
Pierre Granger, 31 October 2025

LArTPC differentiable simulator
General update and looking at uncertainty propagation

1

Moving towards precision measurements
The example of DUNE

• Future high-precision measurements will require
unprecedented constraining of the systematic
uncertainties

• Detector-related systematics will be very important

« Well-understood
detector modeling and
calibration are vital »

Eur.Phys.J.C 80 (2020) 10, 978

2

Liquid Argon Time Projection Chambers (LArTPCs)
Principle

Signal production steps:

• Argon ionisation

• Ionisation electrons drifted by E field

• Signal induction on anode plane

• Electronics self-triggering 3

• Allows to get precise 3D picture of the
interaction

• Relies on multiple physical processes →
importance of calibration

Handling detector calibration
The usual way

• Find yourself some calibration sample (e.g.,
through-going muons)

• Look at some summary quantity (e.g., dQ/dx as
a function of time)

• Fit parameter values

• Input new values into MC, check Data/MC
mismatch

4

Handling detector calibration
The issues

• Tedious iterative calibration procedure

• Hard to handle well interplays
between the different parameters

• Relies on summary quantities rather
than low-level information → lossy
compression of information +
depends on some reconstruction

5

Introducing a differentiable simulator
Working principle

6

Forward
Model

Parameters

Differentiable
Foward Model

Loss

Requires forward
model to be
differentiable:

Gradient Descent
on

Synthetic Data

Real Data, X

-

• The differentiable nature of the simulator allows to perform gradient descent

• Unified framework for simulation and calibration

• Working directly on the low-level observables (hits)

Forward
Model

Parameters

Differentiable
Foward Model

Loss

Requires forward
model to be
differentiable:

Gradient Descent
on

Synthetic Data

Real Data, X

-

Calibration in practice
A 2D example

1. Choose the initial parameter values 0

2. Run the forward simulation

3. Compare the simulation output and the target
data with a loss function

4. Calculate gradients for the parameters

5. Update parameter values to minimize
the loss

Iterate step 2. to 5.

θ0

f(χ, θ0)

ℒ(f(χ, θ0), Ftarget)

∇θℒ(f(χ, θ0), Ftarget)

θ0 → θi

7

• Input particle segments (position and energy
deposition):

• Model parameters:

• Differentiable simulation:

• Target data:

χ

θ

f(χ, θ)

Ftarget

LArNDSim-jax
How does it work in principle

Take existing DUNE near-detector
simulation (JINST 18 P04034) and make it
differentiable:

• Retain physics quality of a tool used
collaboration-wide while adding ability
to propagate derivatives

• Demonstrate the use of this
differentiable simulation for gradient-
based calibration and uncertainty
propagation

• Rewritten in JAX to benefit from
autodial, JIT, XLA, …

8

Drifting

Quenching

Current

Electronics

Track segments ()
dE
dx

Number of ionized
electrons per segment

Electron distribution
at readout

Current induced on
each pixel

ADC counts per
pixel/time

Birks’ model (,),
Electric field ()

AB kB
ε

Drift velocity (),
Lifetime (),
Transverse/

longitudinal diffusion
(,)

vdrift
τ

DT DL

nelec = dE
Wion

nfinal
elec = nrecomb

elec ⋅ e−tdrift/τ

nrecomb
elec = αrecomb ⋅ nelec

αrecomb = AB

1 + kB

ε ⋅ ρ
dE
dx

vdrift = μ ⋅ ε
σL,T = 2 ⋅ tdrift ⋅ DL,T

https://github.com/pgranger23/larnd-sim-jax

https://github.com/pgranger23/larnd-sim-jax

LArNDSim-jax
Changes since last year

• Computational performance improvement

• Implementation of current LUT with
interpolation

• Now considering signals induced on
neighbouring pixels (each electron induces
signal on 81 pixels)

• Running more tests to ensure no major
deviation from the reference simulator

9

Calibration
Improvements

• Adding misalignment
parameters (shift_{xyz})

• New loss function that can
handle translations

• See more in Yifan’s talk with
application on real data

10

Sources of uncertainties
And where to find them

• Statistical uncertainty from stochastic
processes:

• Electrons diffusion

• Electronics noise

• Systematic uncertainties from our model:

• Uncertainty of the input data model (track dE/
dx, position, …)

• Uncertainty of the detector parameters (the
ones we want to calibrate)

11

Dealing with stochasticity
Electrons diffusion

• Large number of electrons → only need to simulate
the integrated collective behaviour

• Transverse diffusion: compute the integrated amount
of charge on each LUT bin using error function.

• Longitudinal diffusion:

• Using templated response functions with different
values of the transverse diffusion value

• Making a quadratic interpolation for any value

• Max of the difference on the whole waveform
below 0.5%

12

Towards a probabilistic electronics simulation
Self triggering in DUNE ND

• DUNE ND technology is relying on self triggering
logic to automatically build hits

• Simulation of correlated noise across the ticks
(reset charge noise) and uncorrelated noise

• When the signal (+ relevant noises) crosses the
threshold, a new hit is triggered. The hit duration
is fixed and the number of ADC corresponds to
the digitised cumulated charge at (hit_time +
hit_duration).

• Then re-triggerings can happen to form new
hits and so on.

13

Towards a probabilistic electronics simulation
Impact of electronics stochasticity

This self-triggering logic implies several
things:

• 2 different noise seeds can lead to very
different (>20 ticks) hit outputs

• Output depends highly on the pixel
discrimination threshold (non-uniform
across the readout plane)

→ not ideal to get meaningful and
accurate gradients/estimates for
calibration

14

Running the digitization simulation 10000
times with different seeds for identical

waveform

Dealing with electronics noise
Towards a probabilistic simulator

Difficulties associated to the stochastic processes.
Different options/problems:

• Simulate reference without noise, should be
representative, no? Well no!

• Simulate a single noise seed: not very accurate
(away from another random seed)

• Simulate many noise seeds and get some
average: slow!

• Directly outputting probability distribution:
enables likelihood fit, smoother evolutions/
gradients, fast

2σ

15

No-noise case close to observed
mean for trigger 0

Only samples the case
without retriggering

Misses big part of
the distribution

dashed line: avg w.o. noise
plain line: actual avg

Towards a probabilistic simulator
Doing some basic maths

The noise being gaussian, it is possible
to derive analytically the hit probability
distribution for a given waveform (under
some approximations and assumptions)

Things boil down to (modulo many
subtleties):

𝒫(trigger at t) =
1 + erf (S(t) − T)

2 2σ

16

Towards a probabilistic simulator
Handling re-triggering

Things get a bit more complicated with
re-triggering as the state of the new
waveform depends on the triggering
probabilities of the previous hit →
complexity grows exponentially

Implementing some beam-search
algorithm: iteratively work on many
possible paths in parallel, keeping the
most probable ones

17

Towards a probabilistic simulator
Results
• Outputs the joint 2D probability distribution (hit tick + hit ADC)

• Way more powerful than returning one random draw (statistical uncertainty
estimation, likelihood fit, …) for <10x the computational cost of a single seed

18
Tick

Comparison of the 1D observed distributions (hist) vs
probabilistic estimate → very good agreement

Towards a probabilistic simulator
Results
• Checking the accuracy of the hit probability estimate (sum of output

probability distribution)

• < 1% error on hit probability

19

Towards a probabilistic simulator
Results

• Looking at average expected hit time
(weighted by prob density)

• Error below 1 tick

20

Towards a probabilistic simulator
Results

• Looking at average expected hit ADC
(weighted by prob density)

• Error below 0.25 ADC

21

Towards a probabilistic simulator
Checking the gradients

22

• Smooth evolution of the output average values with detector params

• Accurate gradients, the noise level can even now be calibrated too

Calibration
Estimating the uncertainty

Option 1: Doing ensembling by
conducting several fits with
different data shuffling seeds and
initial parameters

Caveats:

•Computationally intensive

•Overkill as you are only
interested by the behaviour of
your function near the minimum

•Good for cross-checks

23

Calibration
Estimating the uncertainty

Option 2: Analyse the loss
function near its minimum.
Using Minuit fits here (with
autograd speedup) to extract
the uncertainty.

A bit slow but Minuit does all
the work for me…

24

Calibration
Estimating the uncertainty

Option 3: Use the differentiability to
automatically get the Hessian matrix at the
best fit point

Leverages the capabilities of the differentiable
simulator to get much faster results,
straightforward* with Jax

Challenges:

• Relies on the accuracy of the derivatives
(more than for calibration)

• Needs a loss well-behaved around minimum
(Fisher information approximation)

25

E =
σ2

1 σ2
12 …

σ2
21 σ2

2
⋮ ⋱

= 2H−1
f

*in theory, in practice memory management can become painful…

Propagating uncertainties
The theory

• Using the derivative information from the
simulator, it is possible to perform error
propagation using Taylor expansion.

• For a given simulation output , we
can automatically compute the Jacobian

 that can be used to propagate

uncertainty from input quantities to output
ones:

f(χ, θ) = X

Jij =
∂Xi

∂θj

Σsyst = JΣθJT

26

Propagating uncertainties
In practice

27

Here showing the impact of a 10% change in one of the simulation
parameters on the output charge of the pixels using the Jacobian

Impact of 10% lifetime change

Propagating uncertainties
Checking the correctness

28

• Checking the accuracy of
the Jacobian calculation
against finite difference

• Very good agreement
found!

• Many many orders of
magnitude faster than
regenerating different
samples

Adding reconstruction
Probably the most ridiculous model of the workshop

29

• Using 10k proton events in
the 2x2 geometry

• Implemented some very
basic toy reco model to
regress the particle energy
from the simulation output
hits (ADC, time)

no probabilistic electronics simulation used here

Propagation to reco
Propagating uncertainties down to reach quantities

• By combining a differentiable reconstruction to the simulator, we can
propagate the derivatives up to the reconstructed quantities

• Our reco network estimates the energy of the particle based on the event
output :

• We can apply the same linear error propagation as before:

• Can be pushed to higher order and with parameters correlations by using
directly the post-calibration obtained correlation matrix (through Hessian)

E
X g(X, ε) = ̂E

g(f(χ, θ + δθ), ε) ≃ ̂E +
∂g
∂X

∂f
∂θ

δθ

30

Propagation to reco
Practical application

• Using previous formula we can
derive the estimated shift in the
guessed energy when applying
a 10% shift to the simulated
parameter

• The sensitivity to the different
parameters is variable

31

Making the reco more robust
Penalizing large response variations

• Making the reconstruction less sensitive to the detector systematic

uncertainties implies

• This gradient can directly be obtained from the fully differentiable pipeline and
it ca be added to the loss as a penalty term during the network training to

have it small:

• Effectively teaching the network about possible variations of the data
without requiring to run many variation simulations!

∂g
∂θ

≃ 0

ℒ = ∥g(X, ε) − E∥ + λ
∂g
∂X

∂X
∂θ

32

Making the reco more robust
Results

• The network became much less sensitive to variations in simulation
parameters after the addition of the penalty term

• It became more robust to known variations, while keeping similar performance

33

Initial training Training with penalty

Summary
What we saw

• We have a performant differentiable simulator for pixel-based LArTPCs

• Still trying to improve it further to have more accurate/stable gradients

• Moving towards a probabilistic treatment of the electronics response

• The seamless propagation of derivatives allows for many applications
such as calibration (see next talk), uncertainty propagation, reconstruction, …

• Outlooks: moving from preliminary studies to more direct applications of the
uncertainty propagation, doing more verifications, …

• Probably more possible applications (open to suggestions!)

34

