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Baikal-GVD experiment



Baikal-GVD ● Located in Lake Baikal, 
Russia

● Largest neutrino telescope 
in Northern hemisphere

● Small light scattering in 
water

● Effective exploitation:
○ New modules and 

maintenance at winter
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Baikal-GVD

● Instrumented volume: 0.7 km3

● Modular structure:
cluster diameter:         120 m
inter-cluster distance:  300 m

● Target neutrino energies:
TeV-PeV scale

● Register Cherenkov light from 
secondary particles



8 strings per cluster:
❏ Depth from 750 to 1275 m

36 optical modules per string:
❏ 1 PMT looking downwards;
❏ Vertical spacing: 15 m
❏ Positioning accuracy: 20 

cm
❏ Time synchronization : 2 

ns.
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Baikal-GVD
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Baikal-GVD

● Track-like Events
○ 200-300% energy 

resolution
○ 1° angular resolution

● Cascade-like Events:
○ ~20% energy 

resolution
○ 4° angular resolution

Track-like (μ)
Cascade-like

(EM or hadronic 
showers)



Machine Learning applications



Raw data
Identification of 

neutrino-induced 
events

Algorithmic 
reconstruction
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Machine learning applications
(1)

Problem: 1 neutrino per 106-107 air showers

Suppress background by factor of 10 while keeping 98% neutrinos.



Raw data
Identification of 

neutrino-induced 
events

Algorithmic 
reconstruction

Suppression of noise 
hits

Machine learning applications
(1)

(2)

Problem: 85%-90% of collected hits are due to water luminescence

Reject OM activations due to noise



Raw data
Identification of 

neutrino-induced 
events

Algorithmic 
reconstruction

Suppression of noise 
hits

Machine learning applications
(1,3)

(2)

Problem: still may air showers

Identify neutrino candidates



Raw data
Identification of 

neutrino-induced 
events

Algorithmic 
reconstruction

Suppression of noise 
hits

Machine learning applications
(1,3)

(2)

(4)

Understand event structure:
segment hits, estimate track length

Event pre-analysis



Reconstruction 
(energy, direction)

 Neutrino flux 
estimation

(partially) 
reconstructed events

Raw data
Identification of 

neutrino-induced 
events

Algorithmic 
reconstruction

Suppression of noise 
hits

Source identification, 
spectrum studies, …
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Machine learning applications
(1,3)

(2)

(5)

Event pre-analysis
(4)



Data representation

Triggered Optical Modules 
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● Position
● Activation time
● Registered charge

After experiments, decided to use 
Transformers



Results
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● Preserve 98% neutrinos while reducing 
background by factor of 10

● Improved OM noise suppression
○ Hence improved reconstruction metrics

● Improved angular and energy resolution 
with NNs

● Neutrino flux estimation:
○ Possible to identify 10±3 neutrino 

events on top of 106 EAS



ML-based event quality cuts
Loss = Lreco + lnσ2 + Lreco/ σ
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Select events by NN uncertainty in loosen quality cuts
Increased event statistics and reconstruction accuracy

Energy reconstruction uncertainty

Arrival direction reconstruction uncertainty

Train NN to estimate uncertainty!



Machine Learning challenges



The problem

Neural networks require data to train on. But what if such data is 
unavailable/biased?

Need to use simulations and rely on generalization / perfect MC.

Many sources of MC-data imperfections:

● Simplified MC simulations, geometry
● Detector noises and specifics
● Unknown systematics

Even if histograms closely match, 
NN can be over-specialized to 

MC data



NNs are bad at extrapolating

We want to fit the function:

f(x,y) = sin(0.5 * x) * cos(0.5 * y) + 0.1 * (x2 + y2)

with MLP: 4 hidden layers,

128 neurons per layer.

Training data region (MC): x,y  ∈  [-3, 3] 



Unreliable 
area with 
increased 

error



Connection to cross-calibration

Actual data 
phase space, 

Preal

MC phase 
space, 

PMC

shift due to 
MC 

imperfections

NN:     f : PMC  → Eexpected

Calibration (bias correction):
     g(f): Preal   →   Eexpected

      
But:
Δf(Preal) is highly nonlinear, 
hence calibration must be 
nonlinear as well
Also:
Increased error (need to be 
properly estimated)



Solution: Domain adaptation                     arXiv:1409.7495

Available data for 
training 

(source domain)

Data of interest 
(target domain)

Identify and learn domain-invariant features



Domain adaptation technique

23

Train to recognize digits

vsExclude domain-specific features

Source: 
arXiv:1409.7495



UMAP comparison

MC1
MC2
Data

MC, DA
Data, DA

Project features extracted by NN to 2D using UMAP for visual comparison.



Applications in physics

● CMS@LHC (2405.13778)

● Cherenkov Telescope Array Large-Sized Telescope (2308.12732)

● Photometric Classification of Supernovae (1810.06441)

● Strong Gravitational Lens Analysis (2410.16347)



Conclusion

● Neural networks improve reconstruction accuracy
○ And are fast!

● Transformer-encoder is powerful architecture suitable for many experiments

● Neural network can become specialized/biased to MC
○ Domain adaptation as solution
○ But there are some pitfalls…


