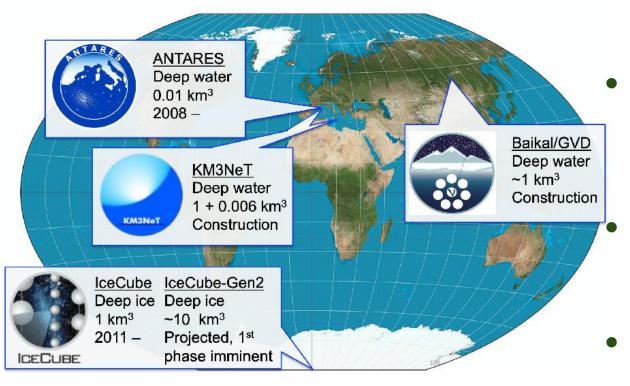


Outline

Baikal-GVD experiment

Machine-Learning applications

Machine-Learning challenges

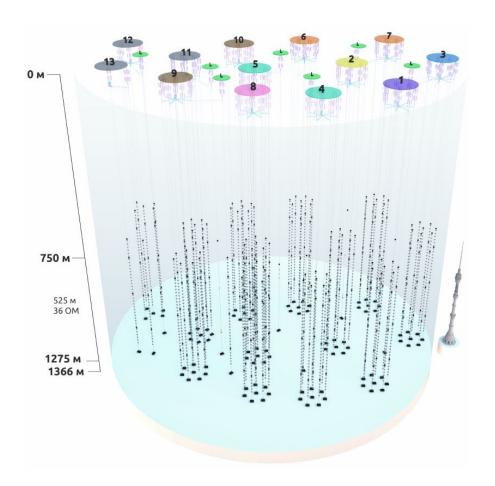


 Located in Lake Baikal, Russia

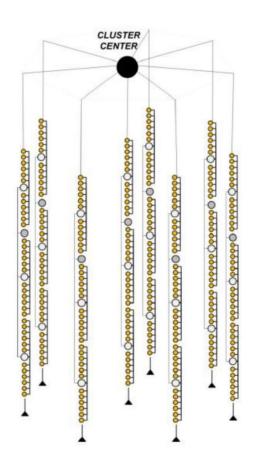
Largest neutrino telescope in Northern hemisphere

Small light scattering in water

- Effective exploitation:
 - New modules and maintenance at winter



- Instrumented volume: 0.7 km³
- Modular structure: cluster diameter: 120 m inter-cluster distance: 300 m
- Target neutrino energies:
 TeV-PeV scale
- Register Cherenkov light from secondary particles

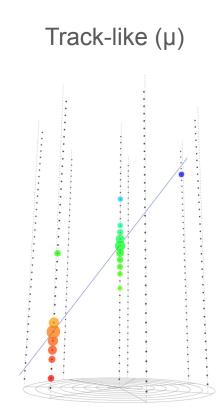


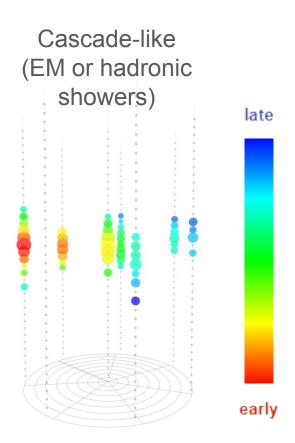
8 strings per cluster:

■ Depth from 750 to 1275 m

36 optical modules per string:

- ☐ 1 PMT looking downwards;
- Vertical spacing: 15 m
- Positioning accuracy: 20 cm
- ☐ Time synchronization : 2 ns.



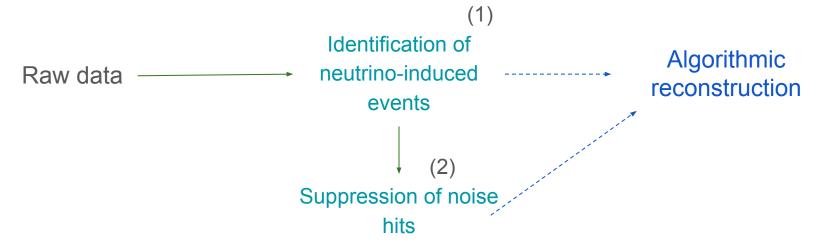


- Track-like Events
 - 200-300% energy resolution
 - 1° angular resolution

- Cascade-like Events:
 - ~20% energy resolution
 - 4° angular resolution

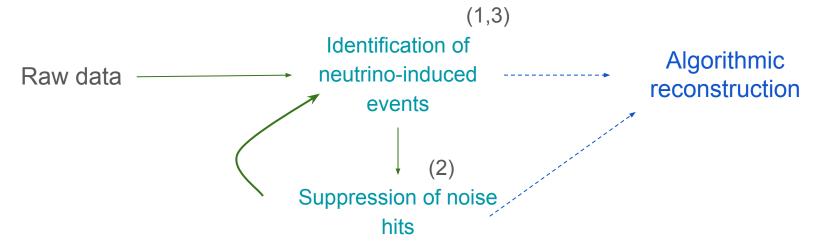
Problem: 1 neutrino per 10⁶-10⁷ air showers

Suppress background by factor of 10 while keeping 98% neutrinos.



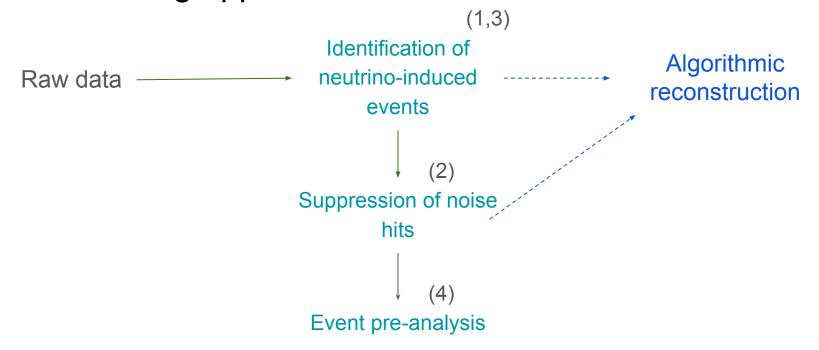
Problem: 85%-90% of collected hits are due to water luminescence

Reject OM activations due to noise

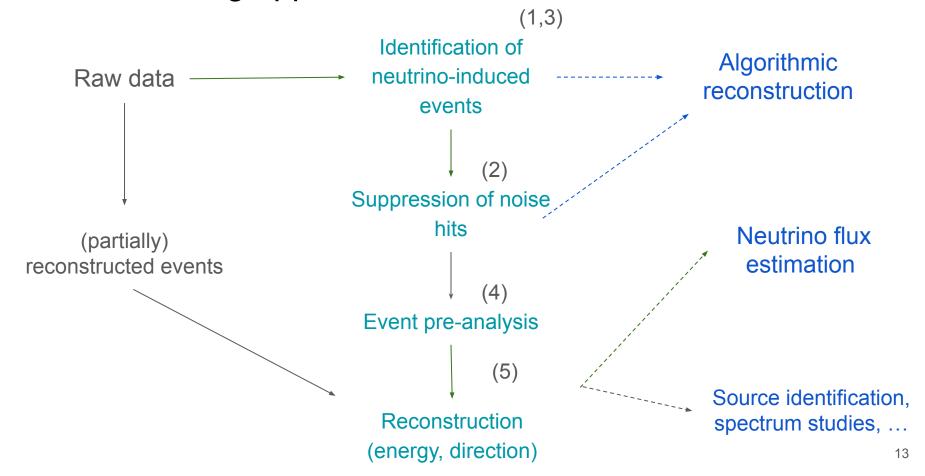


Problem: still may air showers

Identify neutrino candidates

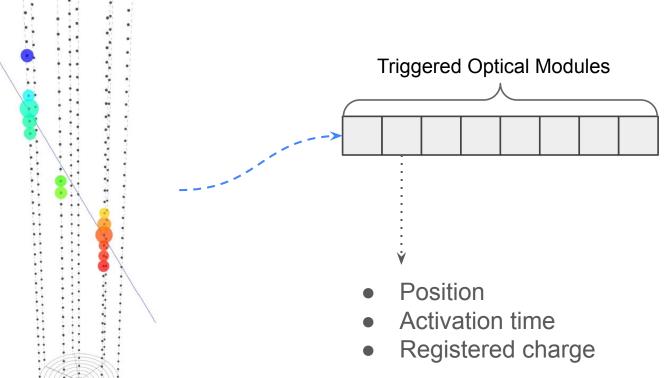


Understand event structure: segment hits, estimate track length



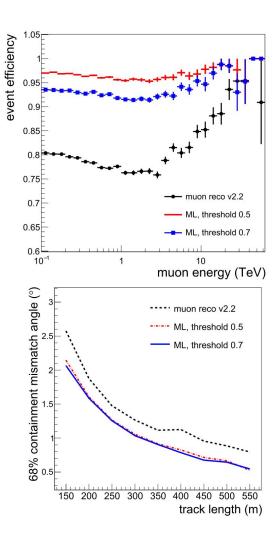
Data representation

After experiments, decided to use Transformers



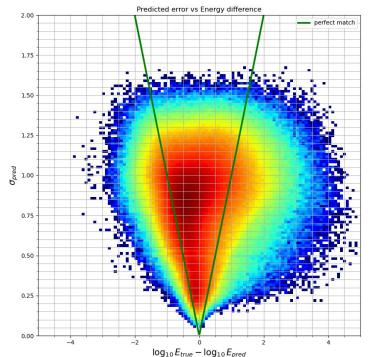
Results

- Preserve 98% neutrinos while reducing background by factor of 10
- Improved OM noise suppression
 - Hence improved reconstruction metrics
- Improved angular and energy resolution with NNs
- Neutrino flux estimation:
 - Possible to identify 10±3 neutrino events on top of 10⁶ EAS



ML-based event quality cuts

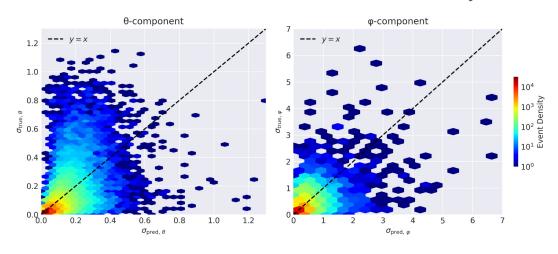
Energy reconstruction uncertainty



$$Loss = L_{reco} + ln\sigma^2 + L_{reco} / \sigma^2$$

Train NN to estimate uncertainty!

Arrival direction reconstruction uncertainty



Select events by NN uncertainty in loosen quality cuts Increased event statistics and reconstruction accuracy

The problem

Neural networks require data to train on. But what if such data is unavailable/biased?

Need to use simulations and rely on generalization / perfect MC.

Many sources of MC-data imperfections:

- Simplified MC simulations, geometry
- Detector noises and specifics
- Unknown systematics

Even if histograms closely match, NN can be over-specialized to MC data

NNs are bad at extrapolating

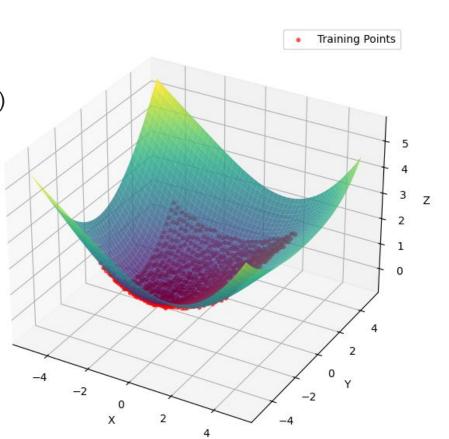
We want to fit the function:

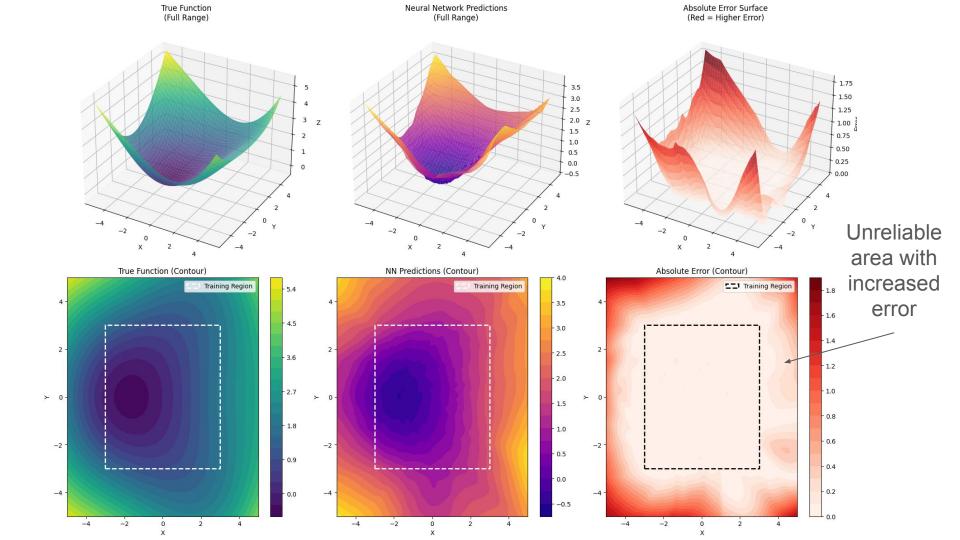
 $f(x,y) = \sin(0.5 * x) * \cos(0.5 * y) + 0.1 * (x^2 + y^2)$

with MLP: 4 hidden layers,

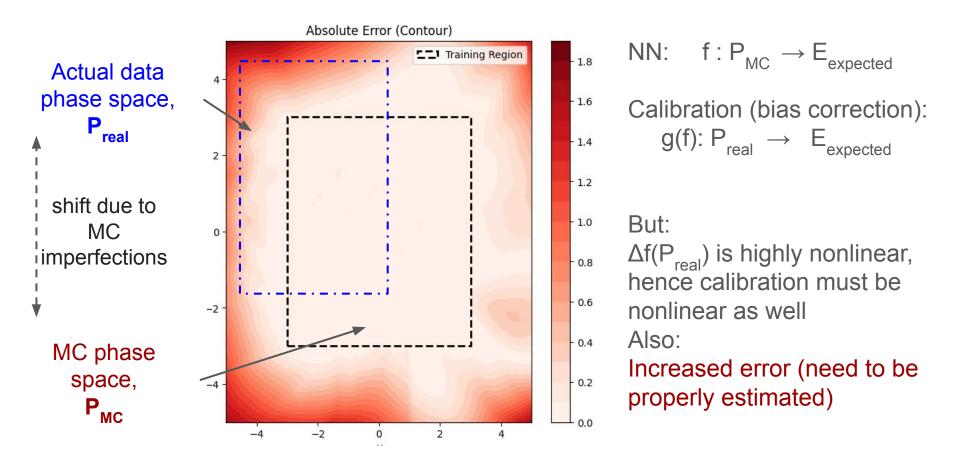
128 neurons per layer.

Training data region (MC): $x,y \in [-3, 3]$





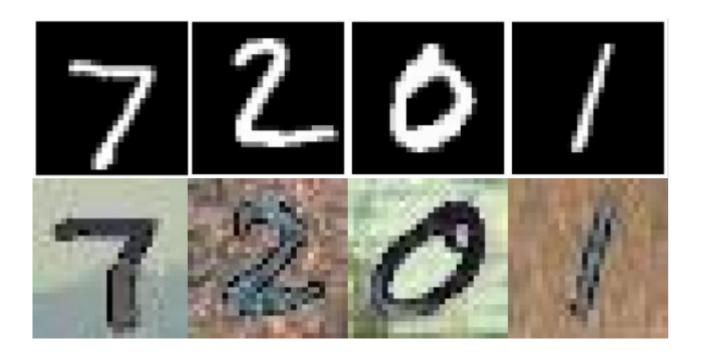
Connection to cross-calibration



Solution: Domain adaptation

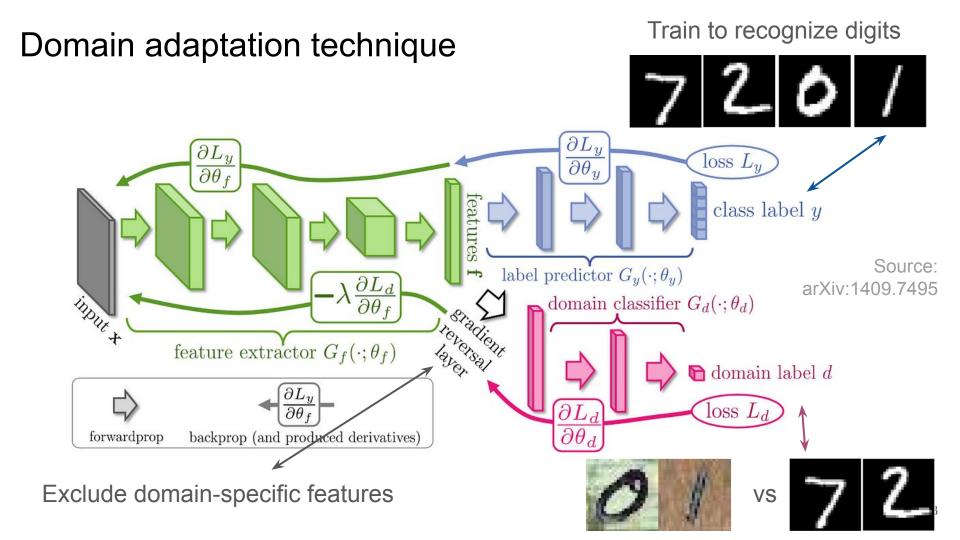
arXiv:1409.7495

Identify and learn domain-invariant features



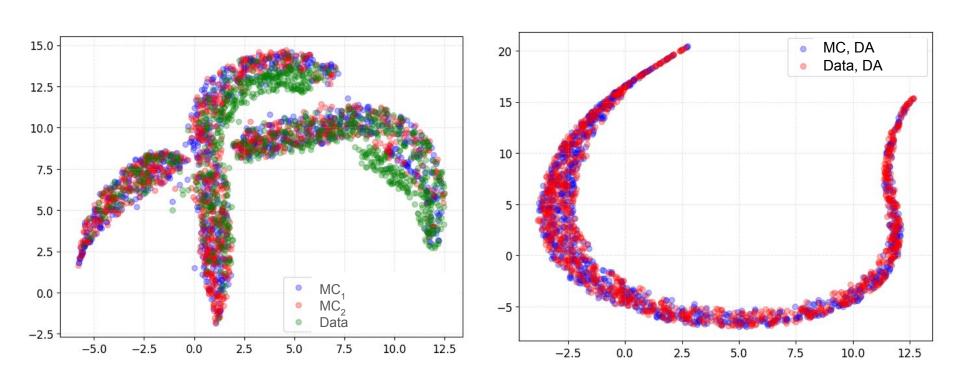
Available data for training (source domain)

Data of interest (target domain)



UMAP comparison

Project features extracted by NN to 2D using UMAP for visual comparison.



Applications in physics

- CMS@LHC (2405.13778)
- Cherenkov Telescope Array Large-Sized Telescope (2308.12732)
- Photometric Classification of Supernovae (1810.06441)
- Strong Gravitational Lens Analysis (2410.16347)

Conclusion

- Neural networks improve reconstruction accuracy
 - And are fast!

Transformer-encoder is powerful architecture suitable for many experiments

- Neural network can become specialized/biased to MC
 - Domain adaptation as solution
 - But there are some pitfalls...