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Classification 

Neutrino flavor 

Particle ID

Hit-level ID  (Semantic segmentation)


Regression

Momentum 

Angle


Tools:

Convolution Neural Networks

Sparse U-Net

Graphical Convolution Networks

Vision-Language Models

Quanvolutional NN 
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How robust is the method?

Robustness typically refers to a model’s ability to 
maintain performance under various forms of 
perturbation or distribution shifts 
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Classification 

Neutrino flavor 

Particle ID

Hit-level ID  


How robust is the method?

Robustness typically refers to a model’s ability to 
maintain performance under various forms of 
perturbation or distribution shifts

Confidence measures how certain a model is about its 
predictions. Does the model know what it knows?
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How robust is the method?

Robustness typically refers to a model’s ability to maintain 
performance under various forms of perturbation or distribution 
shifts


Confidence measures how certain a model is about its 
predictions. Does the model know what it knows?

How confident should we be about this prediction, and how do we 
measure that confidence? = Uncertainty quantification (UQ)


UQ is formal framework for measuring and expressing confidence
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Why UQ is often overlooked in the HEP domain when using ML

Metrics-driven focus: 
Most ML efforts emphasize accuracy and precision

Computational overhead: 
Even when using approximate methods (MC dropout, variational inference), they can multiply 
computing training and inference costs


Uncertainties 

Aleatoric: irreducible uncertainty or stochastic uncertainty (data noise, irreducible randomness)


Epistemic: Model/parameter uncertainty (weights errors)
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Why UQ is often overlooked in the HEP domain when using ML

Metrics-driven focus: 
Most ML efforts emphasize accuracy, precision, and recall

Computational overhead: 
Even when using approximate methods (MC dropout, variational inference), they can multiply 
computing training and inference costs


Deep neural network uncertainty quantification for LArTPC reconstruction (D. Koh et al 2023 JINST 
18 P12013)


https://iopscience.iop.org/article/10.1088/1748-0221/18/12/P12013
https://iopscience.iop.org/article/10.1088/1748-0221/18/12/P12013
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Deep neural network uncertainty quantification for LArTPC reconstruction (D. Koh et al 2023 JINST 
18 P12013)


Task:

Single particle classification, semantic segmentation and multi-particle classification


Methods:

Ensemble Methods 

Monte Carlo Dropout (MCD)

Evidential Deep Learning (EDL)

https://iopscience.iop.org/article/10.1088/1748-0221/18/12/P12013
https://iopscience.iop.org/article/10.1088/1748-0221/18/12/P12013
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Deep neural network uncertainty quantification for LArTPC reconstruction (D. Koh et al 2023 JINST 
18 P12013)


Task:

Single particle classification, semantic segmentation and multi-particle classification


Methods:

Ensemble Methods 


Train multiple identical networks with different initializations

Average predictions across ensemble members

Simple but computationally expensive


Monte Carlo Dropout (MCD)

Evidential Deep Learning (EDL)

https://iopscience.iop.org/article/10.1088/1748-0221/18/12/P12013
https://iopscience.iop.org/article/10.1088/1748-0221/18/12/P12013
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Deep neural network uncertainty quantification for LArTPC reconstruction (D. Koh et al 2023 JINST 
18 P12013)


Task:

Single particle classification, semantic segmentation and multi-particle classification


Methods:

Ensemble Methods 

Monte Carlo Dropout (MCD)


Use dropout during inference to create stochastic predictions

Multiple forward passes with different neurons dropped

Moderate computational cost


Evidential Deep Learning (EDL)

https://iopscience.iop.org/article/10.1088/1748-0221/18/12/P12013
https://iopscience.iop.org/article/10.1088/1748-0221/18/12/P12013
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Deep neural network uncertainty quantification for LArTPC reconstruction (D. Koh et al 2023 JINST 
18 P12013)


Task:

Single particle classification, semantic segmentation and multi-particle classification


Methods:

Ensemble Methods 

Monte Carlo Dropout (MCD)


Evidential Deep Learning (EDL)

Models predictions using Dirichlet distributions

Provides full posterior in single forward pass

Three loss variants tested: MLL, Bayes Risk, Brier Score


https://iopscience.iop.org/article/10.1088/1748-0221/18/12/P12013
https://iopscience.iop.org/article/10.1088/1748-0221/18/12/P12013
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Deep neural network uncertainty quantification for LArTPC reconstruction (D. Koh et al 2023 JINST 
18 P12013)


Task:

Single particle classification, semantic segmentation and multi-particle classification


Methods:

Ensemble Methods 

Monte Carlo Dropout (MCD)

Evidential Deep Learning (EDL)


Outputs: 

Predictive Entropy: For each individual prediction, the model outputs a probability distribution 
over classes. The entropy of this distribution serves as an uncertainty measure for that specific 
event

https://iopscience.iop.org/article/10.1088/1748-0221/18/12/P12013
https://iopscience.iop.org/article/10.1088/1748-0221/18/12/P12013
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nll = − Ypredlog(Ytrue)

Ensamble Method BNNs MC Dropout

Training Multi models Single model w/ probabilistic weights Single model

Inferences Average over predictions from all 
models

Sample from weight posterior 
distributions

Multiple forward passes with 
dropout active

Advantage Simple Formal framework Fast

Uncertainty Type Epistemic Epistemic+Aleatoric Epistemic
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Using MicroBooNE open datasets

Task: Neutrino flavor classification NC, CCve CC vµ 

https://microboone.fnal.gov/documents-publications/public-datasets/


Uncertainty Quantification with BNN
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Non-informative Prior
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Can I introduce physics knowledge, a.k.a 

Physics-informed prior?


Class  muon neutrino

   - Produces long, straight tracks

   - Clear directional signature

    → Prior mean: slightly positive (expect to find these features)

    → Prior std: small
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Can I introduce physics knowledge, a.k.a 
Physics-informed prior?


Class electron neutrino

    - Produces electromagnetic showers

    - Wider, more diffuse energy deposition

       → Prior mean: neutral (different topology than numu)
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 Class NC - 

   - No charged lepton (more ambiguous)

    - Varied topologies

    - Generally lower visible energy

    - Often confused with others

Can I introduce physics knowledge, a.k.a 
Physics-informed prior?
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w/ physics infromed prior 
Overshoot!
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w/ physics infromed priorw/o physics infromed prior
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• Uncertainty quantification is essential for reliable ML predictions in high-stakes domains


• Formal frameworks exist to decompose uncertainty into epistemic and aleatoric components,


• softmax is not a probability or measurement of model confidence 


• Bayesian Neural Networks provide an interpretable, formal approach to include UQ


• Mature toolkits available:   TensorFlow Probability Pyro, Biltz, nflows


• Choice of method depends on computational budget, architecture, and required rigor


• If we can put error bars on neutrino flux, we can put them on our CNN/GCN/BDT/VLM!!!

https://www.tensorflow.org/probability
https://pyro.ai/examples/intro_long.html
https://github.com/piEsposito/blitz-bayesian-deep-learning
https://github.com/bayesiains/nflows
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Incorporating UQ in 
your ML Method
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Extras
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BNNs


