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36m vert. x 90m horiz. spacing TeV - PeV

The KM3NeT neutrino telescopes / N
ARCA BB1 ARCA BB2

« KM3NeT is building two neutrino telescopes in
the Mediterranean Sea

e ORCA for GeV-TeV neutrinos to resolve neutrino
mass hierarchy

« ARCA for TeV-PeV neutrinos for astronomy

T2 = g g A i

France

. Italy 9m vert. x 20m horiz. spacing
® KM3NeT/ORCA ' ’ GeV _ TeV

Marseille

* Detectors are already data-taking
« ORCA: 33/115 detection units; target volume 7 - 10~ km’

« ARCA: 51/230 detection units; target volume 1 km?

Catania

by o KM3NeT/ARCA.




Signal detection

Detection unit
holding 18 digital
optical modules

(DOMSs)

aa I

B
—

DOM containing 31
photomultiplier tubes (PMTs)
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 PMT pulses surpassing a set threshold
define a hit

« Hit defined by position, direction, and
time:

h=(x,y,20,¢,1)

threshold // \'
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Through-going muons 9 ol |";/Af=\\\U

-V, CC « Atmospheric u « v, CCoranyv NC -y, CC
- Events are a set of hits « Track-like - Background for v studies | * Shower-like * “Double bang”
that “look interesting” + Good pointing « Signal for Cosmic Ray « Good energy resolution
studies

« Causal relationship
between hits

* Focus on through-
going muons

« Aim to reconstruct:

» Reference point and
time

. Energy Eﬂ

- Direction 8, ¢,
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Project idea @ !

- Start of a new project two months ago
A U

* Goal: Modeling hit arrival time probability density functions
(PDFs)
 Method: Generative Neural Networks
DOM
 What are hit arrival time PDFs?
» Describe when we expect hits at each PMT

* Model how many hits we expect

* Arrival time PDFs are used in many applications in KM3NeT
* Reconstructions (likelihood computation)

« Simulations at high energies

 Detector calibrations (repeated maximum-likelihood fitting)
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Hit arrival time distributions

* t(;lljoii;esntly, the PDFs are stored in lookup Unscattered Cherenkov light at PMT with distance R to track
—— R=5m

« Computed from semi-analytical formulas -
R=10m
10° - —— R=20m

» Allows for fast access

» Targets of this presentation:

* Production of TeV-PeV Monte-Carlo
(MC) simulations with GPU-accelerated

PhotonPropagation.jl package
» Cross-checks with lookup tables for : [\

[npens~1!]

dn

through-going muons

* Generative models will enable us to use 10-2 L . . , ,
a very complex reconstruction phase 20 40 60 80 100

space
Enjival [IlS]

120 140
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Simulation setup - o=
* Training of generative models requires simulating a lot of
hits A U
* Propagation of photons is slow in the TeV-PeV energy =~
range for KM3NeT’s standard MC method
* Idea: use GPU-accelerated PhotonPropagation.|l
package DOM
* First simulations: upgoing muon R
« DOM (modeled by sphere) at origin ’
* Muon at distance R = 10m propagating in z-direction
* Energy of muon: 10 TeV
Oc

« Expectation: many photons will be emitted under zenith
angle equal to Cherenkov angle 0 ~ 42°
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https://github.com/PLEnuM-group/PhotonPropagation.jl
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Results from photon propagation

Expected number of photons hitting the

 Simulated 1400 muons using this setup sphere per muon

» Zenith angle distribution of photons hitting the

sphere has peak at Cherenkov angle

10 1 h Peak at ~ 42°

 High-energy muons emit energy by stochastic
losses at discrete points along the track

» Photon emission from stochastic losses currently
averaged over the muon track

» Analogous to the lookup tables

# Photons per degree
»
|

4 -
 Nominal water properties same as in other
KM3NeT simulations 2 -
» Hits are computed by applying photon acceptance 0-
probability P Y appying p P 0 20 40 60 80 100 120

Zenith[°]
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Hit arrival time distribution

* Reference time chosen as earliest possible
arrival of Cherenkov photons

* First PhotonPropagation simulations predict
less hits than lookup tables

» PhotonPropagation: ~ 5.8 PE
 Lookup tables: ~ 6.3 PE
 Ratio: ~ 92 %

 The lookup tables are well cross-checked with
other simulation tools

« Comparisons of the used models ongoing

* Most likely mismodeling in my code

# Photoelectrons / ns
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Hit arrival time distribution

1.75 -

1.50 -

1.25

1.00

0.75 -

0.50 -

0.25

I PhotonPropagation.jl (preliminary)
—— Lookup tables (state of the art)

KM3NeT preliminary

4 6 8 10 12 14

thit — tearliest [NS]
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Generative models

* Generative models are machine-learning
algorithms

* They interpolate the underlying probability
density function during training

« Can be used to generate new samples

* Their strength: ability to infer and encode very
complex PDFs into compact model

* No performance improvement over lookup
tables expected in current reconstruction
scenarios!

* Expectation: Models will allow us to fit
very complex event hypotheses very fast!

« Suitable for GPU-accelerated reconstruction

ChatGPT’s impression of the ultra-high energy
event detected by KM3NeT
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https://doi.org/10.1038/s41586-024-08543-1

Gaussian base density

Normalizing Flows

px(x)

* Tool of choice: Normalizing Flows (NFs)

- Bijective function f learning a coordinate transformation between
random variables x <

- Base space x is distributed Gaussian, f;y;; is the target variable

X
— — 1
thie = () * | x =17 ()
« Normalizing flow f is implemented by an invertible, differentiable
neural network

Generating new hits: Computing likelihoods:
£~ py(x) X =" (ty)
~ A N A A —1
thic = f(X) pr(tyi) = px(X) | det (%) |

Ehit
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Model architecture overview

 Arrival time PDFs conditioned on event hypothesis &
5 — (E/,p r()a ZO’ 9/,{7 ¢'u)

» Conditional normalizing flows from jammy_flows
package are suitable

* Invertible Gaussianization layers connect base space

and target space Multilayer Gaussianization

perceptron layers

« Multilayer perceptron encodes the condition on &

- Maps & to parameters of the Gaussianization layers

* Predicts the normalization of the probability
density function (integrated number of
photoelectrons)

Integrated f.. —t
#Photoelectrons hit earliest

* First trainings will begin in the next weeks!
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https://github.com/thoglu/jammy_flows
https://github.com/thoglu/jammy_flows
https://arxiv.org/abs/2003.01941
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Conclusion

Hit arrival time distribution

 GPU-accelerated Monte-Carlo simulations for 1.75 -

high-energy muons with PhotonPropagation.jl I PhotonPropagation.jl (preliminary)

—— Lookup tables (state of the art)

1.50 -
* Normalizing flows will be used to model the
PDFs 1.25 -
1.00 KM3NeT preliminary

* Project will follow an iterative approach:

* Generate Monte-Carlo simulations 0.75 -

* Cross-check the distributions with lookup

tables 0.50 -

# Photoelectrons / ns

 Train a normalizing flow 0.25

* Add new fit parameters and repeat

0 2 4 6 8 10 12 14

o Stay tuned for first results!
thit — tearliest [NS]
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https://github.com/PLEnuM-group/PhotonPropagation.jl
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Photon acceptance probability - I
'\ z

 Compute time distribution of accepted photons N

* Place a PMT directly facing the Cherenkov photons

« Compute effective area of PMT for each photon

* Divide by area of DOM cross section

DOM
* Result: photon acceptance probability S\’ >
Oc
» Effective PMT area computed using angular acceptance and
quantum efficiency
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GPU photon propagation code @ ‘f.}‘\} F/A\U

o https://github.com/PLEnuM-group/PhotonPropagation.jl

o Forward ray-tracing of individual photons
o Pure julia implementation, CUDA accelerated photon propagation

o Customizable medium properties (absorption length, scattering length, scattering
function, refractive index, dispersion), however only completely homogenous media
supported

o Customizable emitters / receivers

o Uses IceCube parametrizations for Cherenkov light yields
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ARCA medium properties

Base package (public, will be in Julia general registry soon):
https://github.com/JuliaHEP/CherenkovMediumBase.jl

Implementes properties defined in the Simulation Description

Document:

Quan & Fry Dispersion model

Kopelevich scattering model

Mixed Henyey-Greenstein & Einstein-Smoluchowsky (pure
water) scattering function
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Algorithm 9 D--EAU

1. Sample photon properties (position, direction, wavelength)
2. Repeat for N steps: Sample step length (distance to next scattering site)
I.  Check for intersection with detectors
= |Intersection: Save impact point and go back to 1)
= No Intersection: Continue with Il)

Il. Step to scattering site. Sample new direction from scattering function. Continue
with 2)

Computation for each photon is independent -> Great potential for parallelization on GPUs
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Normalizing flows x = T(u) where u -~ pu(u)

px(x) = pu(u) |det Jp(u)|™t  where u=T"}(x)

-oTy ., 9T
8111 8uD
» Training is performed by minimizing the Kullback-Leibler Jr(u) = : . :
divergence between the target distribution p¥(x) and the _36%117 e guig_

normalizing flow py(x; 0)

(T o Tl)_1 - Tl_l o T2_1
det JT20T1 (11) = det JT2 (Tl (u)) - det JTl (11)

L(0) = Dy, [py(x) || px(x;0) ]

N
%Z log pu (T (%n; $); %) + log|det J7-1(xn; )|

Log-likelihood Volume
in base-space correction
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https://jmlr.org/papers/volume22/19-1028/19-1028.pdf

