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LArTPC differentiable simulator
General update and looking at uncertainty propagation
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Moving towards precision measurements
The example of DUNE

• Future high-precision measurements will require 
unprecedented constraining of the systematic 
uncertainties


• Detector-related systematics will be very important

« Well-understood 
detector modeling and 
calibration are vital » 

Eur.Phys.J.C 80 (2020) 10, 978
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Liquid Argon Time Projection Chambers (LArTPCs)
Principle

Signal production steps:


• Argon ionisation


• Ionisation electrons drifted by E field


• Signal induction on anode plane


• Electronics self-triggering 3

• Allows to get precise 3D picture of the 
interaction


• Relies on multiple physical processes → 
importance of calibration



Handling detector calibration
The usual way

• Find yourself some calibration sample (e.g., 
through-going muons)


• Look at some summary quantity (e.g., dQ/dx as 
a function of time)


• Fit parameter values


• Input new values into MC, check Data/MC 
mismatch
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Handling detector calibration
The issues

• Tedious iterative calibration procedure


• Hard to handle well interplays 
between the different parameters


• Relies on summary quantities rather 
than low-level information → lossy 
compression of information + 
depends on some reconstruction
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Introducing a differentiable simulator
Working principle

6

Forward
Model

Parameters

Differentiable
Foward Model

Loss

Requires forward
model to be
differentiable:

Gradient Descent
on 

Synthetic Data

Real Data, X

-

• The differentiable nature of the simulator allows to perform gradient descent


• Unified framework for simulation and calibration


• Working directly on the low-level observables (hits)
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Calibration in practice
A 2D example

1. Choose the initial parameter values 0


2. Run the forward simulation 


3. Compare the simulation output and the target 
data with a loss function 


4. Calculate gradients for the parameters 



5. Update parameter values  to minimize 
the loss


Iterate step 2. to 5.

θ0

f(χ, θ0)

ℒ( f(χ, θ0), Ftarget)

∇θℒ( f(χ, θ0), Ftarget)

θ0 → θi
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• Input particle segments (position and energy 
deposition): 


• Model parameters: 


• Differentiable simulation: 


•  Target data: 

χ

θ

f(χ, θ)

Ftarget



LArNDSim-jax
How does it work in principle

Take existing DUNE near-detector 
simulation (JINST 18 P04034) and make it 
differentiable:


• Retain physics quality of a tool used 
collaboration-wide while adding ability 
to propagate derivatives


• Demonstrate the use of this 
differentiable simulation for gradient-
based calibration and uncertainty 
propagation 

• Rewritten in JAX to benefit from 
autodial, JIT, XLA, …
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https://github.com/pgranger23/larnd-sim-jax

https://github.com/pgranger23/larnd-sim-jax


LArNDSim-jax
Changes since last year

• Computational performance improvement


• Implementation of current LUT with 
interpolation


• Now considering signals induced on 
neighbouring pixels (each electron induces 
signal on 81 pixels)


• Running more tests to ensure no major 
deviation from the reference simulator
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Calibration
Improvements

• Adding misalignment 
parameters (shift_{xyz})


• New loss function that can 
handle translations


• See more in Yifan’s talk with 
application on real data
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Sources of uncertainties
And where to find them

• Statistical uncertainty from stochastic 
processes:


• Electrons diffusion


• Electronics noise


• Systematic uncertainties from our model:


• Uncertainty of the input data model (track dE/
dx, position, …)


• Uncertainty of the detector parameters (the 
ones we want to calibrate)
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Dealing with stochasticity
Electrons diffusion

• Large number of electrons → only need to simulate 
the integrated collective behaviour


• Transverse diffusion: compute the integrated amount 
of charge on each LUT bin using error function.


• Longitudinal diffusion:


• Using templated response functions with different 
values of the transverse diffusion value


• Making a quadratic interpolation for any value


• Max of the difference on the whole waveform 
below 0.5%

12



Towards a probabilistic electronics simulation
Self triggering in DUNE ND

• DUNE ND technology is relying on self triggering 
logic to automatically build hits


• Simulation of correlated noise across the ticks 
(reset charge noise) and uncorrelated noise


• When the signal (+ relevant noises) crosses the 
threshold, a new hit is triggered. The hit duration 
is fixed and the number of ADC corresponds to 
the digitised cumulated charge at (hit_time + 
hit_duration).


• Then re-triggerings can happen to form new 
hits and so on.
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Towards a probabilistic electronics simulation
Impact of electronics stochasticity

This self-triggering logic implies several 
things:


• 2 different noise seeds can lead to very 
different (>20 ticks) hit outputs


• Output depends highly on the pixel 
discrimination threshold (non-uniform 
across the readout plane)


→ not ideal to get meaningful and 
accurate gradients/estimates for 
calibration
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Running the digitization simulation 10000 
times with different seeds for identical 

waveform



Dealing with electronics noise
Towards a probabilistic simulator

Difficulties associated to the stochastic processes. 
Different options/problems:


• Simulate reference without noise, should be 
representative, no? Well no!


• Simulate a single noise seed: not very accurate 
(  away from another random seed)


• Simulate many noise seeds and get some 
average: slow!


• Directly outputting probability distribution: 
enables likelihood fit, smoother evolutions/
gradients, fast

2σ
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No-noise case close to observed 
mean for trigger 0

Only samples the case 
without retriggering

Misses big part of 
the distribution

dashed line: avg w.o. noise 
plain line: actual avg



Towards a probabilistic simulator
Doing some basic maths

The noise being gaussian, it is possible 
to derive analytically the hit probability 
distribution for a given waveform (under 
some approximations and assumptions)


Things boil down to (modulo many 
subtleties):


𝒫(trigger at t) =
1 + erf (S(t) − T)

2 2σ
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Towards a probabilistic simulator
Handling re-triggering

Things get a bit more complicated with 
re-triggering as the state of the new 
waveform depends on the triggering 
probabilities of the previous hit → 
complexity grows exponentially


Implementing some beam-search 
algorithm: iteratively work on many 
possible paths in parallel, keeping the 
most probable ones
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Towards a probabilistic simulator
Results
• Outputs the joint 2D probability distribution (hit tick + hit ADC)


• Way more powerful than returning one random draw (statistical uncertainty 
estimation, likelihood fit, …) for <10x the computational cost of a single seed
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Tick

Comparison of the 1D observed distributions (hist) vs 
probabilistic estimate → very good agreement



Towards a probabilistic simulator
Results
• Checking the accuracy of the hit probability estimate (sum of output 

probability distribution)


• < 1% error on hit probability
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Towards a probabilistic simulator
Results

• Looking at average expected hit time 
(weighted by prob density)


• Error below 1 tick
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Towards a probabilistic simulator
Results

• Looking at average expected hit ADC 
(weighted by prob density)


• Error below 0.25 ADC
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Towards a probabilistic simulator
Checking the gradients
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• Smooth evolution of the output average values with detector params


• Accurate gradients, the noise level can even now be calibrated too



Calibration
Estimating the uncertainty

Option 1: Doing ensembling by 
conducting several fits with 
different data shuffling seeds and 
initial parameters


Caveats:


•Computationally intensive


•Overkill as you are only 
interested by the behaviour of 
your function near the minimum


•Good for cross-checks
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Calibration
Estimating the uncertainty

Option 2: Analyse the loss 
function near its minimum. 
Using Minuit fits here (with 
autograd speedup) to extract 
the uncertainty.


A bit slow but Minuit does all 
the work for me…
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Calibration
Estimating the uncertainty

Option 3: Use the differentiability to 
automatically get the Hessian matrix at the 
best fit point


Leverages the capabilities of the differentiable 
simulator to get much faster results, 
straightforward* with Jax


Challenges:


• Relies on the accuracy of the derivatives 
(more than for calibration)


• Needs a loss well-behaved around minimum 
(Fisher information approximation)
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E =
σ2

1 σ2
12 …

σ2
21 σ2

2
⋮ ⋱

= 2H−1
f

*in theory, in practice memory management can become painful…



Propagating uncertainties
The theory

• Using the derivative information from the 
simulator, it is possible to perform error 
propagation using Taylor expansion.


• For a given simulation output  , we 
can automatically compute the Jacobian 

 that can be used to propagate 

uncertainty from input quantities to output 
ones: 

f(χ, θ) = X

Jij =
∂Xi

∂θj

Σsyst = JΣθJT
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Propagating uncertainties
In practice
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Here showing the impact of a 10% change in one of the simulation 
parameters on the output charge of the pixels using the Jacobian

Impact of 10% lifetime change



Propagating uncertainties
Checking the correctness
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• Checking the accuracy of 
the Jacobian calculation 
against finite difference


• Very good agreement 
found! 

• Many many orders of 
magnitude faster than 
regenerating different 
samples



Adding reconstruction
Probably the most ridiculous model of the workshop
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• Using 10k proton events in 
the 2x2 geometry


• Implemented some very 
basic toy reco model to 
regress the particle energy 
from the simulation output 
hits (ADC, time)

no probabilistic electronics simulation used here



Propagation to reco
Propagating uncertainties down to reach quantities

• By combining a differentiable reconstruction to the simulator, we can 
propagate the derivatives up to the reconstructed quantities 

• Our reco network estimates the energy of the particle  based on the event 
output  : 


• We can apply the same linear error propagation as before: 




• Can be pushed to higher order and with parameters correlations by using 
directly the post-calibration obtained correlation matrix (through Hessian)

E
X g(X, ε) = ̂E

g( f(χ, θ + δθ), ε) ≃ ̂E +
∂g
∂X

∂f
∂θ

δθ
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Propagation to reco
Practical application

• Using previous formula we can 
derive the estimated shift in the 
guessed energy when applying 
a 10% shift to the simulated 
parameter


• The sensitivity to the different 
parameters is variable
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Making the reco more robust
Penalizing large response variations

• Making the reconstruction less sensitive to the detector systematic 

uncertainties implies 


• This gradient can directly be obtained from the fully differentiable pipeline and 
it ca be added to the loss as a penalty term during the network training to 

have it small: 


• Effectively teaching the network about possible variations of the data 
without requiring to run many variation simulations!

∂g
∂θ

≃ 0

ℒ = ∥g(X, ε) − E∥ + λ
∂g
∂X

∂X
∂θ
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Making the reco more robust
Results

• The network became much less sensitive to variations in simulation 
parameters after the addition of the penalty term


• It became more robust to known variations, while keeping similar performance
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Initial training Training with penalty



Summary
What we saw

• We have a performant differentiable simulator for pixel-based LArTPCs


• Still trying to improve it further to have more accurate/stable gradients


• Moving towards a probabilistic treatment of the electronics response


• The seamless propagation of derivatives allows for many applications 
such as calibration (see next talk), uncertainty propagation, reconstruction, …


• Outlooks: moving from preliminary studies to more direct applications of the 
uncertainty propagation, doing more verifications, …


• Probably more possible applications (open to suggestions!)
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