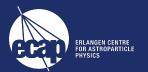
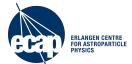
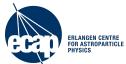


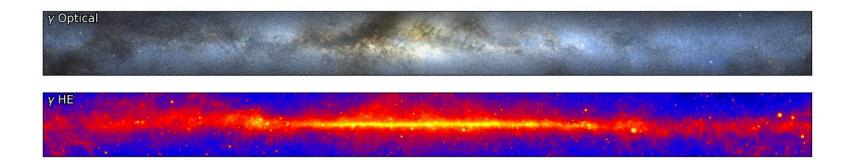
Using End-to-End Optimization to Improve the Measurement of Neutrinos from the Galactic Plane with IceCube

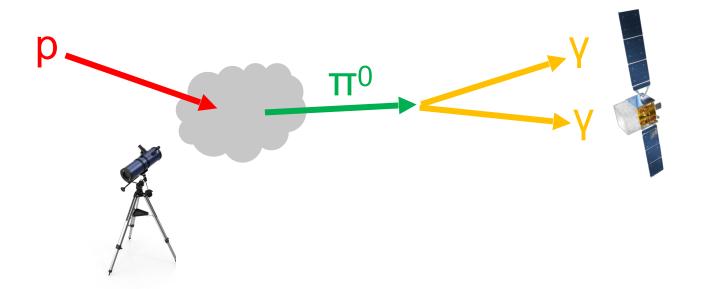


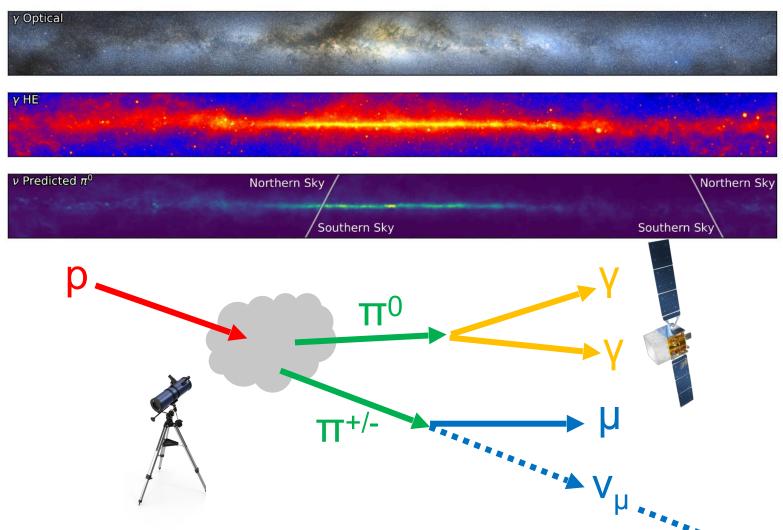
Using **End-to-End Optimization** to Improve the Measurement of Neutrinos from the Galactic Plane with IceCube



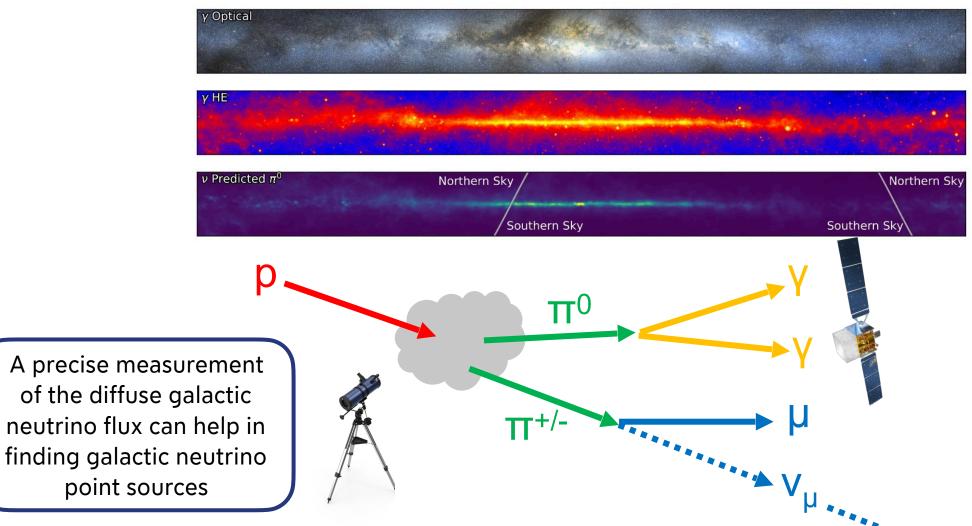




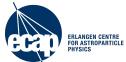


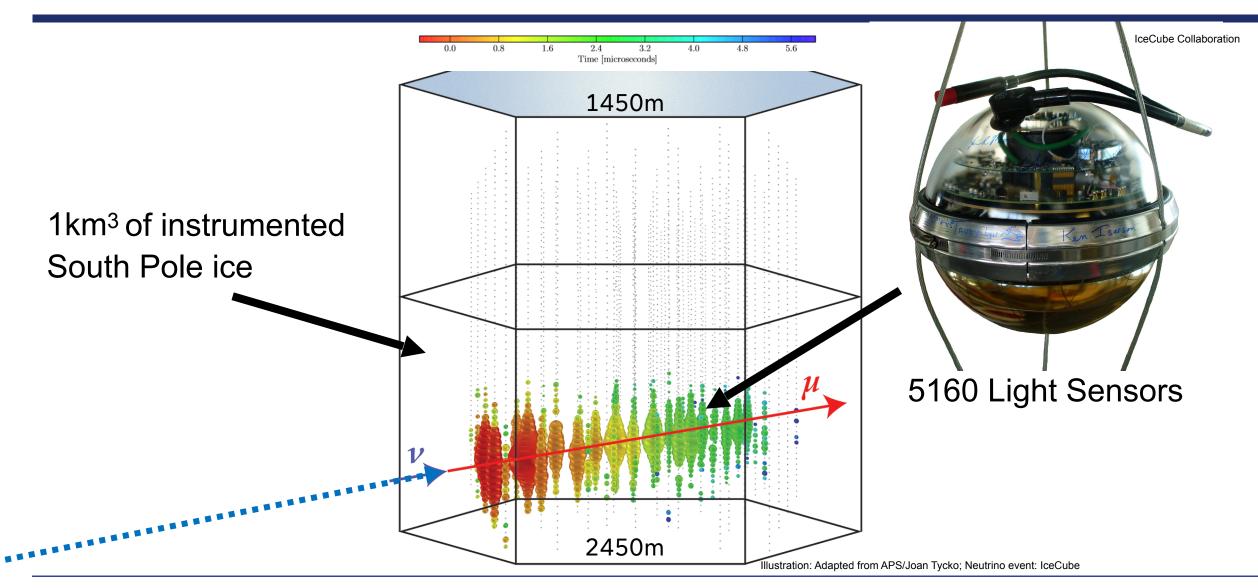


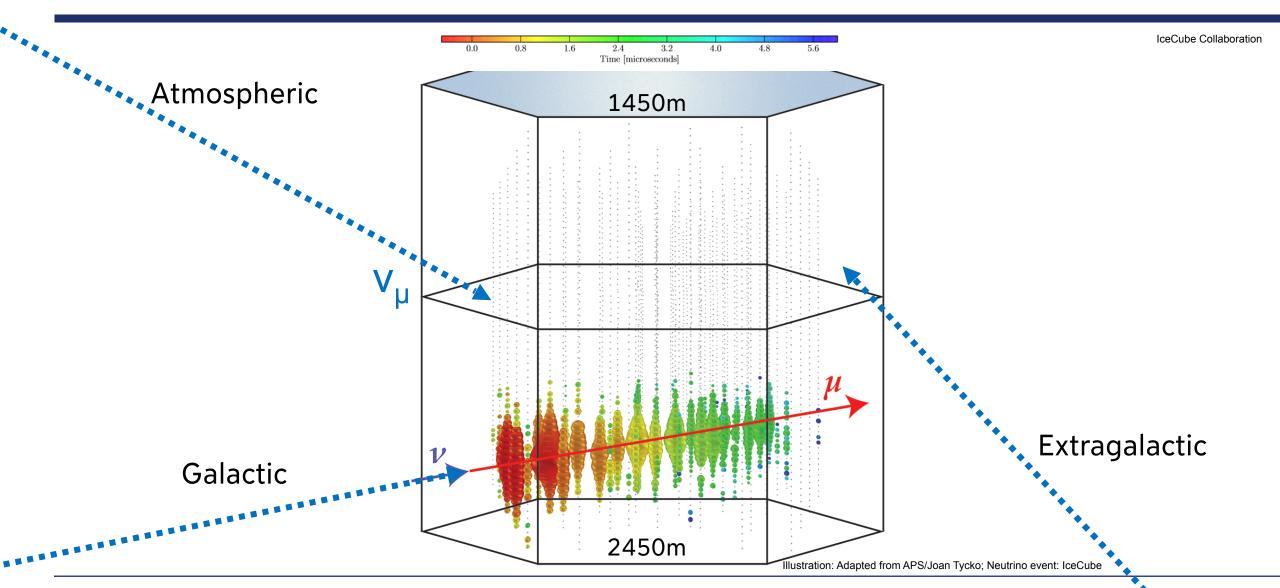
IceCube Collaboration*† Observation of highenergy neutrinos from the Galactic plane. Science 380, 1338-1343 (2023). DOI: 10.11 26/science.adc 9818



IceCube Collaboration*‡ Observation of highenergy neutrinos from the Galactic plane. Science 380, 1338-1343 (2023). DOI: 10.11 26/science.adc 9818

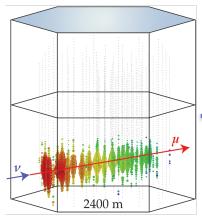






Reconstruction

Monte Carlo Simulation

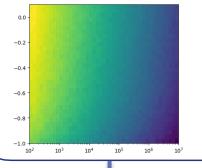


N-Dimensional Input Variables

- -Energy
- -Zenith
- -Right Ascension

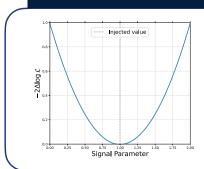
- ..

MC events weighted according to flux model



Data

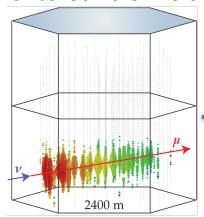
Best fit & Sensitivities



Likelihood

$$\mathcal{L} = rac{\lambda(oldsymbol{ heta})^k e^{-\lambda(oldsymbol{ heta})}}{k!}$$

Monte Carlo Simulation

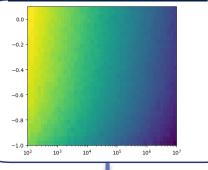


N-Dimensional Input Variables

- -Energy
- -Zenith
- -Right Ascension

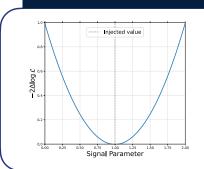
- ..

MC events weighted according to flux model



Data

Best fit & Sensitivities



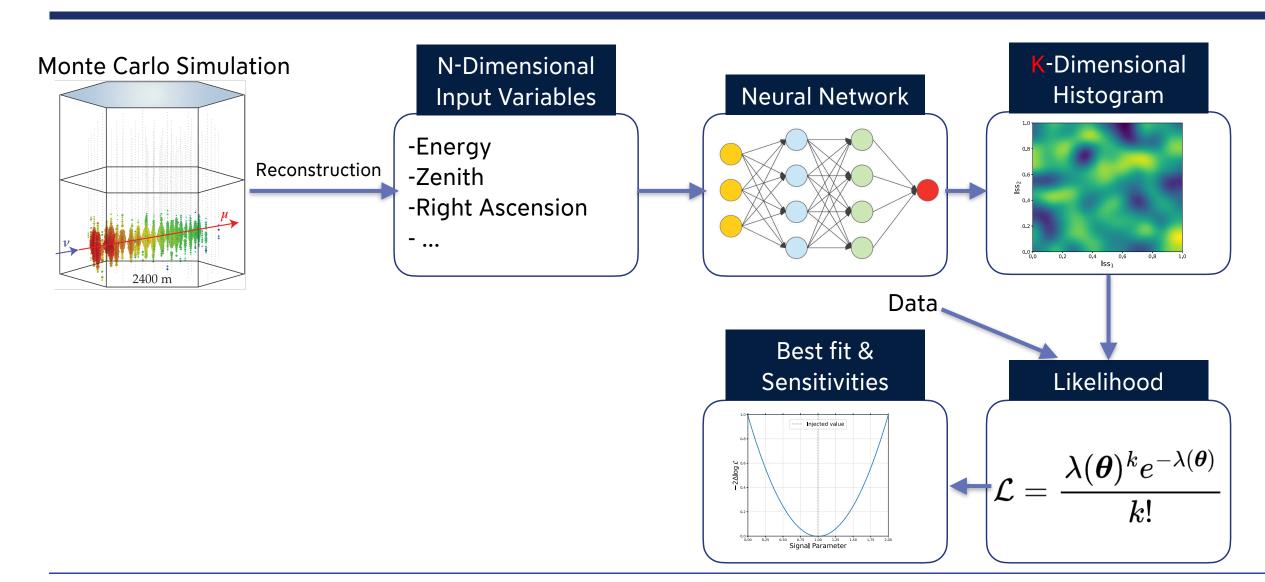
Likelihood

$$\mathcal{L} = rac{\lambda(oldsymbol{ heta})^k e^{-\lambda(oldsymbol{ heta})}}{k!}$$

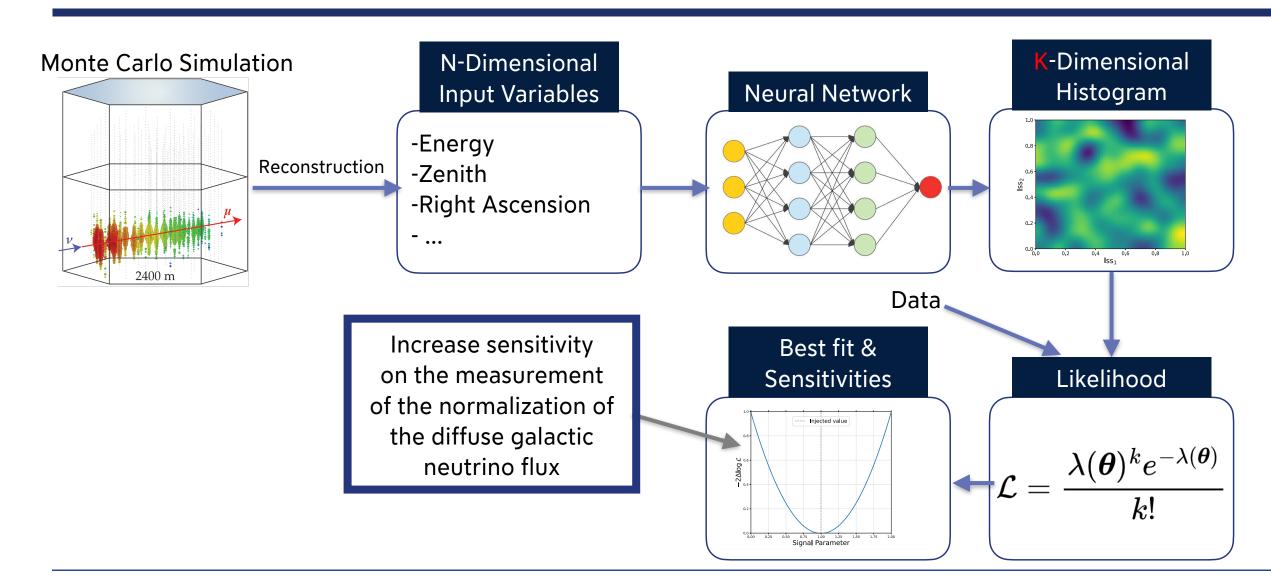
Higher dimensionality of histogram leads to exponentially more bins

Reconstruction

Will quickly run out of MC statistics!

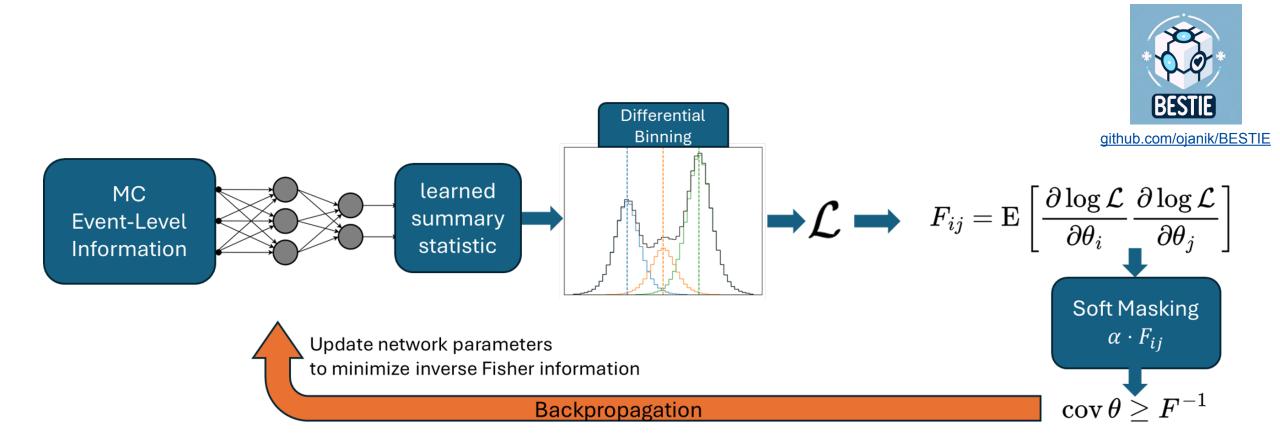






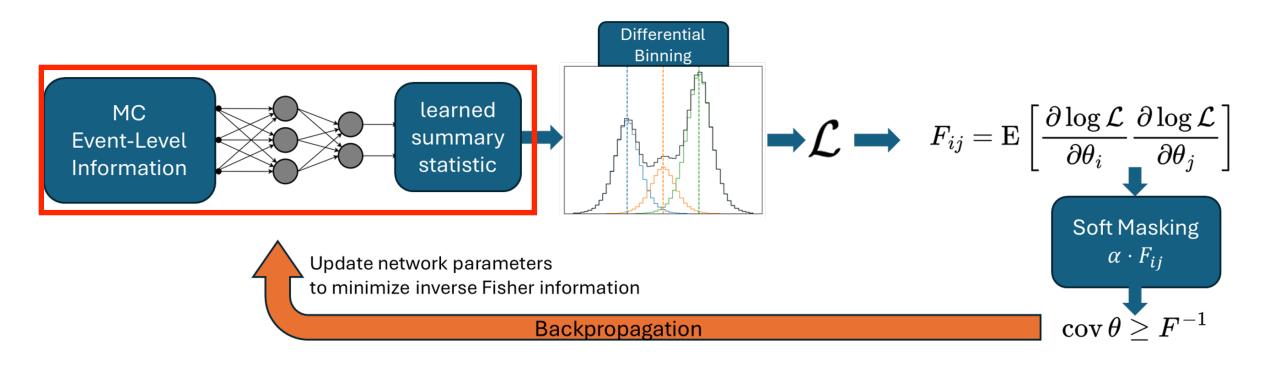
BESTIE Workflow

Binned End-to-end optimized Summary sTatistics for the Icecube Experiment

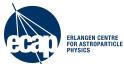


BESTIE Workflow

Binned End-to-end optimized Summary sTatistics for the Icecube Experiment



Data Sampling and Neural Network



Total MC dataset with $O(10^7)$ events

Reconstructed Energy

Reconstructed Zenith

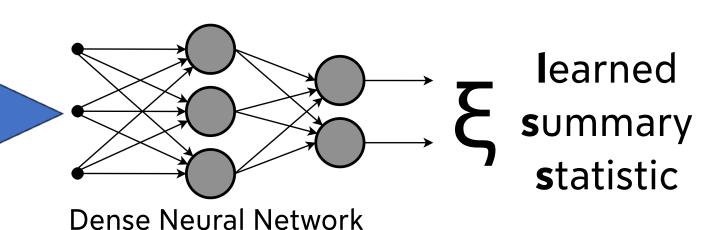
Reconstructed Right Ascension

Angular Uncertainty

Used in the standard analysis of the galactic plane

Additional input

Sample ~100k events



Data Sampling and Neural Network

Reconstructed Energy

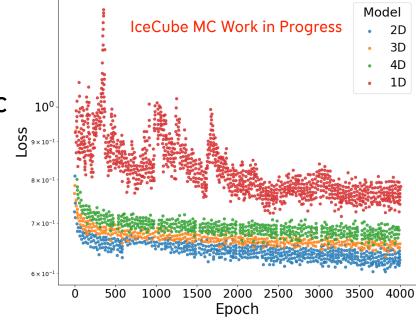
Reconstructed Zenith

Reconstructed Right Ascension

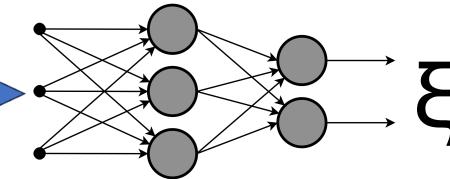
Angular Uncertainty

Used in the standard analysis of the galactic plane

Additional input



Sample ~100k events

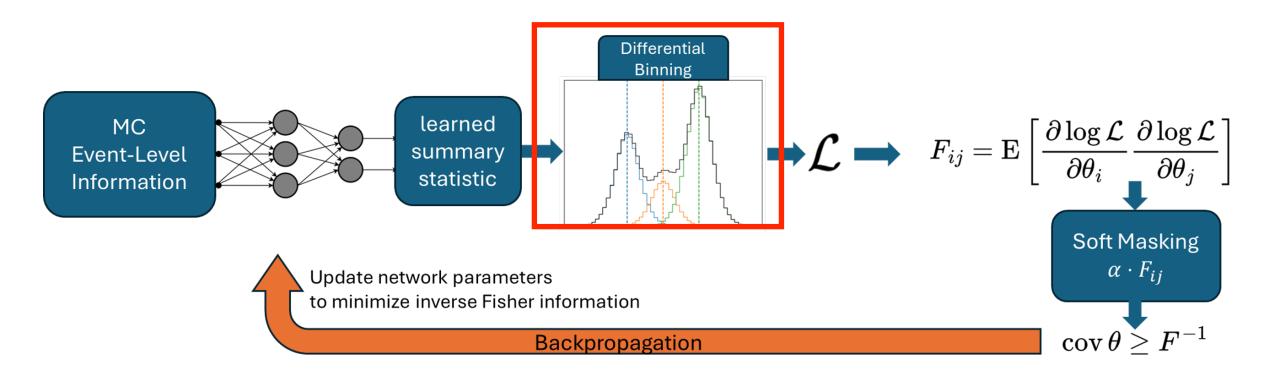


Dense Neural Network

learned summary statistic

BESTIE Workflow

Binned End-to-end optimized Summary sTatistics for the Icecube Experiment



Signal and background parameters

Bin count

$$\lambda_k = \sum_n w_n(\boldsymbol{\theta}) I_k(\xi_n)$$

Event weights

Indicator function

Signal and background parameters

Bin count

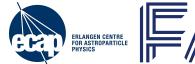
$$\lambda_k = \sum_n w_n(\boldsymbol{\theta}) I_k(\xi_n)$$

Event weights

Indicator function

Standard indicator function:

$$I_k(\xi_n) = \begin{cases} 1, & \text{if } b_k \le \xi_n < b_{k+1} \\ 0, & \text{else} \end{cases}$$



Signal and background parameters

Bin count

$$\lambda_k = \sum_n w_n(\boldsymbol{\theta}) I_k(\xi_n)$$

Event weights

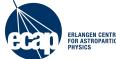
Indicator function

Standard indicator function:

$$I_k(\xi_n) = \begin{cases} 1, & \text{if } b_k \le \xi_n < b_{k+1} \\ 0, & \text{else} \end{cases}$$

Differential indicator function:

$$I_k(\xi_n) = \tanh\left(\frac{\xi_n - b_k}{S}\right) \tanh\left(\frac{b_{k+1} - \xi_n}{S}\right) + 1$$



Signal and background parameters

Bin count

$$\lambda_k = \sum_n w_n(\boldsymbol{\theta}) I_k(\xi_n)$$

Event weights

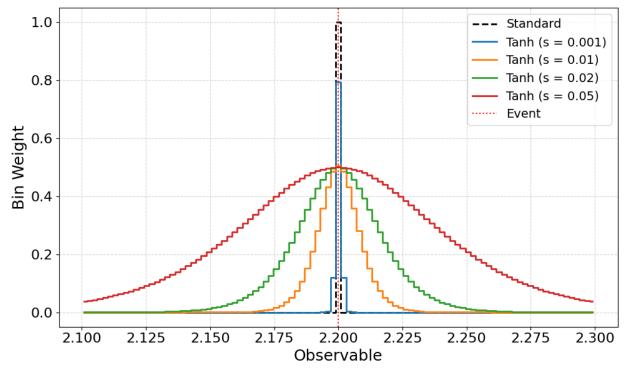
Indicator function

Standard indicator function:

$$I_k(\xi_n) = \begin{cases} 1, & \text{if } b_k \le \xi_n < b_{k+1} \\ 0, & \text{else} \end{cases}$$

Differential indicator function:

$$I_k(\xi_n) = \tanh\left(\frac{\xi_n - b_k}{s}\right) \tanh\left(\frac{b_{k+1} - \xi_n}{s}\right) + 1$$



Signal and background parameters

Bin count

$$\lambda_k = \sum_n w_n(\boldsymbol{\theta}) I_k(\xi_n)$$

Event weights

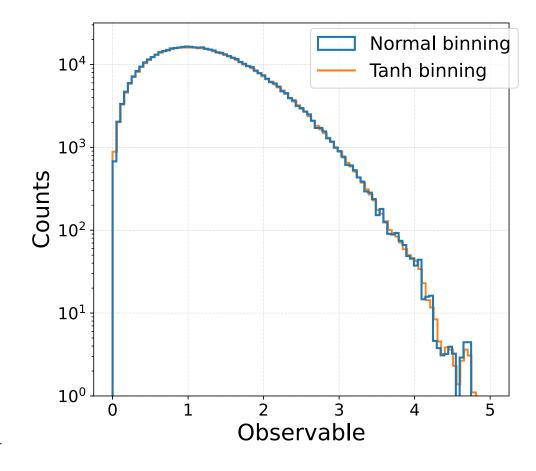
Indicator function

Standard indicator function:

$$I_k(\xi_n) = \begin{cases} 1, & \text{if } b_k \le \xi_n < b_{k+1} \\ 0, & \text{else} \end{cases}$$

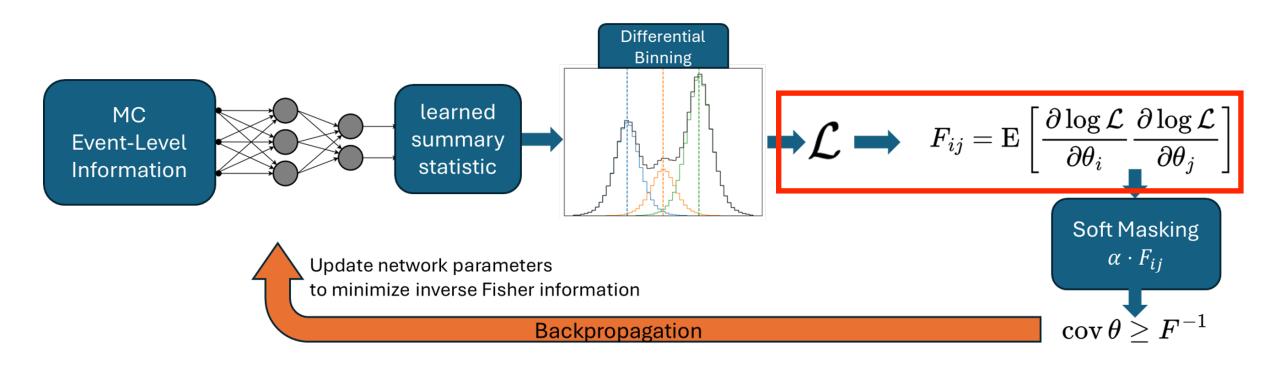
Differential indicator function:

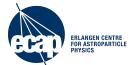
$$I_k(\xi_n) = \tanh\left(\frac{\xi_n - b_k}{s}\right) \tanh\left(\frac{b_{k+1} - \xi_n}{s}\right) + 1$$



BESTIE Workflow

Binned End-to-end optimized Summary sTatistics for the Icecube Experiment





The per-bin Fisher Information is given by:

$$F_{ij,k} = \mathrm{E}\left[rac{\partial \log \mathcal{L}_k}{\partial heta_i} rac{\partial \log \mathcal{L}_k}{\partial heta_j}
ight]$$

The per-bin Fisher Information is given by:

$$F_{ij,k} = \mathrm{E}\left[rac{\partial \log \mathcal{L}_k}{\partial heta_i} rac{\partial \log \mathcal{L}_k}{\partial heta_j}
ight]$$

$$\mathcal{L}(\lambda \mid \mu) = rac{\lambda^{\mu} e^{-\lambda}}{\mu!}$$

$$F_{ij,k} = rac{1}{\lambda} rac{\partial \lambda_k}{\partial heta_i} rac{\partial \lambda_k}{\partial heta_j}$$

The per-bin Fisher Information is given by:

$$F_{ij,k} = \mathrm{E}\left[rac{\partial \log \mathcal{L}_k}{\partial heta_i} rac{\partial \log \mathcal{L}_k}{\partial heta_j}
ight]$$

Insert Poisson Likelihood
$$\mathcal{L}(\lambda \mid \mu) = rac{\lambda^{\mu} e^{-\lambda}}{\mu!}$$

$$F_{ij,k} = rac{1}{\lambda} rac{\partial \lambda_k}{\partial heta_i} rac{\partial \lambda_k}{\partial heta_j}$$
 Insert Rinsount

Insert Bincount

$$\lambda_k = \sum_n w_n(oldsymbol{ heta}) I_k\left(\xi_n
ight)$$

$$F_{ij,k} = rac{\sum_{n} rac{\partial w_{n}(heta)}{\partial heta_{i}} I_{k}\left(\xi_{n}
ight) \cdot \sum_{n} rac{\partial w_{n}(heta)}{\partial heta_{j}} I_{k}\left(\xi_{n}
ight)}{\sum_{n} w_{n}(heta) I_{k}\left(\xi_{n}
ight)}$$

The per-bin Fisher Information is given by:

$$F_{ij,k} = \mathrm{E}\left[rac{\partial \log \mathcal{L}_k}{\partial heta_i} rac{\partial \log \mathcal{L}_k}{\partial heta_j}
ight]$$

$$F_{ij,k} = rac{1}{\lambda} rac{\partial \lambda_k}{\partial heta_i} rac{\partial \lambda_k}{\partial heta_j}$$
 Insert Bir

Insert Bincount

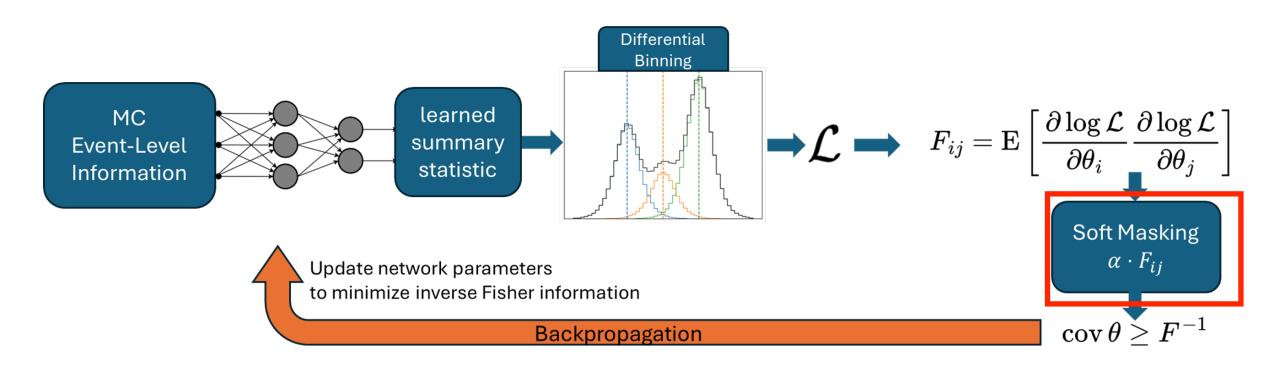
$$\lambda_k = \sum_n w_n(oldsymbol{ heta}) I_k\left(\xi_n
ight)$$

Can precalulate the weights and derivatives to save computation time during training!

$$F_{ij,k} = rac{\sum_{n} rac{\partial w_{n}(heta)}{\partial heta_{i}} I_{k}\left(\xi_{n}
ight) \cdot \sum_{n} rac{\partial w_{n}(heta)}{\partial heta_{j}} I_{k}\left(\xi_{n}
ight)}{\sum_{n} w_{n}(heta) I_{k}\left(\xi_{n}
ight)}$$

BESTIE Workflow

Binned End-to-end optimized Summary sTatistics for the Icecube Experiment



The Matter of Insufficient MC Statistics

Poisson likelihood does not account for insufficient MC statistics

$$\mathcal{L}(\lambda \mid \mu) = rac{\lambda^{\mu} e^{-\lambda}}{\mu!}$$

$$\lambda_k = \sum_n w_n(oldsymbol{ heta}) I_k\left(\xi_n
ight)$$

The Matter of Insufficient MC Statistics

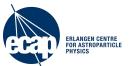
To account for limited MC statistics, use effective likelihood:

$$\mathcal{L}(\lambda \mid \mu) = \frac{\lambda^{\mu} e^{-\lambda}}{\mu!} \longrightarrow \mathcal{L}_{\text{Eff}}(\vec{\theta} \mid \mu) = \left(\frac{\lambda}{\sigma^2}\right)^{\frac{\lambda^2}{\sigma^2} + 1} \Gamma\left(\mu + \frac{\lambda^2}{\sigma^2} + 1\right) \left[\mu! \left(1 + \frac{\lambda}{\sigma^2}\right)^{\mu + \frac{\lambda^2}{\sigma^2} + 1} \Gamma\left(\frac{\lambda^2}{\sigma^2} + 1\right)\right]^{\frac{1}{\sigma^2}}$$

$$\lambda_k = \sum_n w_n(oldsymbol{ heta}) I_k\left(\xi_n
ight)$$

Expectation:
$$\lambda_k = \sum_n w_n(m{ heta}) I_k\left(\xi_n
ight)$$
 Absolute uncertainty: $\sigma_k^2 = \sum_n w_n^2(m{ heta}) I_k\left(\xi_n
ight)$

The Matter of Insufficient MC Statistics



To account for limited MC statistics, use effective likelihood:

$$\mathcal{L}(\lambda \mid \mu) = \frac{\lambda^{\mu} e^{-\lambda}}{\mu!} \longrightarrow \mathcal{L}_{\mathrm{Eff}}(\vec{\theta} \mid \mu) = \left(\frac{\lambda}{\sigma^2}\right)^{\frac{\lambda^2}{\sigma^2} + 1} \Gamma\left(\mu + \frac{\lambda^2}{\sigma^2} + 1\right) \left[\mu! \left(1 + \frac{\lambda}{\sigma^2}\right)^{\mu + \frac{\lambda^2}{\sigma^2} + 1} \Gamma\left(\frac{\lambda^2}{\sigma^2} + 1\right)\right]^{\frac{1}{\sigma^2}}$$

$$\lambda_k = \sum_n w_n(oldsymbol{ heta}) I_k\left(oldsymbol{\xi}_n
ight)$$

Expectation:
$$\lambda_k = \sum_n w_n(m{ heta}) I_k\left(\xi_n
ight)$$
 Absolute uncertainty: $\sigma_k^2 = \sum_n w_n^2(m{ heta}) I_k\left(\xi_n
ight)$

During training: Want to use simple solution for Fisher information found with the Poisson likelihood. Not given for the effective likelihood.

Soft Masking

Expectation:

$$\lambda_k = \sum_n w_n(oldsymbol{ heta}) I_k\left(\xi_n
ight)$$

Absolute uncertainty:

$$\sigma_k^2 = \sum_n w_n^2(oldsymbol{ heta}) I_k\left(\xi_n
ight)$$

Relative uncertainty:

$$\sigma_{rel,k} = rac{\sigma_k}{\lambda_k}$$

Soft Masking

Expectation:

$$\lambda_k = \sum_n w_n(oldsymbol{ heta}) I_k\left(oldsymbol{\xi}_n
ight)$$

Absolute uncertainty:

$$\sigma_k^2 = \sum_n w_n^2(oldsymbol{ heta}) I_k\left(oldsymbol{\xi}_n
ight)$$

Relative uncertainty:

$$\sigma_{rel,k} = rac{\sigma_k}{\lambda_k}$$

During training mask the per-bin Fisher Information:

$$F_{ij,k}' = F_{ij,k} \cdot \left(1 + rac{1}{1 + \exp((t - \sigma_{rel,k})/s)}
ight)$$

Threshold, above which rel. uncertainty masking occurs, e.g., 5%

Sharpness, how abrupt the masking is

Soft Masking



Expectation:

$$\lambda_k = \sum_n w_n(oldsymbol{ heta}) I_k\left(oldsymbol{\xi}_n
ight)$$

Absolute uncertainty:

$$\sigma_k^2 = \sum_n w_n^2(oldsymbol{ heta}) I_k\left(oldsymbol{\xi}_n
ight)$$

Relative uncertainty:

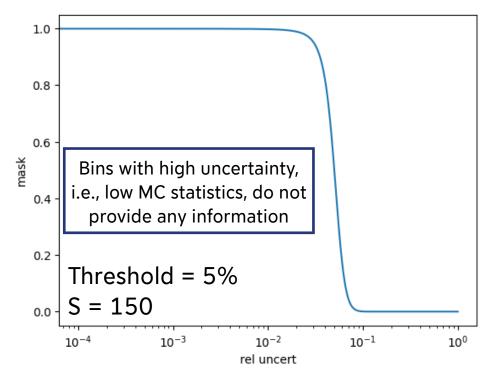
$$\sigma_{rel,k} = rac{\sigma_k}{\lambda_k}$$

During training mask the per-bin Fisher Information:

$$F'_{ij,k} = F_{ij,k} \cdot \left(1 + rac{1}{1 + \exp((t - \sigma_{rel,k})/s)}
ight)$$

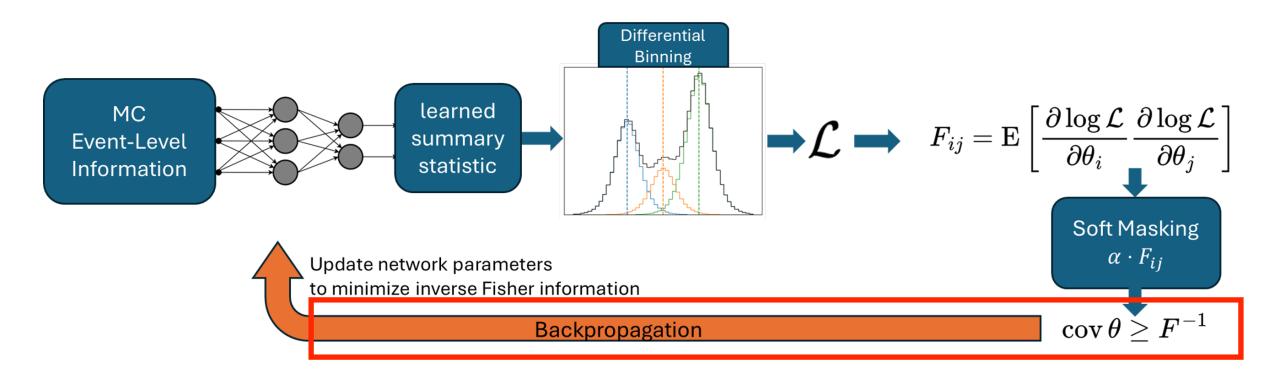
Threshold, above which rel. uncertainty masking occurs, e.g., 5%

Sharpness, how abrupt the masking is



BESTIE Workflow

Binned End-to-end optimized Summary sTatistics for the Icecube Experiment



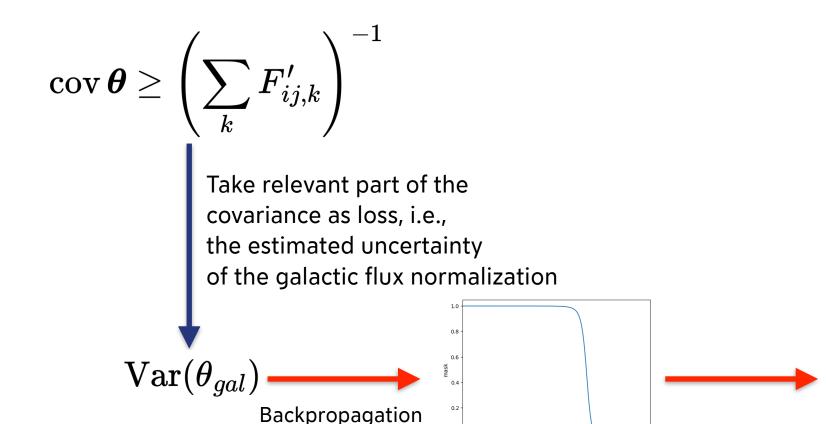
Get estimate of the covariance from Cramér-Rao-Bound

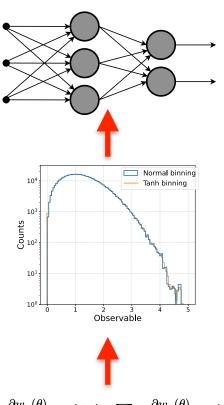
$$\cot oldsymbol{ heta} \geq \left(\sum_k F'_{ij,k}
ight)^{-1}$$

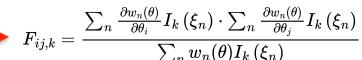
Get estimate of the covariance from Cramér-Rao-Bound

$$\cot m{ heta} \geq \left(\sum_k F'_{ij,k}
ight)^{-1}$$
 Take relevant part of the covariance as loss, i.e., the estimated uncertainty of the galactic flux normalization $\operatorname{Var}(heta_{gal})$

Get estimate of the covariance from Cramér-Rao-Bound







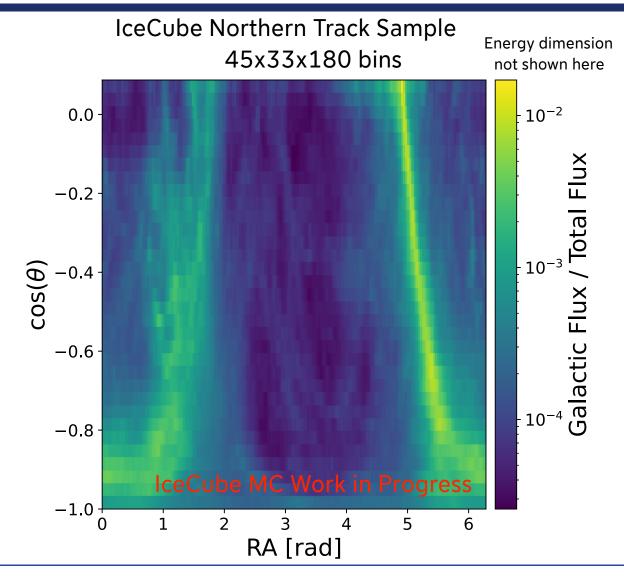
rel uncert



Results

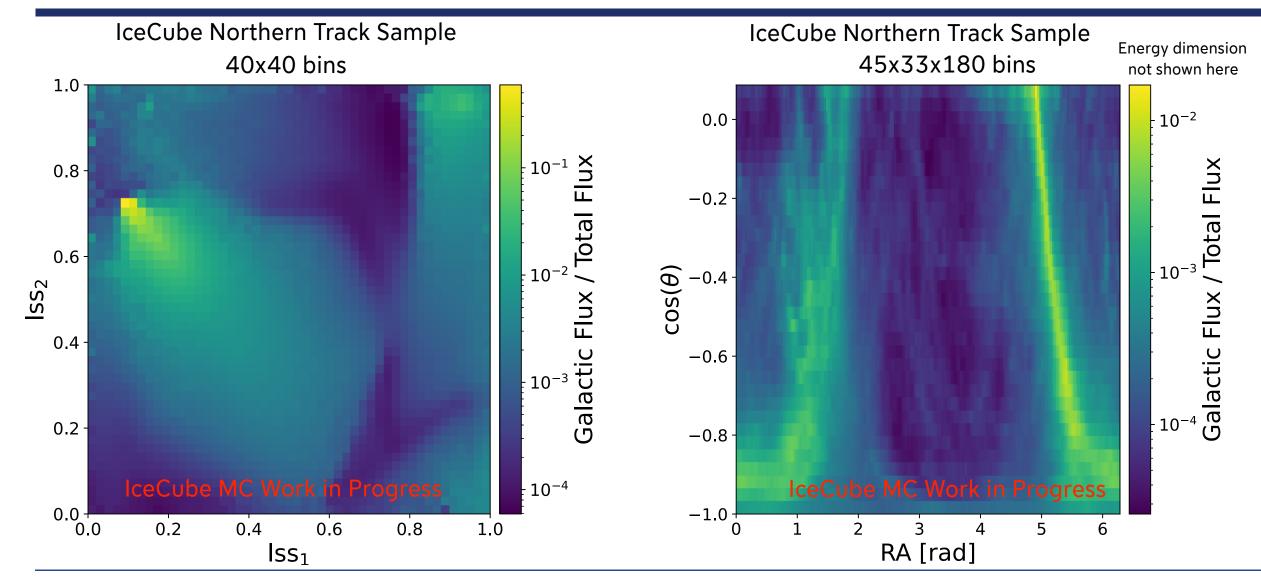
Results Histograms

Using IceCube Northern Tracks

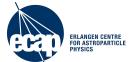


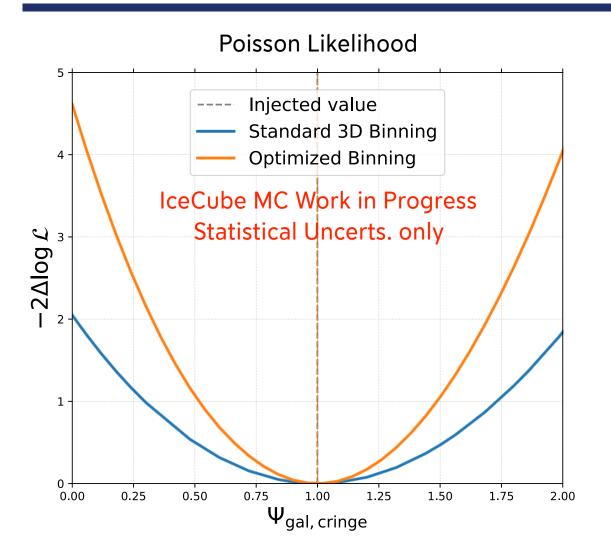
Results Histograms

Using IceCube Northern Tracks

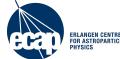


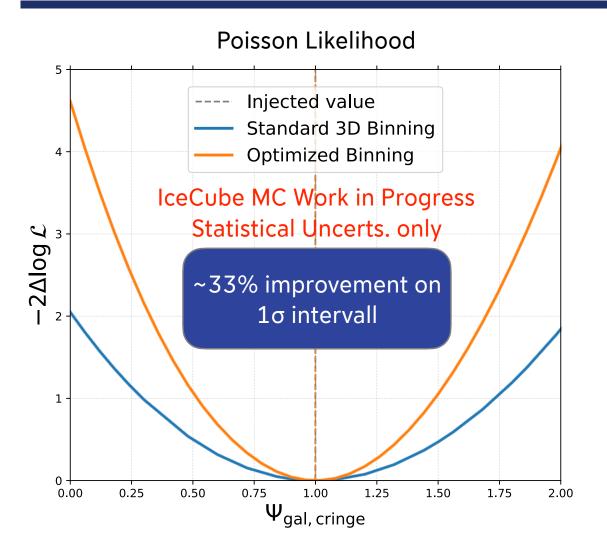
Results Likelihood Profile



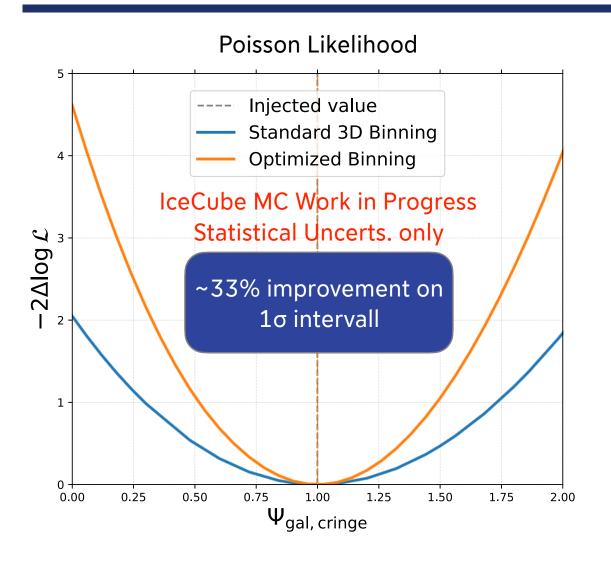


Results Likelihood Profile





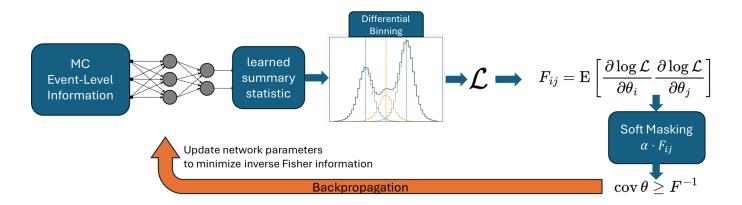
Results Likelihood Profile

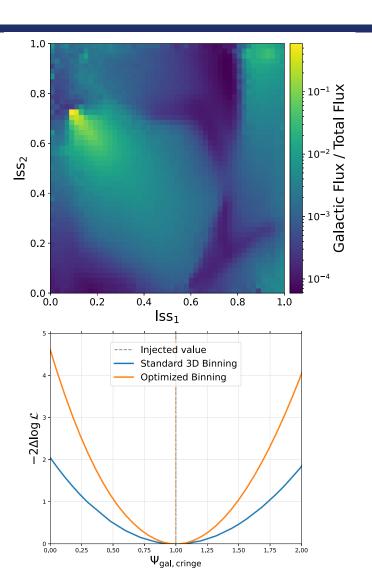


Effective Likelihood Injected value Standard 3D Binning **Optimized Binning** IceCube MC Work in Progress Statistical Uncerts. only **4** 3 2Alog 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1 75 2.00 $\psi_{\text{gal, cringe}}$

Summary

- Build fully differentiable analysis pipeline
- Improvement to standard binning by ~33%
- Use increased sensitivity to do a precise measurement of the galactic neutrino flux
- Constraining this flux can help in identifying galactic neutrino point sources





Backup

Data preprocessing

Event features

Reco Energy

Reco Zenith

Reco RA

Angular uncertainty

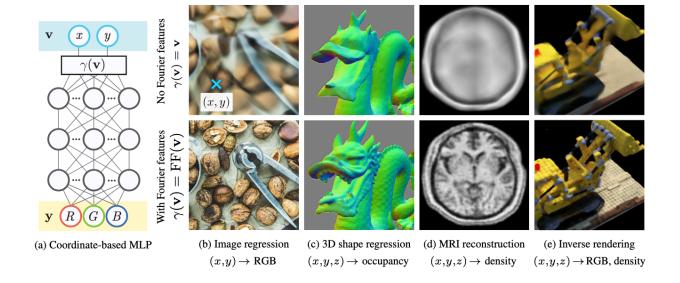
Normalize data

Select data from analysis region

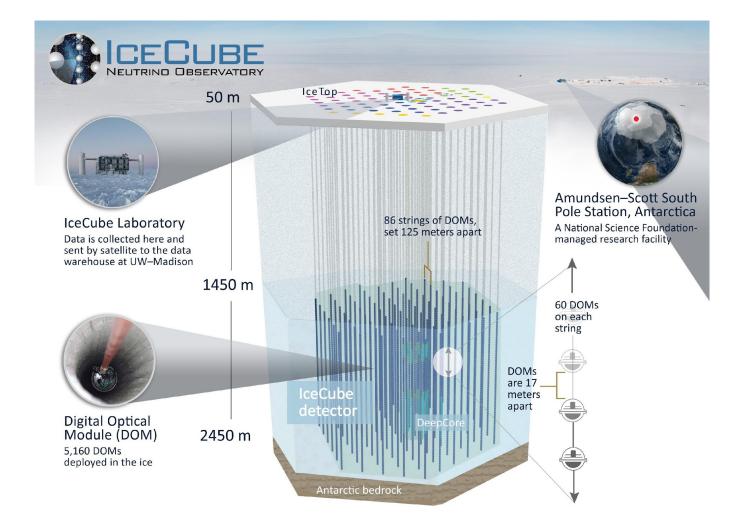
Fourier Feature Mapping

$$\gamma(oldsymbol{v}) = egin{bmatrix} \cos(oldsymbol{B}oldsymbol{v}) \ \sin(oldsymbol{B}oldsymbol{v}) \end{bmatrix}$$

B sampled from $\,\mathcal{N}(0,\sigma^2)$



IceCube Neutrino Observatory



Differential Binning

summary statistic

$$\operatorname{Norm} \cdot 0.5 \left(anh \left(rac{\operatorname{lss} - b_i}{s}
ight) \cdot anh \left(rac{b_{i+1} - \operatorname{lss}}{s}
ight) + 1
ight)$$
Bandwidth

Bin edges

$$\left(rac{b_{i+1} - \mathrm{lss}}{s}
ight) + 1$$

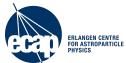
~twice as fast to evaluate as a binned kde

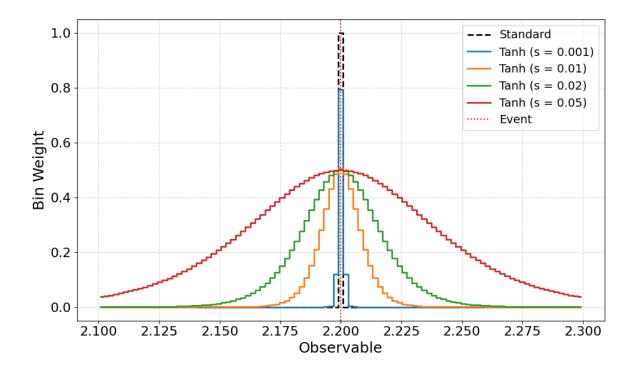
For N-dimensional:

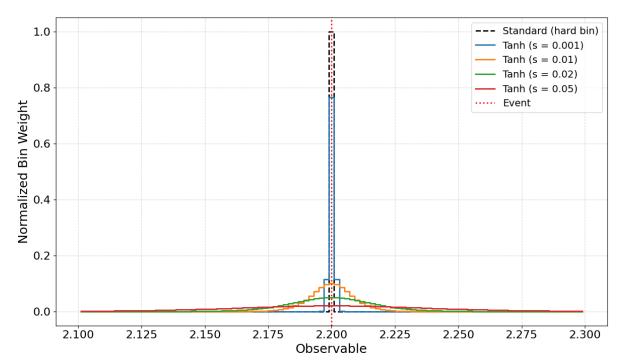
$${\mathcal{B}_{i_1 i_2 \ldots i_D}} = igotimes_{d=1}^D rac{ ext{Norm}}{2} \left(anh \left(rac{ ext{lss}_d - b_{i_d}^{(d)}}{s_d}
ight) \cdot anh \left(rac{b_{i_d+1}^{(d)} - ext{lss}_d}{s_d}
ight) + 1
ight)$$

Outer product over all binning dimensions

Normalization of Bins







Optimization with Multiple Datasets

