Bayesian NN for UQ
IN nheutrino classification

Aaron Higuera

NPML 2025 University of Tokyo



Classification in LArTPC

Classification
Neutrino flavor

Particle ID

it-level ID (Semantic segmentation)

Regression

neutrino
interaction

Momentum
Angle
Tools:
Convolution Neural Networks
Sparse U-Net

C :
OSrn ic /'ay

Graphical Convolution Networks

Vision-Language Models Run 5390, Event 1100

Quanvolutional NN

A. Higuera, NPML 2025 University of Tokyo



Classification

Classification
Neutrino flavor

Particle ID
Hit-level 1D

How robust is the method?
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True Class

True positive rate

Predicted Class

Perfect model

False positive rate

Better quality
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How robust is the method”?
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Classification

How robust is the method?

Robustness typically refers to a model's ability to maintain

True Class

performance under various forms of perturbation or distribution
shifts

Predicted Class
Confidence measures how certain a model is about its

oredictions. Does the model know what it knows”? Perfect model

True positive rate

Better quality

How confident should we be about this prediction, and how do we

measure that confidence”? = Uncertainty quantification (UQ)

UQ is formal framework for measuring and expressing confidence

WO9 IRAJJUSPIAS MMM

False positive rate
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UQin ML

Why UQ Is often overlooked in the HEP domain when using ML

Metrics-driven focus:
Most ML efforts emphasize accuracy and precision
Computational overhead:

-ven when using approximate methods (MC dropout, variational inference), they can multiply
computing training and inference costs

Uncertainties
Aleatoric: irreducible uncertainty or stochastic uncertainty (data noise, irreducible randomness)

Epistemic: Model/parameter uncertainty (weights errors)
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UQin ML

Why UQ Is often overlooked in the HEP domain when using ML

Metrics-driven focus:

Most ML efforts emphasize accuracy, precision, and recall

Computational overhead:

computing training and inference costs

Dee

0 neural network uncertainty quantification for LArTPC reconstruction (

18P

2013)
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-ven when using approximate methods (MC dropout, variational inference), they can multiply

D. Koh et al 2023 JINST



https://iopscience.iop.org/article/10.1088/1748-0221/18/12/P12013
https://iopscience.iop.org/article/10.1088/1748-0221/18/12/P12013

UQin ML
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ask:

Deep neural network uncertainty quantification for LArTPC reconstruction (
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Single particle classification, semantic segmentation and multi-particle classification

Methods:

-nsemble Methods

Monte Carlo Dropout (MC

-vidential

Deep Learning (
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https://iopscience.iop.org/article/10.1088/1748-0221/18/12/P12013
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UQin ML

18

Dee
-

2013)

ask:
S

Average predictions across ensemble members
Simple but computationally expensive

Monte Carlo

Dropout (MG

—vidential Deep Learning (
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0 neural network uncertainty quantification for LArTPC reconstruction (

D)

D)

D. Koh et al 2023 JINST

ngle particle classification, semantic segmentation and multi-particle classification
Methods:

Ensemble Methods
Train multiple identical networks with different initializations


https://iopscience.iop.org/article/10.1088/1748-0221/18/12/P12013
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Dee
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0 neural network uncertainty quantification for LArTPC reconstruction (

2013)

ask:
S

-nsemble Methods

-vidential

Deep Learning (
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Monte Carlo Dropout (MCD)

Use dropout during inference to create stochastic predictions
Multiple forward passes with different neurons dropped
Moderate computational cost

D)

D. Koh et al 2023 JINST

ngle particle classification, semantic segmentation and multi-particle classification
Methods:


https://iopscience.iop.org/article/10.1088/1748-0221/18/12/P12013
https://iopscience.iop.org/article/10.1088/1748-0221/18/12/P12013

UQin ML

18 P12013)

ask:

Deep neural network uncertainty quantification for LArTPC reconstruction (

D. Koh et al 2023 JINST

Single particle classification, semantic segmentation and multi-particle classification

Methods:

Monte Car

Evidential Deep Learning (EDL)
Models predictions using Dirichlet distributions

Three loss variants tested: MLL, Bayes Risk, Brier Score

O

-nsemble Methods

Dropout (MG
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D)

Provides full posterior in single forward pass


https://iopscience.iop.org/article/10.1088/1748-0221/18/12/P12013
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UQin ML

18 P12013)

ask:

Deep neural network uncertainty quantification for LArTPC reconstruction (

D. Koh et al 2023 JINST

Single particle classification, semantic segmentation and multi-particle classification

Methods:

-nsemble Methods

Monte Carlo Dropout (MC

-vidential
Outputs:

Deep Learning (

D)

D)

Predictive Entropy: For each individual prediction, the model outputs a probability distribution

over classes. The entropy of this distribution serves as an uncertainty measure for that specific

event
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Bayesian and Deterministic NNs




Bayesian NNs

Ensamble Method BNNs MC Dropout
Training Multi models
Average over predictions from all
Inferences
models
Advantage Simple
Uncertainty Type Epistemic

W_1 ~ q(w|D)
nll = — predlog(the) W_2 ~ q(w|D)

W_3 ~ q(w|D)

Single model with
probabilistic weights
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Example

Using Micro

Task: Neutrino flavor classification NG, CCve CGC vy,

Input
500x500x3

Wire Plane Views

S0ooN

U Plane
500x500x1

V Plane
500x500x1

Y Plane
500x500x1

- open datasets

Sparse Encoder

PD Conv + Residual Blocks

500-125-63-32
GAP-128-D
Cross-Plane 7
Sparse Encoder > Multi-Head DenseFlipout DenseFlipout OneHot
D Conv + Residual Block Attention 7 128 units 3 classes Categorical

(4 heads)

P(y|x) +
Uncertainty

Sparse Encoder 3x128 - 384-D
2D Conv + Residual Blocks

A. Higuera, NPML 2025 University of Tokyo
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https://microboone.fnal.gov/documents-publications/public-datasets/

Uncertainty Quantification with BNN

W 1 ~ q(w|D)

W 2 ~ q(w|D)
W 3 ~ q(w|D)

Distribution of Probabilities
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Uncertainty Quantification with BNN

Predicted Probabilities
(Class 2, Confidence: 0.954)
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Uncertainty Quantification with BNN

Predicted Probabilities
(Class 1, Confidence: 0.979)
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Uncertainty Quantification with BNN

Predicted Probabilities
(Class 0, Confidence: 0.747)
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Uncertainty Quantification with BNN

Predicted Probabilities
(Class 2, Confidence: 0.944)
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Uncertainty Quantification with BNN

Predicted Probabilities
(Class 2, Confidence: 0.797)
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Uncertainty Quantification with BNN

Calibration Curve (Reliability Diagram)
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Fraction of positives (Positive class: 1)

1.0 A

0.8 A

0.6 A

0.4 1

0.2 A

0.0 A

Calibration plots

----- Perfectly calibrated
—&— Logistic Regression
—%¥— Naive Bayes

—— SVC

—&— Random forest

0.0

0.2 0.4 0.6 0.8 1.0
Mean predicted probability (Positive class: 1)




Uncertainty Quantification with BNN

Calibration Curve (Reliability Diagram)
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1.0

Loss

27.5 1

25.0 A

22.5 1

20.0 A

17.5 -

15.0 A

12.5 4

10.0 A

Training and Validation Loss Over Epochs

—&— Training Loss
—&— Validation Loss

Epoch




Uncertainty Quantification with BNN

Can | introduce physics knowledge, a.k.a

Physics-informed prior?

Class muon
- Produces

neutrino

ong, straight tracks

- Clear directional signature

— Prior mean: slightly positive (expect to find these features)

— Prior std: small

A. Higuera, NPML 2025 University of Tokyo
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Uncertainty Quantification with BNN

Can | introduce physics knowledge, a.k.a

Physics-informed prior?

Class electron neutrino

Physics-Informed

0.40 -

0.35 4

0.30 A
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0.20 -

Probability density

0.15 -

0.10 A

0.05 A

0.00 A

m— UMU (1=0.5)
nue (u=0.0)
e NC (u=-0.3)

- Produces electromagnetic showers -3

- Wider, more diffuse energy de

— Prior mean: neutral (di
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Nt topology than numu)
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Uncertainty Quantification with BNN

Can | introduce physics knowledge, a.k.a
Physics-informed prior?

Class NC -
- No charged lepton (more ambiguous)

- Varied topologies
- Generally lower visible energy

- Often confused with others

A. Higuera, NPML 2025 University of Tokyo

Physics-Informed

0.40 -

0.35 4

0.30 A

0.25 A

0.20 -

Probability density

0.15 4

0.10 A

0.05 A

0.00 A

m— UMU (1=0.5)
nue (u=0.0)
e NC (u=-0.3)

-3 -2 -1 0 1

Weight value
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Uncertainty Quantification with BNN

Lo Calibration Curve (Reliability Diagram)
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Accuracy (Fraction of Positives)
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Calibration Curve (Reliability Diagram)
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Uncertainty Quantif

Calibration Curve (Reliability Diagram)
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Comments

e Uncertainty quantification is essential for reliable ML predictions in high-stakes domains
e« Formal frameworks exist to decompose uncertainty into epistemic and aleatoric components,

e softmaxisnota probability or measurement of model confidence

o Bayesian Neural Networks provide an interpretable, formal approach to include UQ

o Mature toolkits available: Pvro, Biltz, nflows

e Cholice of method depends on computational budget, architecture, and required rigor

e [fwe can put error bars on neutrino flux, we can put them on our CNN/GCN/BDT/VLM!!!

A. Higuera, NPML 2025 University of Tokyo
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https://www.tensorflow.org/probability
https://pyro.ai/examples/intro_long.html
https://github.com/piEsposito/blitz-bayesian-deep-learning
https://github.com/bayesiains/nflows
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Extras
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BNNs

Confusion Matrix (Counts)

Training and Validation Loss Over Epochs
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