a pruner at ~35% of epochs.



Milo Charavet, UHH Hamburg – NPML 2025

Architecture

Ø Parameter inventory (ORION, this configuration)

Layer / block Width (C) Heads Depth Params
Input embedding (features+pos → 96) 96 – 1 6.7 K

Stage-1 Transformer block ×2 96 8 2 184.3 K
Pool ×¼ – – 1 –

Stage-2 Transformer block ×2 128 8 2 327.7 K
Pool ×¼ – – 1 –

Stage-3 Transformer block ×2 192 8 2 737.3 K
Global attn pool → z_PMT(192) – – 1 –

Secondary token MLP (12→64→96) 96 – 1 7.1 K
Cross-attention block ×2 (Q=96, K/V=128) 96 4 2 196.6 K

Global pool → z_sec(96) – – 1 –
Fusion FC (301→256) 256 – 1 77.3 K

Shared hidden for classifiers (256→128) 128 – 1 32.8 K
PID heads (5-way + 3-way + 2 + 2) – – – 1.5 K
Direction head (256→128→(û,κ)) – – – 33.3 K

Energy heads (E_vis, E_ν ; each 256→128→2) – – – 66.0 K
Vertex head (256→128→3) – – – 33.2 K

TOTAL (no sPMTs) – – – ≈ 1.71 M
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Performance of direction reconstruction

Ø For 𝐸! > 3 GeV, angular resolution is better than 10° for all ML models and for both flavour
Ø 𝜃! resolution results are coherent with ORION
Ø 𝛼 resolution is different (sample different: Honda flux vs. flat flux)

Phys. Rev. D 
112, 012018 
(2025)
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Performance of PID

Ø ROC curves of the 3-label identification ML models using events across all energies

arXiv:2503.21353
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Performance of PID
Ø Reminder: Only fully contained events
Ø 5-level classification is using both PMT features from prompt trigger and delayed trigger information
Ø For the oscillation analysis the score can be tuned depending on the requirement

Ø The results are consistent between the 3 models 
Ø (1: PointNet++ ; 2: DeepSphere)
Ø Difference because of Honda flux + ratio of neutrino 

different

arXiv:2503.21353


