

Reconstruction and Identification of Atmospheric Neutrino Events at JUNO Using Machine-Learning Methods

Milo Charavet¹ - On behalf of the JUNO Collaboration

¹ Univ. Hamburg – Inst. für Experimentalphysik

- 1. Overview of the JUNO Experiment
- 2. Motivation for the reconstruction of atmospheric neutrinos
- 3. Methodology

(Workflow: feature engineering and new ML model)

4. Performances

(Direction reconstruction)
(Energy reconstruction)
(Particle Identification)

5. Summary

- 1. Overview of the JUNO Experiment
- 2. Motivation for the reconstruction of atmospheric neutrings
- 3. Methodology

(Workflow: feature engineering

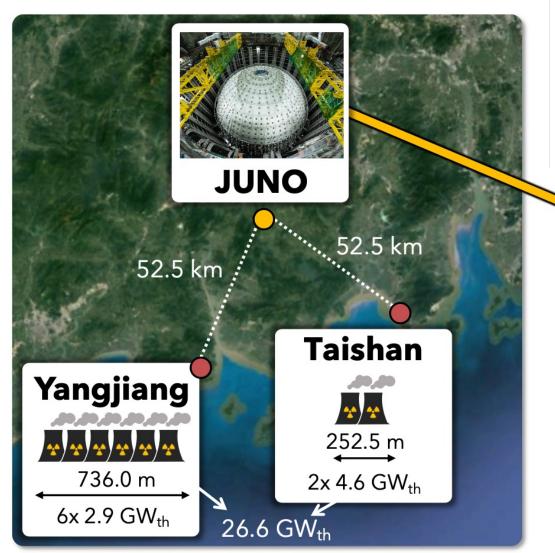
4. Performances

(Direction reconstruction) (Energy reconstruction) (Particle Identification)

5. Summary

addination of the entropy of the entropy of the entropy

JUNO Overview



- ➤ Jiangmen Underground Neutrino Observatory: nextgeneration multipurpose Liquid Scintillator (LS) detector with 20 kton target mass
- Locates at baseline 52.5 km from nuclear reactors

JUNO Overview

Central Detector (CD)

- 20 kton of liquid scintillator
- 17612 20-inches large-PMTs and 25600 3-inches small-PMTs ensure a 78% photo-coverage
- Earth's magnetic field compensation coils
- Unprecedented energy resolution: ~3% @ 1 MeV

Water Cherenkov Detector (WCD)

- 35 kton of high pure water as shield
- 2400 20-inches large-PMTs for active veto

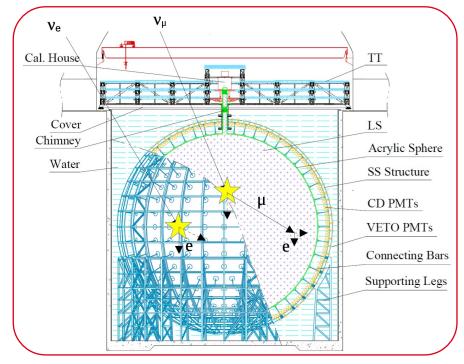
Top Tracker (TT)

3 plastic scintillator layers (cover ~30% of muons)

Calibration system

More than 6 sources + laser

PPNP 123 (2022): 103927

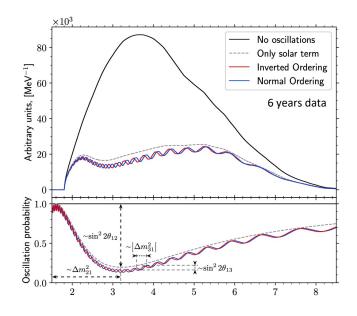


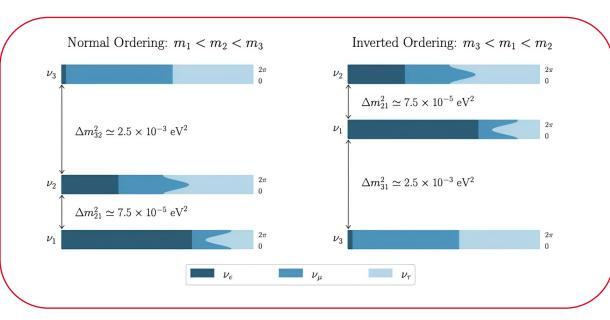
JUNO Physics

- ➤ Neutrino Mass Ordering (NMO) measurements
 - Reactor will determine NMO with 3σ significance in 6 years of data taking
 - Atmospheric neutrino: combined analysis with reactor further improve NMO sensitivity
- > Precision measurement of oscillation parameters
 - for $\sin^2\theta_{12}$, Δm_{21}^2 and $|\Delta m_{32}^2|$ => world leading precision in 100 days and precision <0.5% in 6 years
- > Rich physics program with neutrinos from several sources
 - Solar neutrinos
 - Supernovae
 - Geo-neutrinos
 - BSM physics

...

PPNP 123 (2022): 103927





- 1. Overview of the JUNO Experiment
- 2. Motivation for the reconstruction of atmospheric neutrings
- 3. Methodology

(Workflow: feature engineering

4. Performances

(Direction reconstruction) (Energy reconstruction) (Particle Identification)

5. Summary

addination of the entropy of the entropy of the entropy

- 1. Overview of the JUNO Experiment
- 2. Motivation for the reconstruction of atmospheric neutrinos
- 3. Methodology

(Workflow: feature engineering

4. Performances

(Direction reconstruction) (Energy reconstruction) (Particle Identification)

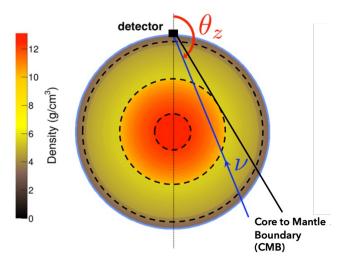
5. Summary

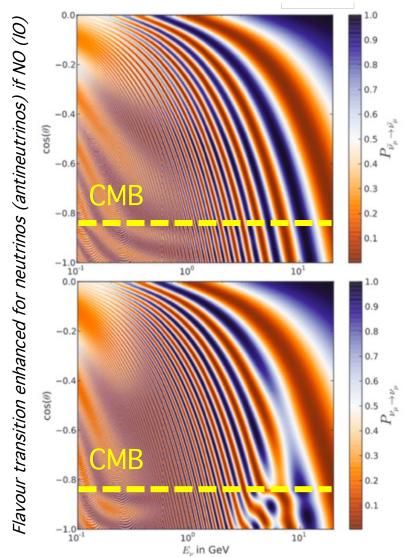
nanonia 6 0 100 0 100 0 100 0 100 0 100 0 100 0

2000 a clo o ollo o ollo o ollo o ollo o ollo o ollo o ollo

Atmospheric neutrino

- Neutrino oscillation probabilities are function of neutrino energy, path length traversed, flavour identity and density of the medium
- Multi-GeV neutrinos undergo matter effect (MSW effect) while passing Earth's matter
- Atmospheric multi-GeV neutrino and antineutrino passing through Earth offer complementary channel to measure NMO
 - Neutrino oscillation probability $P = f(L/E), L \sim \cos \theta$, depends on the neutrino energy, incident zenith angle θ and flavour
 - Neutrino energy, flavour and incoming angle need to be reconstructed.

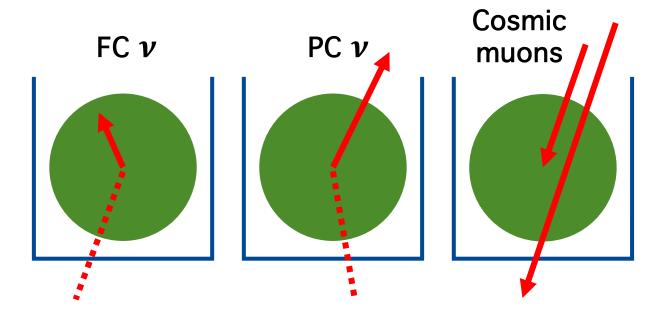




Atmospheric neutrino vs Cosmic muons

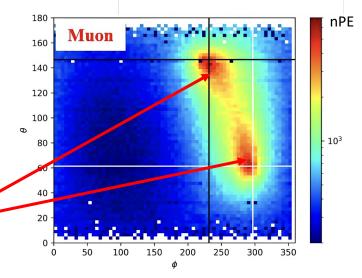
- > Around 650 m rock overburden suppress muon background
- > Expected muon rate ~ 5 Hz; Neutrino interactions in JUNO LS ~ 10/day
- > Correlation between CD and WP and TT is used to reject muons
- > Remaining muons can be removed using PMT features (charge and time patterns)

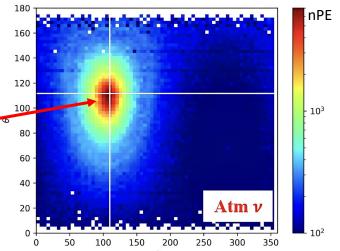
FC: Fully Contained / PC: Partially Contained



Two red area correspond to an entry and an exit points of muon

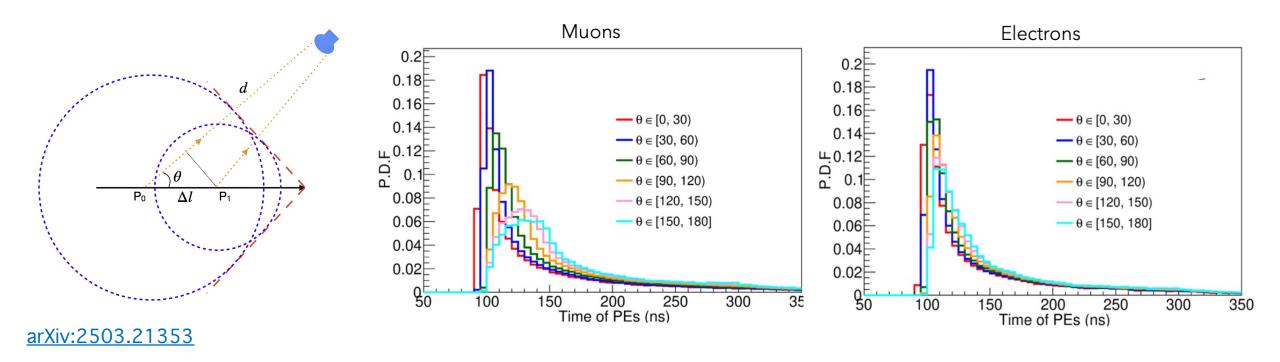
FC atmospheric neutrino only have one high nPE patch





Scintillation light at the detector

- > Detected light is superposition of photon emissions along the particle track
- > No direct track information
- Isotropic scintillation dominating over directional Cherenkov light
- \triangleright Waveform received by each PMT will depend on the angle w.r.t. to the track direction, the track starting and stopping point and the particle type (inducing different dE/dx)



- 1. Overview of the JUNO Experiment
- 2. Motivation for the reconstruction of atmospheric neutrinos
- 3. Methodology

(Workflow: feature engineering

4. Performances

(Direction reconstruction) (Energy reconstruction) (Particle Identification)

5. Summary

nanonia 6 0 100 0 100 0 100 0 100 0 100 0 100 0

2000 a clo o ollo o ollo o ollo o ollo o ollo o ollo o ollo

- 1. Overview of the JUNO Experiment
- 2. Motivation for the reconstruction of atmospheric neutrinos
- 3. Methodology

(Workflow: feature engineering and new ML model)

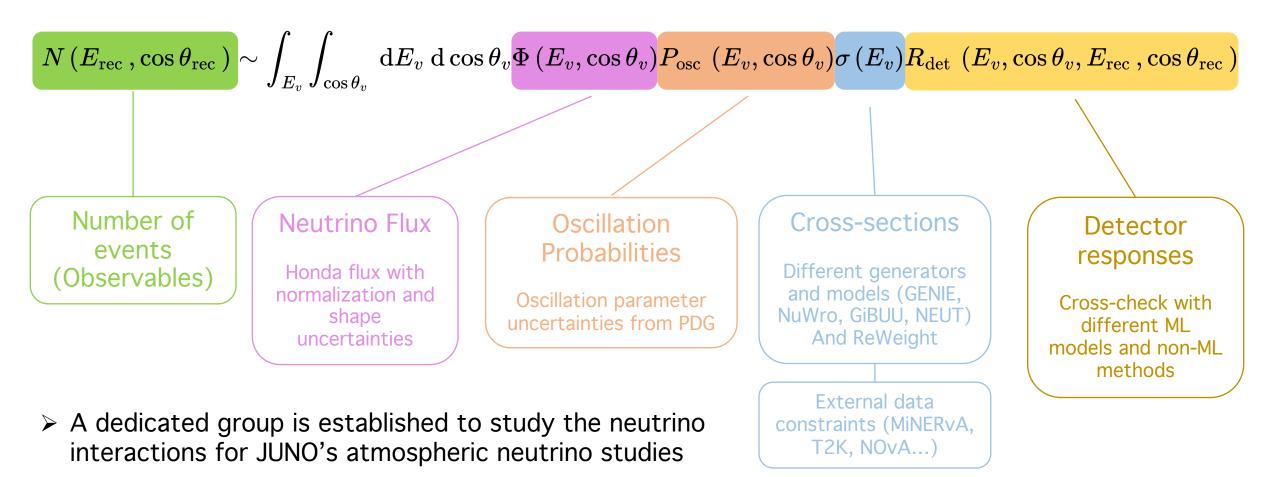
4. Performances

(Direction reconstruction) (Energy reconstruction) (Particle Identification)

5. Summary

2000 a clla a clla

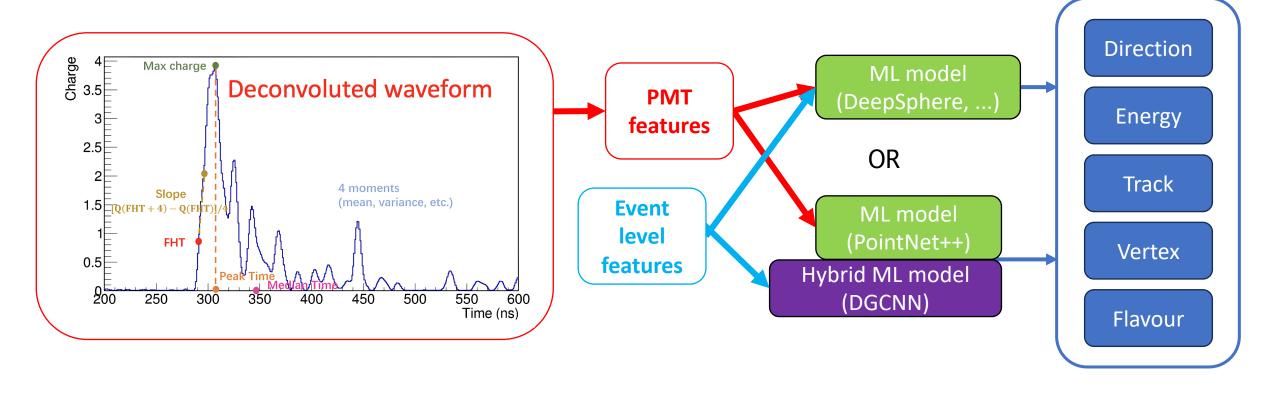
Systematic Uncertainties



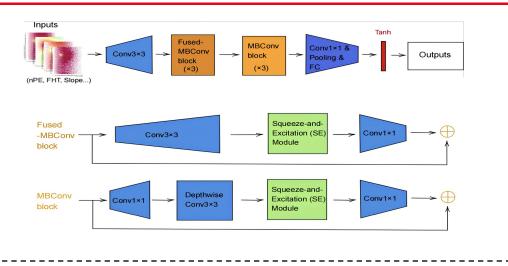
From Q. Yan talk at NuFact 2025

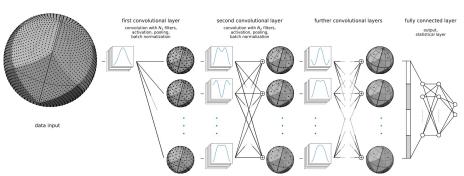
Methodology

- > Event reconstruction with Deep-learning and Waveform INformation (EDWIN)
- Current machine learning approach to find neutrino directions from feature patterns through training
- > Investigation on both PMT level features and event level features (neutron multiplicity, n-capture, ...)



Machine Learning Model



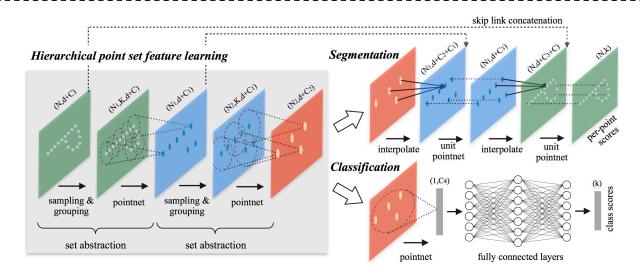


DeepSphere

- Graph-CNN: developed for processing spherical data originally developed for cosmology studies
- Maintains rotation co-variance and avoid distortions caused by projection to planar surface

EfficientNetV2

- CNN model adapted for spherical data by projecting it onto a 2D grid
- High performance for short training time
- PMTs are seen as pixels, with each feature projected from the sphere to the planar surface

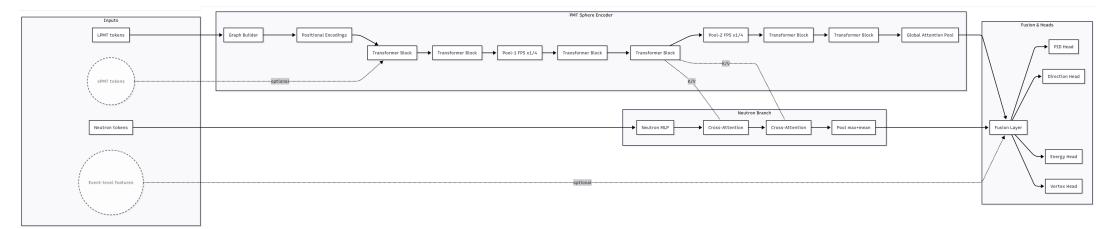


PointNet++

- Directly taking 3D point clouds as inputs
- Captures both global and local features.
- Detector signal more resemble point clouds
- Minimise information loss during projection

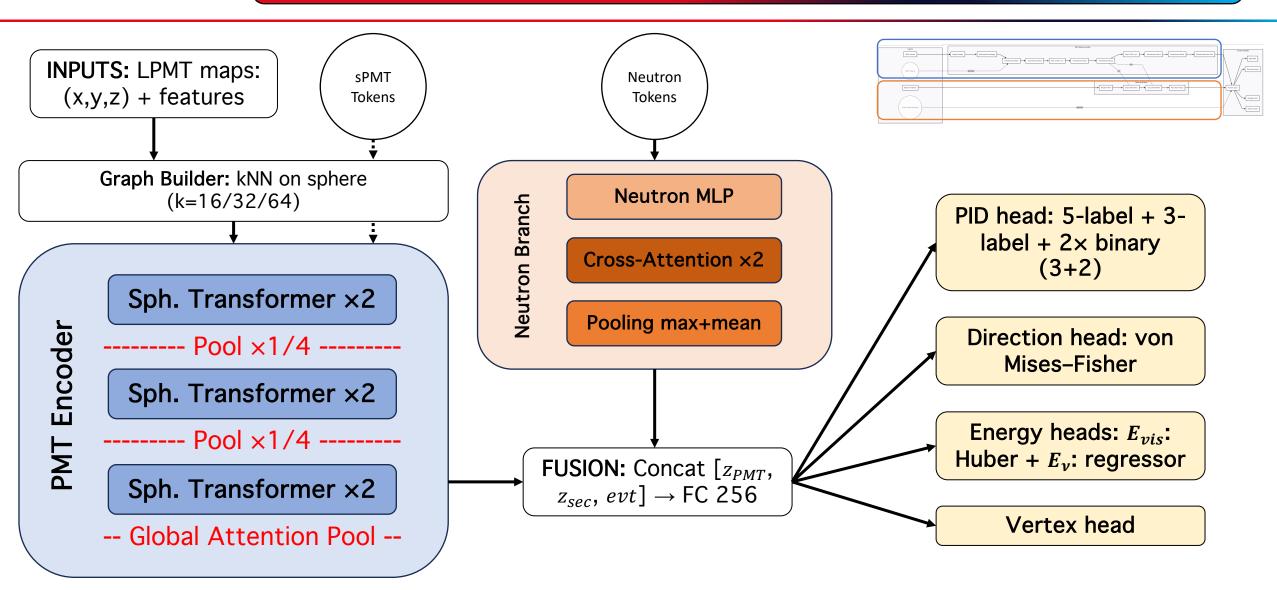
Original Model

 \triangleright ORION (On-sphere Reconstruction with Interacting tOkens & Neutrons) is a physics-aware spherical Transformer for JUNO atmospheric ν



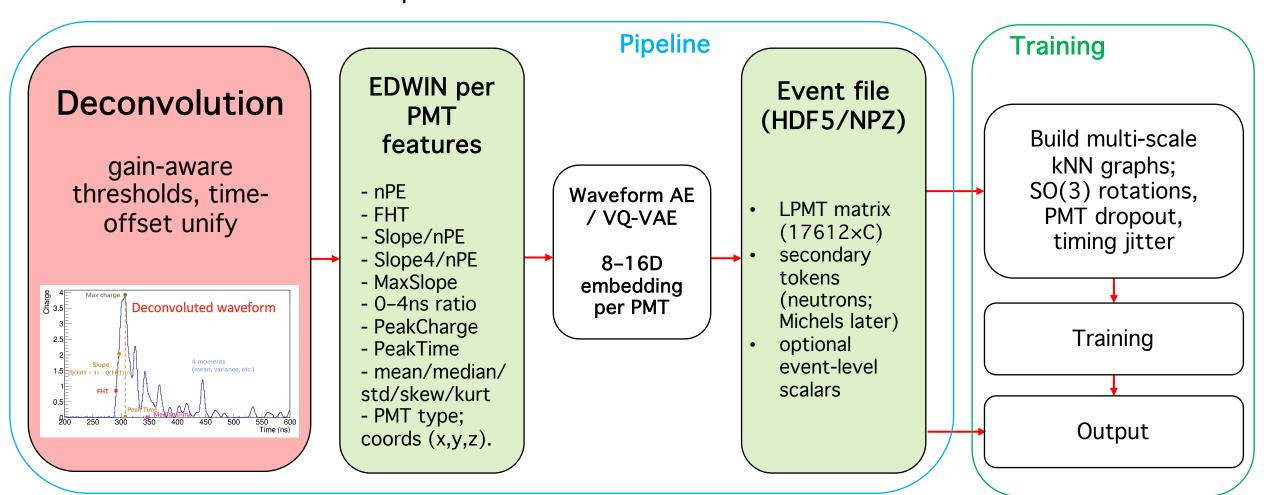
- ➤ Physics-aware on the sphere. ORION treats the PMT array as a spherical graph and uses attention guided by detector geometry and timing no 2D projection
- Fuse delays as tokens. Delayed activity (neutrons/Michels) is handled as separate tokens that interact with the prompt PMT field, rather than being merged or tacked on at the end
- ➤ One model, many tasks. A single fused representation drives PID, direction, and energy/vertex reconstruction, trained jointly for consistency and robustness

Simplified Architecture



Updated Workflow

 \triangleright ORION (On-sphere Reconstruction with Interacting tOkens & Neutrons) is a physics-aware spherical Transformer for JUNO atmospheric ν



- 1. Overview of the JUNO Experiment
- 2. Motivation for the reconstruction of atmospheric neutrinos
- 3. Methodology

(Workflow: feature engineering and new ML model)

4. Performances

(Direction reconstruction) (Energy reconstruction) (Particle Identification)

5. Summary

2000 a clla a clla

- 1. Overview of the JUNO Experiment
- 2. Motivation for the reconstruction of atmospheric neutrings
- 3. Methodology

(Workflow: feature engineering

4. Performances

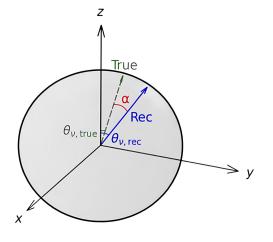
(Direction reconstruction)
(Energy reconstruction)
(Particle Identification)

5. Summary

2000 a cla o ollo o ollo o ollo o ollo o ollo o ollo o ollo

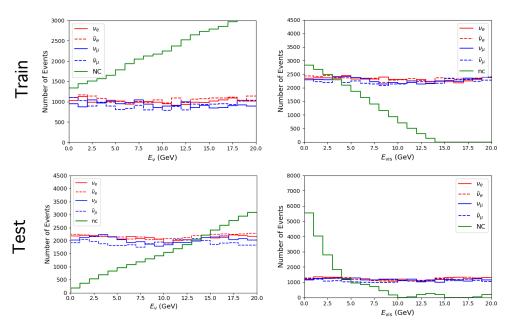
MC data sample

- > Statistic:
 - > Training sample:
 - ~40k for each flavour $(v_{\mu} CC, v_{\mu} CC, \overline{v_{\mu}} CC, \overline{v_{e}} CC)$
 - Flat visible energy distribution [0,20] GeV (+ inclusion of additional NC) = each flavour has similar statistics
 - (avoid biases by energy shape dependence and uneven statistics among flavours for PID)
 - > Testing sample: ~20k for each flavour



Directionality

- Angle between the true and the reconstructed directional vector is defined as $\alpha \in [0,180]^\circ =>$ performance quantified by 68% quantile
- Model performance for direction reconstruction evaluated over resolutions σ_{α} and $\sigma_{\theta_{\nu}}$



112, 012018 (2025)

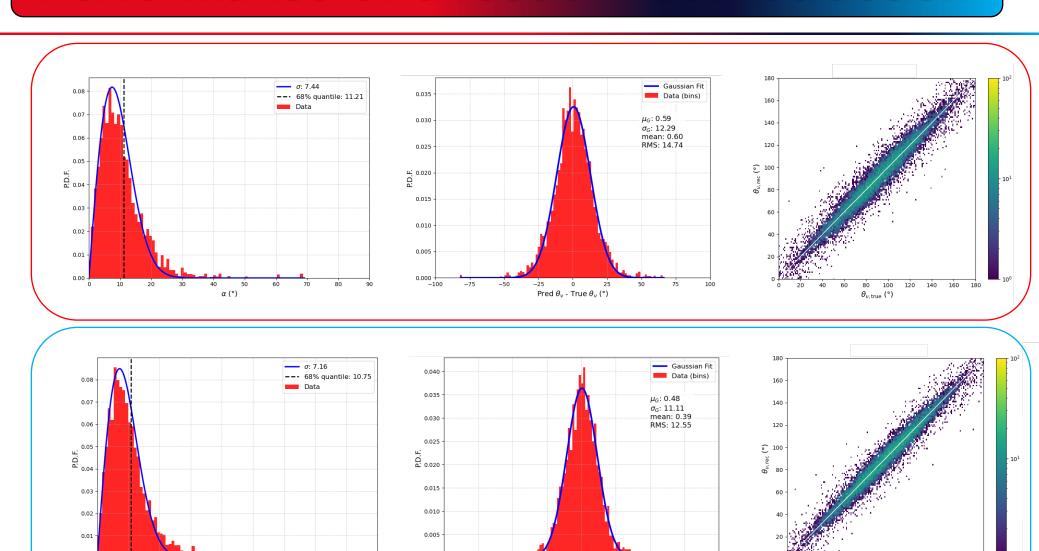
Phys. Rev. D

> ORION

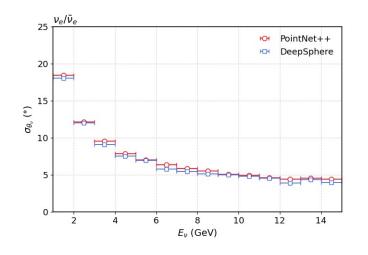
$$v_e/\overline{v_e}$$
 (4-5 GeV)

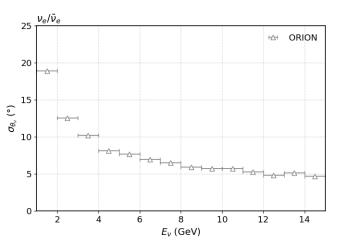
 \triangleright $\delta\theta_{\nu}$ distribution within each 1GeV E_{ν} bin is approximately Gaussian.

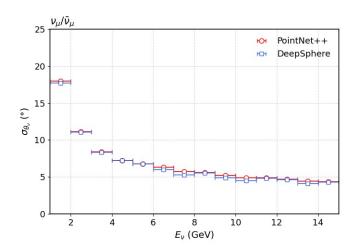
$$u_{\mu}/\overline{v_{\mu}}$$
(4-5 GeV)

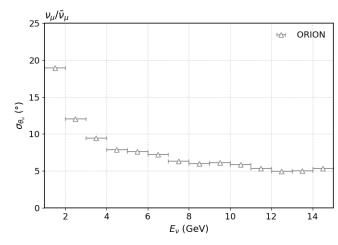


Pred θ_{v} - True θ_{v} (°)

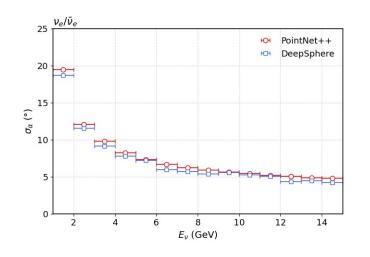


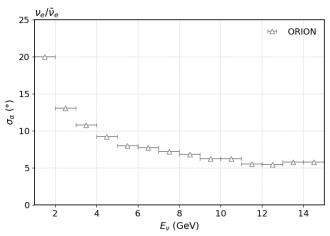


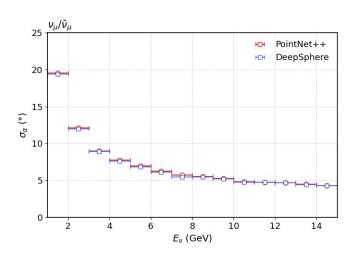


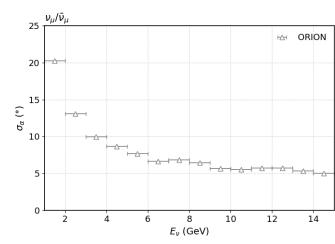


- $\triangleright \theta_{\nu}$ resolution
- Scintillation light from both leptons and hadrons are capable to directly reconstructing atmospheric neutrino direction.
- Angular resolution results with ORION are consistent with PointNet++ and DeepSphere for both flavour
- ➤ Slightly better result with PointNet++ and DeepSphere: Expect to improve ORION performances with tuning of Graph/attention hyperparams, ...





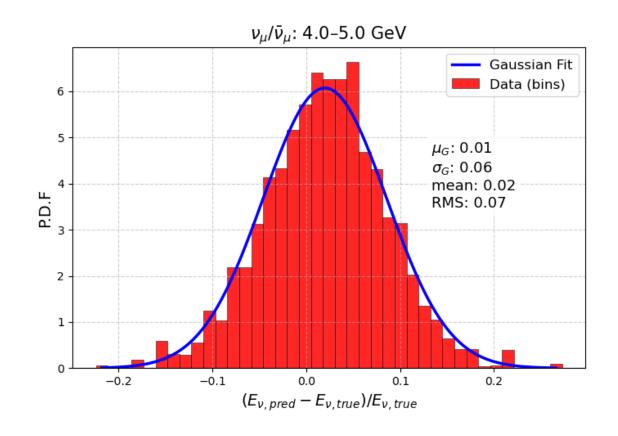




- $\triangleright \alpha$ resolution
- Scintillation light from both leptons and hadrons are capable to directly reconstructing atmospheric neutrino direction.
- Angular resolution results with ORION are consistent with PointNet++ and DeepSphere for both flavour
- ➤ Slightly better result with PointNet++ and DeepSphere: Expect to improve ORION performances with tuning of Graph/attention hyperparams, ...

Performance of energy reconstruction

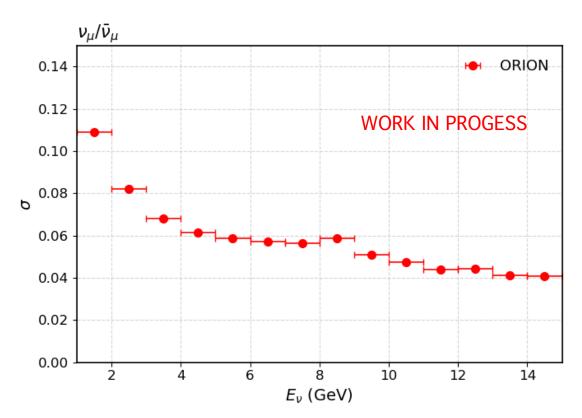
- ORION is aiming to have two energy heads trained jointly:
 - Visible energy E_{vis} directly from the PMT representation.
 - Neutrino energy E_{ν} a "physics-guided" head that takes the shared representation plus the PID logits and the neutron/Michel summary
- ➤ Each head uses heteroscedastic Huber loss and the multi-task weighting is learned
- For now, we report FC-CC events: we output E_{ν} as the primary estimate

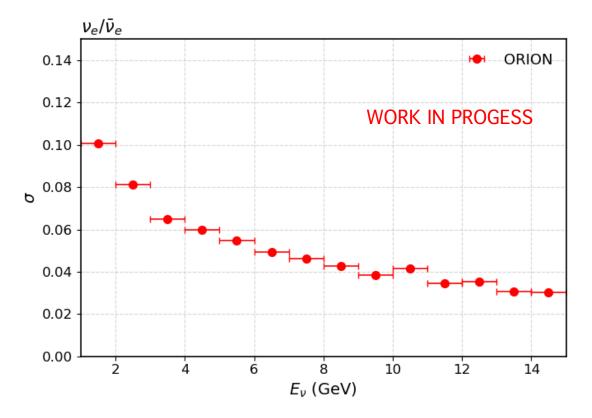


 $\succ (E_{(v,pred)} - E_{(v,true)})/E_{(v,true)}$ fitted with Gaussian

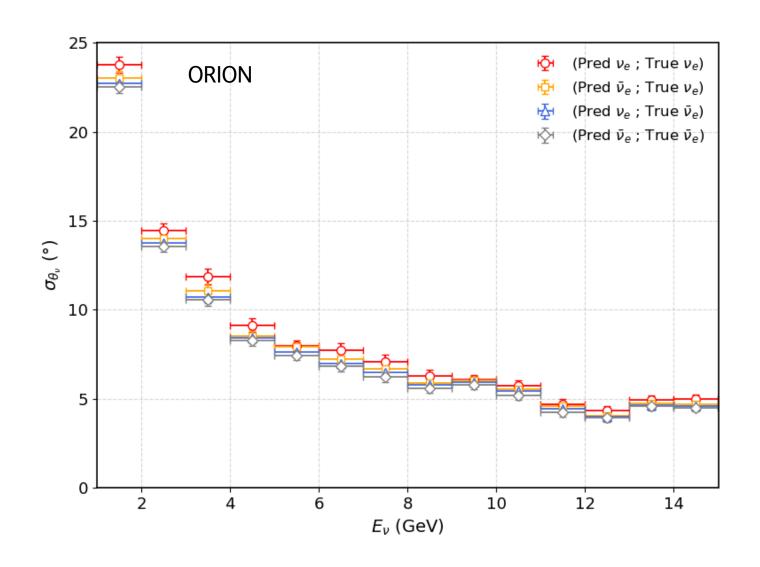
Performance of energy reconstruction

- > Preliminary results
- \triangleright For $E_{\nu} > 3 \text{GeV}$:
 - Better than 6% resolution for electron neutrinos (<5% for both PointNet++ and DeepSphere)
 - Better than 6% resolution for muon neutrinos (comparable to PointNet++ and DeepSphere)



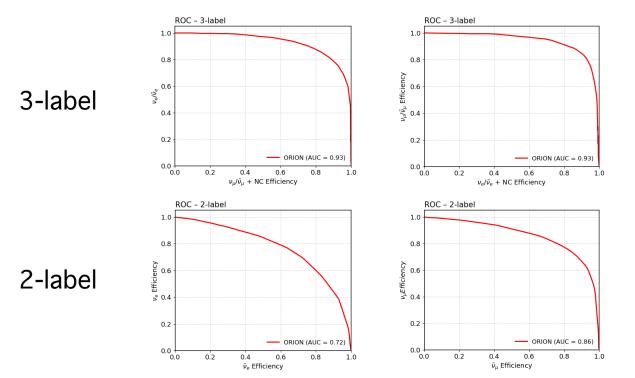


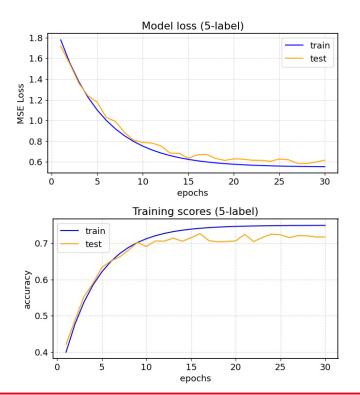
Importance of PID



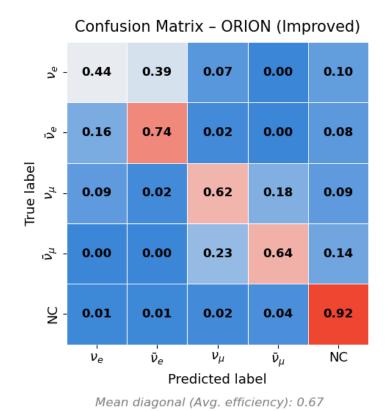
- Why PID is also important for directionality and energy reconstruction?
- > Strong correlations as v/\bar{v} have different behaviour in direction and energy reconstruction
- \triangleright Overall, $\bar{\nu}$ -like events have better resolution

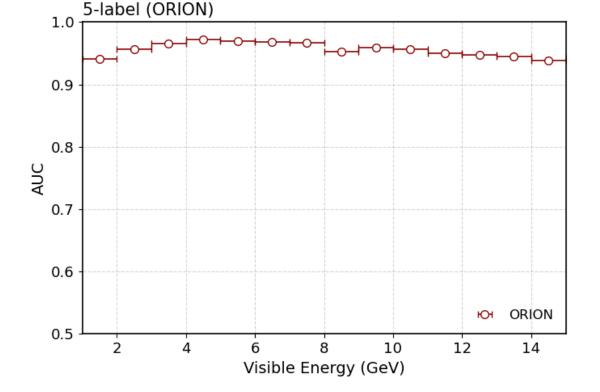
- \triangleright Event topology information are reflected in the PMT waveforms so we use PMT waveforms to classify: μ -like, e-like and NC-like
- \triangleright Motivation: Direction/energy reconstruction and PID are correlated. The events identified as $\bar{\nu}$ -like transfer less energy to hadrons (less hadronic interaction) in general, inducing a better resolution.
- > 2 cross-check alternatives: 3-label + 2-label / 5-label



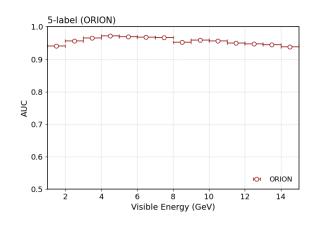


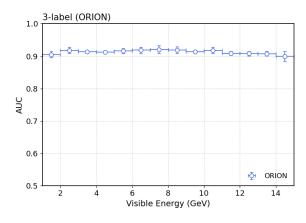
- > Reminder: Only fully contained events
- > 5-level classification is using both PMT features from prompt trigger and delayed trigger information
- > For the oscillation analysis the score can be tuned depending on the requirement

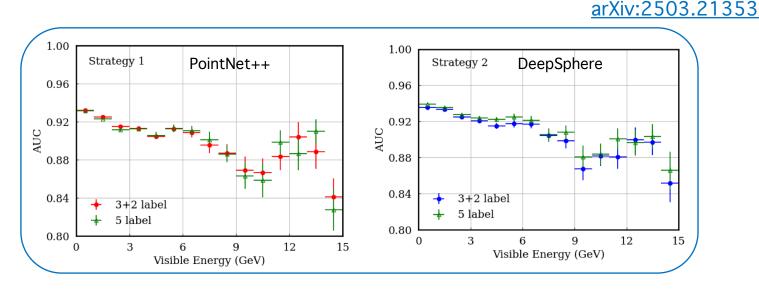




- > Reminder: Only fully contained events
- > 5-level classification is using both PMT features from prompt trigger and delayed trigger information
- > For the oscillation analysis the score can be tuned depending on the requirement

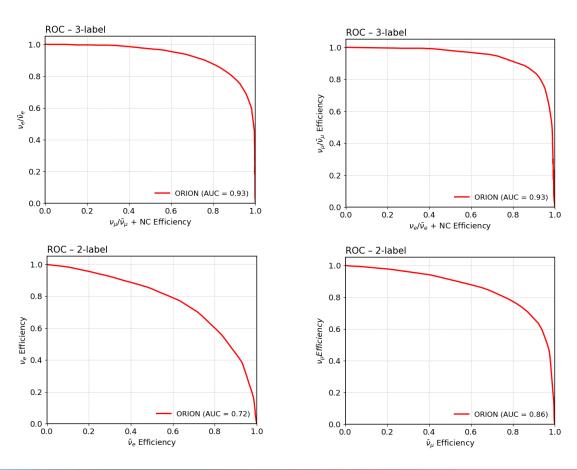


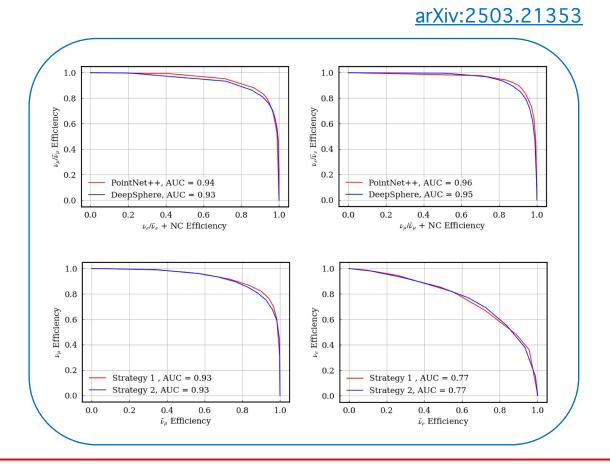




- The results are consistent between the 3 models.
- Strong difference for high energetic events because sample is different (Honda flux + ratio of neutrino different)

- > Reminder: Only fully contained events
- > 5-level classification is using both PMT features from prompt trigger and delayed trigger information
- > For the oscillation analysis the score can be tuned depending on the requirement





- 1. Overview of the JUNO Experiment
- 2. Motivation for the reconstruction of atmospheric neutrings
- 3. Methodology

(Workflow: feature engineering

4. Performances

(Direction reconstruction)
(Energy reconstruction)
(Particle Identification)

5. Summary

2000 a cla o ollo o ollo o ollo o ollo o ollo o ollo o ollo

- 1. Overview of the JUNO Experiment
- 2. Motivation for the reconstruction of atmospher
- 3. Methodology

(Workflow: feature engineering

4. Performances

(Direction reconstruction) (Energy reconstruction) (Particle Identification)

5. Summary

Summary

> Improvements in detector response

	Optimistic estimate	Recent Improvements (Machine Learning)
Directionality	$\sigma_{ heta_{ u}} = 10^{\circ} \ \sigma_{ heta_{\mu}} = 1^{\circ}$	$\sigma_{ heta_{ u}} < 10^{\circ}$ for all ML models based on PMT features
Energy	$\sigma_{E_{vis}} = 1\%/\sqrt{E_{vis}}$	E_v is reconstructed instead of E_{vis} (FC events): resolution < 6% for E_v > 3GeV (even better for $v_e/\overline{v_e}$ with PointNet++ and DeepSphere)
Classification	NC/CC- ν_e /CC- ν_μ :	70-95% efficiency for all ML models using PMT features based on primary and secondary triggers
Sensitivity	To be updated	

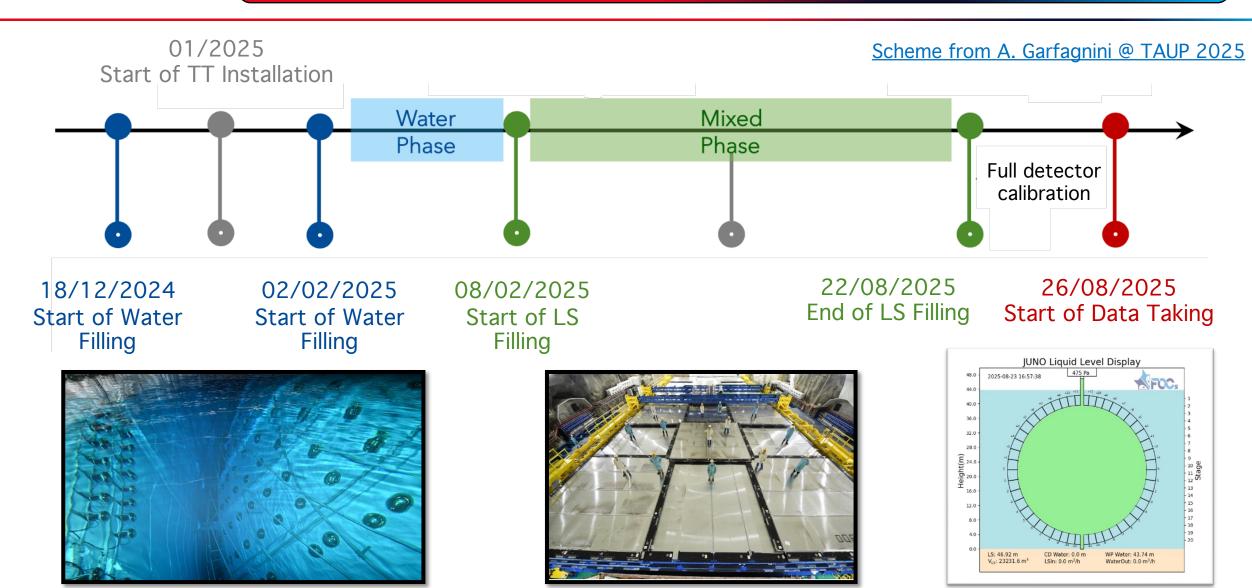
Summary

- ➤ In this talk, we presented a machine learning approach for the reconstruction of atmospheric neutrinos in JUNO
- > JUNO aimed at precision oscillation physics and the neutrino mass ordering Atmospheric neutrinos provide :
 - Broad L/E and matter-effect leverage,
 - Independent cross-check to reactor results
 - Control samples (cosmics, Michels, spallation n) to validate reconstruction and systematics
- ➤ Here, we introduced ORION, a physics-aware spherical ML model that processes PMTs natively on the sphere and exploits delayed activity; competitive on energy, direction, and PID with other ML models for cross-check
- Outlook: JUNO has started taking data!
 - Real data integration & calibration
 - Robustness/systematics (optical/electronics, generators, θ-bias checks)
 - Reproducibility via shared baselines and standard metrics

Thank you for your attention!

Back-up slides

JUNO Timeline

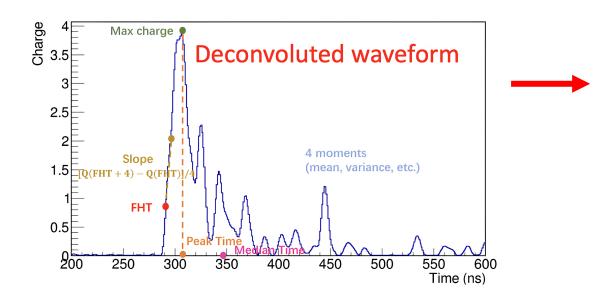


Methodology

- > Event reconstruction with Deep-learning and Waveform INformation (EDWIN)
- Current machine learning approach to find neutrino directions from feature patterns through training

> Investigation on both PMT level features and event level features (neutron multiplicity, n-capture,

...)

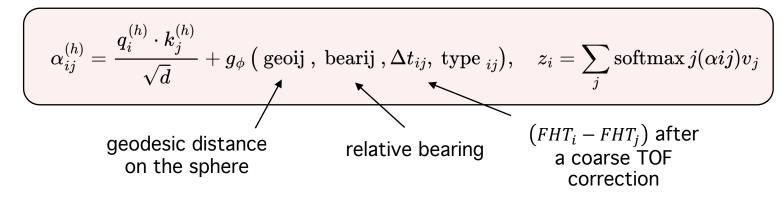


- > First Hit Time
- Total charge: The total number of PEs before electronic effects
- Charge ratio: Charges in the first 4ns divided by the total
- Slope: Describes the average slope in the first 4ns.
- > nPE
- > nPE slope
- > nPE ratio
- Max charge, Peak Time

New strategy

- \triangleright ORION (On-sphere Reconstruction with Interacting tOkens & Neutrons) is a physics-aware spherical Transformer for JUNO atmospheric ν
- Native sphere + global attention with physics-biased edges (geodesic, bearing, Δt after TOF, PMT type).
- ➤ Learned waveform embedding (8–16D) per PMT in addition to EDWIN features.
- Tokenized secondaries (neutrons, Michels) fused by cross-attention instead of late concatenation / merge.
- Multi-task training with angleaware vMF and heteroscedastic energy losses.

> Attention with physic-bias



> vMF direction loss

$$\mathcal{L}_{ ext{dir}} = -\log C_3(\kappa) + \kappa \left(\mu^ op \widehat{\mu}
ight), \|\widehat{\mu}\| = 1$$

Predict unit vector $\hat{\mu}$ and concentration κ for a von Mises-Fisher likelihood in \mathbb{S}^2

New strategy

"ORION's core operator is attention with a physics bias on the PMT sphere. For PMT token i, we compute a query vector q_{ij} for neighbor PMT j, a key k_j and value v_j . The standard attention logit is the scaled dot product $(q_i \cdot k_j)/\sqrt{d}$, where d is the head dimension. We add a small physics bias b_{ij} computed by a tiny MLP (multilayer perceptron) from simple scalars: the geodesic distance on the sphere $d_{\rm geo}$ (i,j), the relative bearing ϕ_{ij} , the TOF-corrected timing residual $\Delta t_{ij}^{(10\,{
m F})}$, and the PMT types (LPMT vs sPMT).

The full logit is

$$lpha_{ij} = rac{q_i \cdot k_j}{\sqrt{d}} + \underbrace{ ext{MLP}\left(d_{ ext{geo}}(i,j), \phi_{ij}, \Delta t^{(ext{TOF})}ij, ext{ type } i, ext{ type } j
ight)}_{ ext{physics bias bi } j.$$

We mask to a k-nearest-neighbors (kNN) graph by geodesic distance so attention is local and spherical. The softmax over neighbors turns logits into weights wij, and the head output is $\sum_j w_{ij} v_j$. Each Transformer block is: Pre-LayerNorm \rightarrow Multi-Head Attention (MHA) + physics bias \rightarrow residual \rightarrow LayerNorm \rightarrow GEGLU FFN \rightarrow residual, where GEGLU is a gated GELU feed-forward that improves expressivity.

Delayed activity (neutron captures and Michel electrons) is handled with secondary tokens. Each capture becomes a token with features (capture time Δt , delayed charge $\sum PE$, optional position (x,y,z), quality flags). These tokens perform cross-attention into PMT tokens: the capture is the query, PMTs are keys/values. If positions are missing, we mask the geometry part of the bias so timing/charge still contribute. This keeps multiplicity and per-capture relations intact instead of compressing them away.

For direction, we use the von Mises-Fisher (vMF) likelihood on the unit sphere (spherical analogue of a Gaussian). The model outputs a unit vector $\widehat{\mu}$ and a concentration $\widehat{\kappa} \geq 0$ (confidence). The per-event negative log-likelihood is

$$\mathcal{L}_{ ext{v}MF} = -\log C_3(\hat{\kappa}) - \hat{\kappa}\hat{\mu}\cdot\mathbf{u},$$

with u the true direction and $C_3(\hat{\kappa}) = \hat{\kappa}/(4\pi\sinh\hat{\kappa})$. Intuitively, higher $\hat{\kappa}$ means a narrower cone (more confidence).

For energies we use heteroscedastic Huber losses: each head predicts a mean and a log-variance (event-wise uncertainty). Huber is robust to outliers; the learned variance down-weights ambiguous events. We also add a light penalty discouraging unphysical $E_{\nu} < E_{\mathrm{vis.}}$

All tasks are combined via uncertainty weighting (learned loss scales per head) so no single objective dominates training. Abbreviations: MHA=multi-head attention, MLP=fully connected stack, GEGLU=gated GELU feed-forward, TOF=time-of-flight correction."

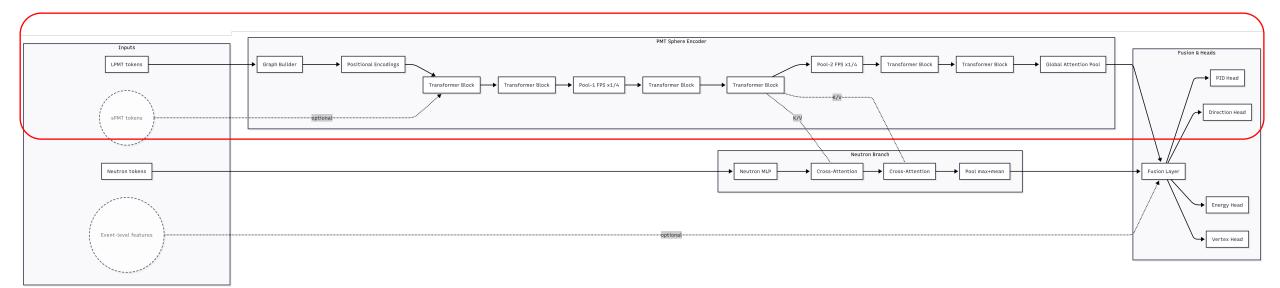
INPUTS

- PMT tokens: active LPMTs N = 3 8k; features = (coords + EDWIN + embedding).
- Graph builder: kNN on sphere at k = 16/32/64; edge attrs = {geodesic, bearing, $\Delta t(TOF)$, type}.
- Positional encodings $Y_{\ell m}$ ($\ell \le 4$, 25d) + 16 Laplacian eigenvectors \rightarrow Linear(32).

ENCODER

- Stage-1: 2× Transformer blocks, width 96, heads 8 → Pool ×¼.
- Stage-2: 2× blocks, width 128, heads 8 → Pool ×¼.
- Stage-3: $2 \times$ blocks, width 192, heads $8 \rightarrow$ Global attention pooling $\rightarrow z_{PMT} \in \mathbb{R}^{192}$.

Transformer blocks

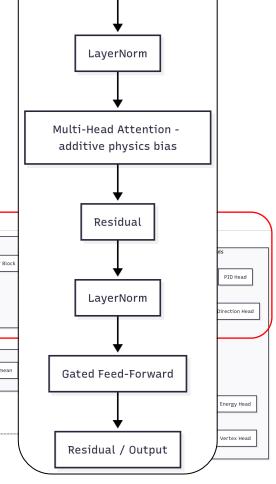


INPUTS

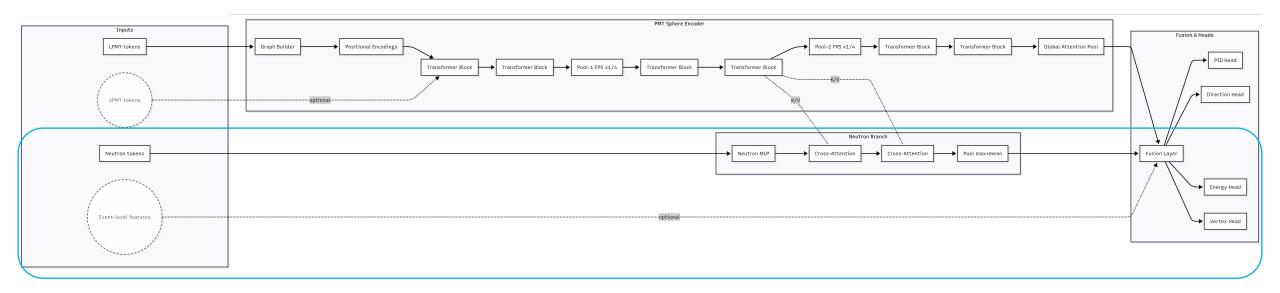
- PMT tokens: active LPMTs N = 3 8k; features = (coords + EDWIN + embedding).
- Graph builder: kNN on sphere at k = 16/32/64; edge attrs = {geodesic, bearing, $\Delta t(TOF)$, type}.
- Positional encodings: $Y_{\ell m}$ ($\ell \le 4$, 25d) + 16 Laplacian eigenvectors \rightarrow Linear(32).

ENCODER

- Stage-1: 2× Transformer blocks, width 96, heads 8 → Pool ×¼.
- Stage-2: 2× blocks, width 128, heads 8 → Pool ×¼.
- Stage-3: $2 \times$ blocks, width 192, heads $8 \rightarrow$ Global attention pooling $\rightarrow z_{PMT} \in \mathbb{R}^{192}$.



Input tokens



- Today (realistic): ~11 features per neutron (t, ΣPE , Δt , cluster size/spread, early-charge ratio, flags; position if available).
- Future (ideal): 22 neutron + 20 Michel features—drop-in richer tokens.
- Masking: geometry terms in the attention bias are dropped when positions are missing/coarse.

- Token MLP: 12→64→96.
- Cross-attention ×2: Q = secondaries (96), K/V = Stage-2 PMTs (128) \rightarrow pool across tokens $\rightarrow z_{sec} \in \mathbb{R}^{96}$.
- Fusion: $[z_{PMT}(192)||z_{sec}(96)||evt] \rightarrow FC$ 256 (GELU).

OUTPUT

- Bayesian optimization plan (Optuna)
- ➤ Objective (multi-task): maximize macro-AUC (5-way PID) and minimize visible energy and mean opening-angle, with a pruner at ~35% of epochs.

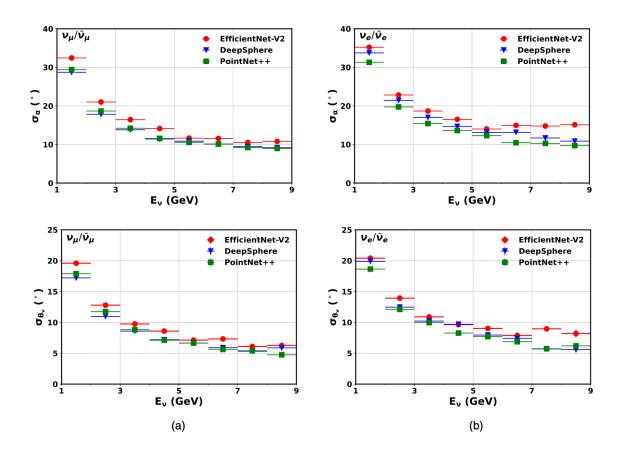
Hyperparameter	Module / Symbol	Search space	Default	Rationale / effect	
Learning rate	all	log-uniform [1e{-}5, 5e{-}3]	1,00E-03	Controls convergence; interacts with OneCycle/cosine scheduler.	
Batch size	data loader	{16, 24, 32, 48, 64}	32	Memory vs. stability; larger with AMP if GPU allows.	
Dropout	all blocks/heads	uniform [0.00, 0.30]	0.10	Regularizes attention & FFN; reduces overfit at high E.	
Stage blocks	PMT stages	{(1,1,1), (2,2,2)}	(2,2,2)	Depth vs. speed; (2,2,2) is default used here.	
Widths C	PMT stages	(80-112,112-160,160-224)	(96, 128, 192)	Capacity allocation across scales.	
Heads H	PMT/cross-attn	{6, 8}	8	More heads → finer angular partitions, higher cost.	
FFN expansion r	PMT/cross-attn	{2, 3}	2	GEGLU width; r=2 is good trade-off.	
kNN per scale	Graph	k_1 in {12,16,20}, k_2 in {24,32,40}, k_3 in {48,64,80}	16/32/64	Neighborhood size; too small misses context, too big adds noise.	
Cross-attn depth	Secondary branch	{1, 2}	2	More depth helps neutrino/antineutrino with many captures.	
Token-MLP width	Secondary MLP	{64, 96, 128}	96	Encodes neutron/Michel features.	
Waveform emb dim	PMT features	{0, 8, 16}	8	0 = ablation; >0 captures residual timing info.	
Label smoothing	PID	{0.0, 0.05}	0.05	Helps robust multi-class calibration.	
Focal γ (binary)	PID (3+2 binaries)	{0.0, 1.0, 2.0}	0.0	Use >0 if class imbalance in neutrino/antineutrino.	
Scheduler	all	{OneCycle, Cosine}	Cosine	Both work; Cosine simpler for BO.	
vMF к сар	Direction	{None, clip(κ≤100)}	clip	Stabilizes training at early epochs.	

➤ Parameter inventory (ORION, this configuration)

Layer / block	Width (C)	Heads	Depth	Params
Input embedding (features+pos \rightarrow 96)	96	_	1	6.7 K
Stage-1 Transformer block ×2	96	8	2	184.3 K
Pool ×1/4	_	_	1	_
Stage-2 Transformer block ×2	128	8	2	327.7 K
Pool ×1/4	_	_	1	_
Stage-3 Transformer block ×2	192	8	2	737.3 K
Global attn pool → z_PMT(192)	_	_	1	_
Secondary token MLP (12→64→96)	96	_	1	7.1 K
Cross-attention block ×2 (Q=96, K/V=128)	96	4	2	196.6 K
Global pool \rightarrow z_sec(96)	_	_	1	_
Fusion FC (301→256)	256	_	1	77.3 K
Shared hidden for classifiers (256→128)	128	_	1	32.8 K
PID heads (5-way + 3-way + 2 + 2)	_	_	_	1.5 K
Direction head (256→128→(û,κ))	_	_	_	33.3 K
Energy heads (E_vis, E_v; each $256 \rightarrow 128 \rightarrow 2$)	-	_	_	66.0 K
Vertex head (256→128→3)	_	_	_	33.2 K
TOTAL (no sPMTs)	_	_	_	≈ 1.71 M

Performance of direction reconstruction

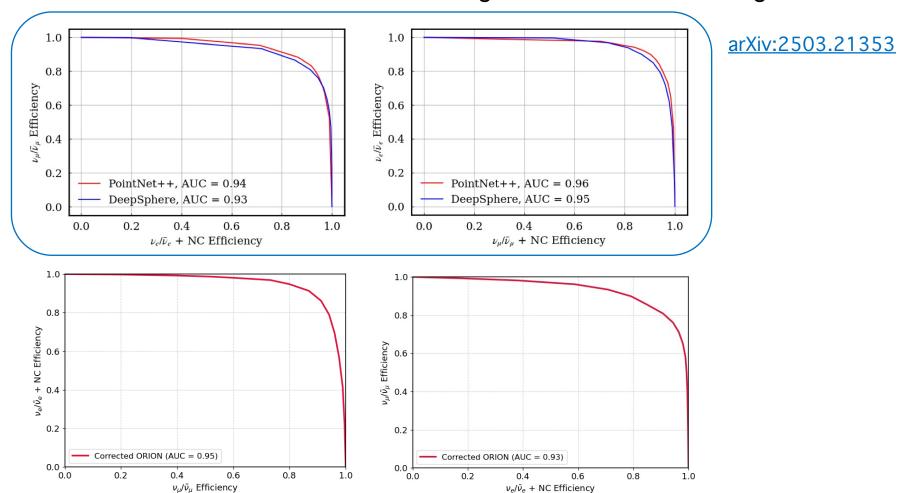
- \triangleright For $E_{\nu} > 3$ GeV, angular resolution is better than 10° for all ML models and for both flavour
- $\triangleright \theta_{\nu}$ resolution results are coherent with ORION
- $\triangleright \alpha$ resolution is different (sample different: Honda flux vs. flat flux)



Phys. Rev. D 112, 012018 (2025)

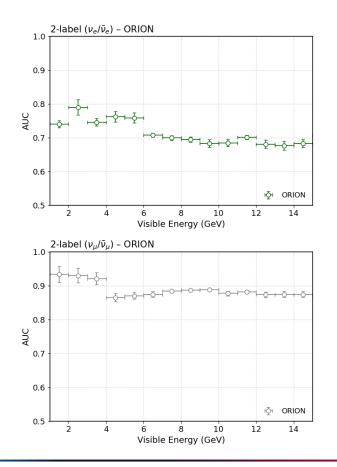
Performance of PID

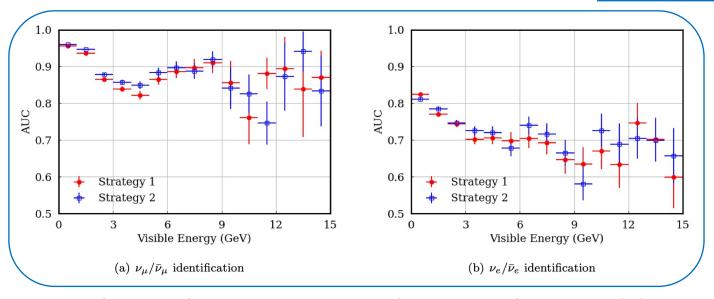
> ROC curves of the 3-label identification ML models using events across all energies



Performance of PID

- > Reminder: Only fully contained events
- > 5-level classification is using both PMT features from prompt trigger and delayed trigger information
- > For the oscillation analysis the score can be tuned depending on the requirement





arXiv:2503.21353

- > The results are consistent between the 3 models
- (1: PointNet++; 2: DeepSphere)
- Difference because of Honda flux + ratio of neutrino different