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• KM3NeT is building two neutrino telescopes in 
the Mediterranean Sea 

• ORCA for GeV-TeV neutrinos to resolve neutrino 
mass hierarchy 

• ARCA for TeV-PeV neutrinos for astronomy

The KM3NeT neutrino telescopes

• Detectors are already data-taking 

• ORCA: 33/115 detection units; target volume  

• ARCA: 51/230 detection units; target volume 

7 · 10−3 km3

1 km3
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• PMT pulses surpassing a set threshold 
define a hit 

• Hit defined by position, direction, and 
time: 

h = (x, y, z, θ, ϕ, t)

Signal detection

DOM containing 31 
photomultiplier tubes (PMTs)

Detection unit 
holding 18 digital 
optical modules 

(DOMs)
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Through-going muons

• Events are a set of hits 
that “look interesting” 

• Causal relationship 
between hits 

• Focus on through-
going muons  

• Aim to reconstruct: 

• Reference point and 
time 

• Energy  

• Direction ,  

Eμ

θμ ϕμ
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•  or any  

• Shower-like 

• Good energy resolution 

νe CC ν NC •  

• “Double bang” 

ντ CC• Atmospheric  

• Background for  studies 

• Signal for Cosmic Ray 
studies 

μ

ν
•  

• Track-like 

• Good pointing 

νμ CC
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Project idea

• Start of a new project two months ago 

• Goal: Modeling hit arrival time probability density functions 
(PDFs) 

• Method: Generative Neural Networks 

• What are hit arrival time PDFs? 

• Describe when we expect hits at each PMT 

• Model how many hits we expect 

• Arrival time PDFs are used in many applications in KM3NeT 

• Reconstructions (likelihood computation) 

• Simulations at high energies  

• Detector calibrations (repeated maximum-likelihood fitting)

μ

γ

DOM

PMT

θC ≈ 42∘
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Hit arrival time distributions

• Currently, the PDFs are stored in lookup 
tables 

• Computed from semi-analytical formulas 

• Allows for fast access 

• Targets of this presentation: 

• Production of TeV-PeV Monte-Carlo 
(MC) simulations with GPU-accelerated 
PhotonPropagation.jl package 

• Cross-checks with lookup tables for 
through-going muons 

• Generative models will enable us to use 
a very complex reconstruction phase 
space
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tarrival [ns]
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Simulation setup

• Training of generative models requires simulating a lot of 
hits  

• Propagation of photons is slow in the TeV-PeV energy 
range for KM3NeT’s standard MC method 

• Idea: use GPU-accelerated PhotonPropagation.jl 
package 

• First simulations: upgoing muon 

• DOM (modeled by sphere) at origin 

• Muon at distance R = 10m propagating in z-direction 

• Energy of muon: 10 TeV 

• Expectation: many photons will be emitted under zenith 
angle equal to Cherenkov angle θC ≈ 42∘

x

z

μ

γ

DOM

R

θC

https://github.com/PLEnuM-group/PhotonPropagation.jl
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Results from photon propagation

• Simulated 1400 muons using this setup 

• Zenith angle distribution of photons hitting the 
sphere has peak at Cherenkov angle ✅  

• High-energy muons emit energy by stochastic 
losses at discrete points along the track 

• Photon emission from stochastic losses currently 
averaged over the muon track 

• Analogous to the lookup tables 

• Nominal water properties same as in other 
KM3NeT simulations 

• Hits are computed by applying photon acceptance 
probability

Expected number of photons hitting the 
sphere per muon

Peak at ≈ 42∘
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Hit arrival time distribution

• Reference time chosen as earliest possible 
arrival of Cherenkov photons 

• First PhotonPropagation simulations predict 
less hits than lookup tables 

• PhotonPropagation:  

• Lookup tables:  

• Ratio:  

• The lookup tables are well cross-checked with 
other simulation tools 

• Comparisons of the used models ongoing 

• Most likely mismodeling in my code

≈ 5.8 PE
≈ 6.3 PE

≈ 92 %

Hit arrival time distribution
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Generative models

• Generative models are machine-learning 
algorithms 

• They interpolate the underlying probability 
density function during training 

• Can be used to generate new samples 

• Their strength: ability to infer and encode very 
complex PDFs into compact model 

• No performance improvement over lookup 
tables expected in current reconstruction 
scenarios! 

• Expectation: Models will allow us to fit 
very complex event hypotheses very fast! 

• Suitable for GPU-accelerated reconstruction
ChatGPT’s impression of the ultra-high energy 

event detected by KM3NeT

Observation of an ultra-high-energy cosmic neutrino with KM3NeT. Nature 638, 376–382 (2025)

https://doi.org/10.1038/s41586-024-08543-1
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Normalizing Flows

• Tool of choice: Normalizing Flows (NFs) 

• Bijective function  learning a coordinate transformation between 
random variables  

• Base space  is distributed Gaussian,  is the target variable 

• Normalizing flow  is implemented by an invertible, differentiable 
neural network 

f
x ↔ tHit

x tHit

f
tHit = f(x) x = f −1(tHit)

Computing likelihoods: 

 

 

̂x = f −1( ̂tHit)

pT( ̂tHit) = pX( ̂x) |det Jf ( ̂x) |−1

Generating new hits: 

 

 

̂x ∼ pX(x)
̂tHit = f ( ̂x)
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Model architecture overview

• Arrival time PDFs conditioned on event hypothesis 
 

• Conditional normalizing flows from jammy_flows 
package are suitable 

• Invertible Gaussianization layers connect base space 
and target space 

• Multilayer perceptron encodes the condition on  

• Maps  to parameters of the Gaussianization layers 

• Predicts the normalization of the probability 
density function (integrated number of 
photoelectrons) 

• First trainings will begin in the next weeks! 

ξ = (Eμ, ⃗r0, t0, θμ, ϕμ)

ξ
ξ

u

thit − tearliest

Gaussianization 
layers

Multilayer 
perceptron

ξ

Integrated  
#Photoelectrons

PDF

Thorsten Glüsenkamp : jammy_flows Meng et al., Gaussianization Flows

https://github.com/thoglu/jammy_flows
https://github.com/thoglu/jammy_flows
https://arxiv.org/abs/2003.01941
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Conclusion

• GPU-accelerated Monte-Carlo simulations for 
high-energy muons with PhotonPropagation.jl 

• Normalizing flows will be used to model the 
PDFs 

• Project will follow an iterative approach: 

• Generate Monte-Carlo simulations 

• Cross-check the distributions with lookup 
tables 

• Train a normalizing flow 

• Add new fit parameters and repeat 

• Stay tuned for first results!

Hit arrival time distribution

https://github.com/PLEnuM-group/PhotonPropagation.jl
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Photon acceptance probability

• Compute time distribution of accepted photons 

• Place a PMT directly facing the Cherenkov photons  

• Compute effective area of PMT for each photon 

• Divide by area of DOM cross section 

• Result: photon acceptance probability 

• Effective PMT area computed using angular acceptance and 
quantum efficiency 

x

z

μ

γ

DOM

θC
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GPU photon propagation code

Slide by Christian Haack
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ARCA medium properties

Slide by Christian Haack
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Algorithm

Slide by Christian Haack
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Normalizing flows

• Training is performed by minimizing the Kullback-Leibler 
divergence between the target distribution  and the 
normalizing flow  

p*X (x)
pX(x; θ)

Log-likelihood 
in base-space

Volume 
correction
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https://jmlr.org/papers/volume22/19-1028/19-1028.pdf

