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The Likelihood Ratio “Trick”

A classifier trained to distinguish between two datasets learns an approximation to
their likelihood ratio*

Example: Train a classifier using weighted binary cross entropy loss, where each
event x. with weight w. has a true label p.C {0, 1} and gets a network prediction of q.:
Loss(p;; ) = —w, * (p;*log(q) + (1-p)"log(1-q)))

If we train with dataset A with labels 1 and dataset B with labels O, then we can
reweight each of the events x. in B by the likelihood ratio:

£ [A,B](XI) = pA(xi) / pB(xi) = qi / (1-ql)
This lets us avoid directly doing multidimensional density estimation, which is hard

Instead, we can just do classification, which is easy-ish

*J. High Enerqg. Phys. 2024, 136 (2024) 2
D



https://doi.org/10.1007/JHEP02(2024)136

Measurements and Unfolding

Measure selected number of events in a reconstructed variable -- what the
detector saw.

Efficiency Background Unfolding

Want the total number of signal events in a true variable -- what physically
happened.

N N
Assuming no background:  ftj = Y ST T = > Uij R;
i J

Unfolding is finding the unsmearing matrix U given the smearing matrix S and
removing the detector effects from the measured data (R inj bins) to get the “true”
distribution (T in / bins)

Simply inverting S is a bad idea since it is generally ill-conditioned, as a result of
very different true distributions being able to map to very similar reconstructed
distributions




“Traditional” Unfolding

Several common unfolding techniques currently used for neutrino physics are:

e jterative Bayesian unfolding (aka D’Agostini)
e SVD unfolding (including Wiener SVD)
e template likelihood unfolding (e.g. recent T2K analyses)

These methods (generally) require that the distributions are binned, and work
best with a small set of variables (around 1to 4)

However many of the corrections (e.g. efficiency) can have high-dimensional
dependence, and this is difficult to capture with only a few variables

In all cases the reconstructed MC distribution is reweighted to better match the
data, and this is propagated to the truth MC distribution



OmniFold Concept: ML reweighting

With some given generator and detector simulation, we can train classifiers using the
likelihood ratio trick to do event-by-event reweighting of the generated events to fit the
observed data

e ML-based classifiers are effectively unrestricted in the number of variables they can
use in decisions, allowing us to unfold in very high dimensional space

Automatically get background subtraction and efficiency correction

From the reweighted generator events, we can then extract unbinned unfolded results
of any observable

More info in original paper PRL 124 (2020) 182001
and code release https://aithub.com/hep-lbdl/OmniFold



https://doi.org/10.1103/PhysRevLett.124.182001
https://github.com/hep-lbdl/OmniFold

OmniFold Procedure 1. wy(m) = v (m) L[(1, Data), (/"">, Sim.)](m),

2. Un(t) = vn—1(t) L[(wP*™, Gen.), (Vn—1, Gen.)](?).

OmniFold is an iterative unfolding procedure Detector-level Particle-level
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This is one iteration, and the method repeats
until some convergence criteria is satisfied




The T2K Experiment

T2K is a long-baseline neutrino oscillation experiment in Japan that has been accumulating
data since 2010
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Test Setup - ND280 Public Dataset .
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Public dataset of ~1.2 million simulated ND280 events ‘ pop TPC B l
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http://zenodo.org/doi/10.5281/zenodo.15183090

OmniFold Procedure Example

Step 2: reweight generator-level MC to itself with pulled

reweighting factors from step 1
After OmniFold Step 2

Step 1: reweight simulated reconstructed MC to
observed data

After OmniFold Step 1 12000
Datar e Gen.
* .a @ [ Reweighted Gen. after Step 2
3500 4 S Sim e Gen. Pulled from Step 1
Reweighted Sim After Step 1 ’
1 Bewelghted.Sim Aferistep 10000 + B Gen. - Only Reconstructed Events

[ Reweighted Gen. after Step 2 - Reconstructed Events

3000 +
. e Gen. Pulled from Step 1 - Reconstructed Events
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Reminder: the reweighting procedure is unbinned! 9



OmniFold Procedure Example

After OmniFold Step 1, Next Iteration

One iteration is a step 1+ step 2

e 'Data’

combo 3500 - = Original Sim

[ Sim Pushed from Previous Step 2
[ Reweighted Sim After New Step 1

On a new iteration, go to step 1 again, 3000
but starting with pushed reweighting
factors on the simulated reconstructed
events from the previous iteration’s
step 2 result

N
w
o
o

2000 A

Events / Bin

1500 A

Repeat for any number of iterations

1000 A

e Regularization comes from a cutoff
on the number of iterations, based ad
on some chosen convergence
criterion 0
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Reconstructed Muon p [MeV/c]



Variables of Interest

Evaluate performance of
unfolding methods with 4
variables of interest:

® (p,cosB ). muon
M 0
momentum and forward
angle
[ ) > _ T T
0pr = pp + Py
—pr.s
O0¢t = arccos (peT—ﬁT)
PpopT

ST =T
_pf' ' ph'
oaT = arccos

These last 3 are the single
transverse variables (STVs)

v Transverse Plane |y
2 T
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Hidden layers (x4)

OmniFold Inputs & Network ~ 100 100
OmniFold is agnostic to the choice of classifier -g
We use a simple MLP with 4 hidden layers of 100 nodes each §
o
Input variables: o

N

e Various kinematic observables (details on following slides).
Generally standardized to mean O and unit variance, with
values of O when the variable does not exist

Using one NVIDIA A100
on a NERSC Perimutter
e [or detector space only: Detector sample ID (1-hot encoded, node, << 1 minute per
out of 8 possible sample IDs) OmniFold iteration on one
set of data/MC

e For truth space only: Interaction topology (1-hot encoded,
out of 5 possibilities: CCOx0p, CCOx1p, CCOxNp, CClr,
CCOther)
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Neural Network Sizes

OmniFold analyses usually don’t need very
complicated networks

But we can observe small networks limiting
performance

MultiFold Network Tests
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Testing OmniFold

Every setup includes detector sample ID for reco-space and topology ID for
truth-space (one-hot encoded in both cases)

Conventional-like unfolding setups:

e [IBU-UniFold: using the OmniFold machinery, but the inputs to the neural
network are limited to the bin indices of whatever variable we’re unfolding
(e.g. an event is only identified by saying it’s in bin #3 of the dpT binning).

o This is mathematically equivalent to IBU
e Binned UniFold: also binned inputs, but now identifying events by the
value of the center of the bin they fall into (e.g. an event gets an input of
100 MeV if it’s in the bin centered on 100 MeV, instead of getting an input
saying it’s in bin #2)
o This is the same amount of info as IBU-UniFold, but in a format that’s harder for a neural

network to learn
14



Testing OmniFold

OmniFold-type unfolding setups (unbinned inputs):

e UniFold: only receive the unfolding variable in question as kinematic input.
Run a separate version for each variable we’re unfolding

e MultiFold: use (pu, COS 6“, P, 5p,, 6a., 6¢T) as input. This includes every
observable of interest, and should be the “easiest” way to unfold them all at
once

e OmniFold: use muon and leading proton kinematics (pu, COS Gu, (I)u, p,, COS ep,
(|>p) as input. This is the most general input we can supply given the available
data, and in principle everything is derivable from these values

Each method is run 500 times, once for each of the syst/stat throws

15



Unbinned Convergence Metrics

A convergence metric for OmniFold is ideally independent
of binning and observable choices

Plot average weight change of each event over the last N
iterations, which should cluster around O as it converges
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Results

e Binned UniFold is worse than IBU-UniFold => caused by NN training effects

e UniFold performs similarly to Binned UniFold => not much gain from going
unbinned without additional info (bins are already quite fine)

e For y?, MultiFold is similar to IBU and better than OmniFold

e For bias (triangular discriminator), MultiFold/OmniFold are both better than IBU

x> Triangular Discriminator

T (pu, cos 0,,)| dpr datr | O¢r Method (pu, cos 6,) | dpr | dar | dpr

DoF=58 |DoF=8|DoF=8|DoF=8 Prior 545.6 27.531.2|26.7

Prior 298.2 2.3 5.9 4.9 IBU-UniFold 17.1 1.9|13.4]0.8

IBU-UniFold 2.1 0.2 0.4 0.1 Binned UniFold 29.9 2816.0|1.9

Binned UniFold 21.4 1.4 0.9 0.5 UniFold 173 5.715.8 1.7

UniFold 27.1 1.1 0.6 1.1 MultiFold 2. 0.7 0.6 | 0.6

MultiFold 3.1 0.3 0.2 0.3 OmniFold 9.4 1730 | 21
OmniFold 10.0 0.8 1.1 0.4

17
D



Input Comparison

MultiFold (dashed lines,
using unfolding variables as
direct input) outperforms
OmniFold (solid lines,
general muon/proton
kinematics input)

Again indicates imperfect
neural network training

e Statistics are low (20k
data events) relative to
many applications

- OmniFold 6¢t
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Uncertainties

MultiFold achieves smaller
bias and lower
uncertainties than IBU

Neural network
training is a form of
regularization

For the STVs, UniFold has
smaller NN uncertainty
than MultiFold, due to the
relative simplicity of the
network

Bin Fractional Uncertainty

101 /—/—" ————
102 S —
[ IBU-UniFold Total Uncertainty
10—3 [_1 MultiFold Total Uncertainty
"7 MultiFold NN Uncertainty
[1 UniFold Total Uncertainty
.7 UniFold NN Uncertainty
0.0 0.2 0.4 0.6 0.8 1.0
Opt [GeV/c]
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OmniFold Results Summary

More details on this T2K study with OmniFold: Phys. Rev. D 112, 012008

General takeaways:

e OmniFold obtains similar y? and less bias than IBU, but we get to unfold
everything at once and in an unbinned way

e |BU vs Binned UniFold and MultiFold vs OmniFold comparisons show
importance of choice of inputs in combination with model architecture/training
and available statistics

e The relative lack of detail in the public dataset limits OmniFold performance,
but this can be fixed with real data

e Low statistics is limiting the performance too, but this will also be a problem
for real data

21
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Potential OmniFold Applications

OmniFold is useful for any analysis where there is a lot of information that is
relevant to the unfolding problem, or there are many observables of interest.

Many neutrino analyses could benefit from the advantages of OmniFold:

e Simply improving the smearing/efficiency corrections by being unbinned and
high-dimensional

e Simultaneous unfolding of several samples, and checking correlations among
the results

e Samples where many observables are useful proxies for underlying physics,
and we’d like to project our results into many directions at once

More thoughts on practical considerations for using OmniFold: arXiv:2507.09582

22
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https://arxiv.org/abs/2201.04664

Neutrino Event Generators

Often useful to check how the choice of generator impacts the result of an analysis
e Don’t want to be overly sensitive to modeling uncertainties

But it's very expensive to propagate another set of generator events through
detector simulation/reconstruction again

e Realistically, you won’t have a full statistics MC dataset for every generator you
want to test against

If we could quickly reweight the results of one generator to replicate another’s, we
could more rapidly iterate on these kinds of studies

e Conventionally this relies on splines or histograms, only valid in a limited phase
space... 5



Generator Reweighting

Reweighting one generator’s output to
match another’s is finding the likelihood
ratio between their distributions

Likelihood ratio trick offers a path to
converting between generator outputs with
validity over much of the phase space

e Range of validity will depend on which
generator outputs are included as part
of the reweighting function
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From Andrew Cudd

Neural Network Architecture — —

Test setup: train classifier between Projection Layers Projection Layers

GENIE 20i events and NUWRO

events

Want a reweighting that’s a function
of as much of the generator outputs
as possible

e Need to deal with large and
variable-length particle stacks

Use 4-momenta + PID for particles

Event variables include quantities
like g, g, Q2 W, E Classifier

Dense Layers
Output 26




Reweighting Results
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Summary
After building a good detector and good reconstruction algorithms, we should
construct analyses that can use all the available information
e ML-based unfolding and generator reweighting both help with this
But as we incorporate more variables into the analysis, remember to watch out for:

e (Sub x N)-leading values that are not well-vetted for validity
e What quantities we actually have systematic uncertainties for
e Poorly constrained regions of phase space that shouldn’t be extrapolated into

28



THIS 15 YOUR MACHINE LEARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN (COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE WRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT




MultiFold Correlation Matrices

(pu, cos8,) Bin
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Correlation matrix excluding flux
uncertainty

e Actual ¥? is evaluated including
effects of flux uncertainty in the
covariance matrix

30




MultiFold Correlation Matrices
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Binned Training Loss

Difference in
performance for
IBU-UniFold (1-hot
encoded) vs
Binned-UniFold
(kinematic bins) visible in
training loss curves

Loss

Binned OmniFold Step 1 Loss
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0.04600 A

—— 1-Hot Encoded Binned Input
—— Kinematic Bin Inputs
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34




Training/Validation Loss

_ r‘. — Step 1 Training Loss Example of training/validation
f === 'Step 2 Valldation Loss loss curves for a step 1+ step 2

—— Step 2 Training Loss . . .
-~ Step 2 Validation Loss iteration of OmniFold

e Arbitrary offset on y-axis for

each curve for plotting
convenience

Loss (A.U.)

Actual result would be
terminated after 15 epochs of no
improvement in validation loss
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Training Parameters

. i 2 i
Our results are of course with the 30 OmniFold vs IBU Muon (p, cos 8) x</dof Comparison
« ’ L. . —— OmniFold LR=1e-4,Batch=1024
best” NN training settings —— OmniFold LR=1e-5,Batch=4096
25 --- IBU

But in our scans we have found

many settings that yield worse
performance

x?/dof

e Must be careful about tuning
parameters before applying to

real datal
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