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Introduction

SNO+ is a 780 t general purpose liquid scintillator
detector

▶ Charged particles deposit energy and produce
isotropic scintillation light

▶ Detected by around 9000 PMTs

▶ Energy reconstruction uses number of PMT
hits

▶ 2nd most important quantity is PMT hit times
▶ Position and time
▶ Energy corrections
▶ Classifiers

▶ Accurate timing is needed for good event
reconstruction
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Time Walk and Electronic Delays

Each PMT has a constant delay and time walk

▶ Front end electronics give PMTs different
delays

▶ PMTs trigger on individual thresholds

▶ Time walk: larger pulses biases to earlier
hit times

▶ Parametrize time walk by PMT charge

Standard calibration involves a deployed
laserball source

▶ Requires dedicated calibration runs

▶ Resource intense

▶ Contamination risk
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Time Residuals

Time residuals correct event position
dependence of hit times to first order
For hit i

t ires = t ihit − t itime of flight − tevent

Find time residual distribution from MC

▶ Fit skew-t distribution to MC time
residuals

▶ Use fit as likelihood loss function

Dataset we use is ∼ 10 million 210Po α
events

▶ Abundant and point like deposition

▶ Distributed throughout detector
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Figure: MC 210Po time residual distributions
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PMT Timing Calibration

We want to fit a falling exponential time walk and delay di for PMT i

t iwalk(q) = aie
−q/bi + ciq + di

If position/time of α from 210Po is known

▶ Calculate t ires = t iuncal hit − t iwalk(q
i )− t itime of flight − tevent

▶ Fit time walk against time residual distribution

210Po are distributed throughout the detector

▶ Could reconstruct α position

▶ Reconstruction depends on PMT timing calibration

Solution: Train time walk and position reconstruction simultaneously

▶ As time walk is calibrated, position reconstruction changes with it
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ML Based Position/Time Reconstruction

Fitting position and time across 10 million events to tres distribution is challenging

▶ Alternative: use neural network for event position + time

▶ Model used is transformer based model (see Cal’s talk)

Procedure for each 210Po batch:

▶ t iuncal hit − t iwalk(q
i ) given to neural network (not pre trained)

▶ Network predicts event position and time

▶ Calculate time residuals with current time walks

t ires = t iuncal hit − t iwalk(q
i )− t itime of flight − tevent

▶ Loss function is the time residual distribution fit

▶ Gradient descent simultaneously trains time walks and neural network
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Electronic Delays

Delays come from front end
electronics

▶ PMT electronics are grouped
in crates, cards and channels

▶ Can sort PMTs by
crate/card/channel number
and plot delays

▶ Calibrated delays show
expected crate by crate
structure
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Data Driven Calibration Comparison

Radioactive 214Bi to 214Po events provide data driven
comparison of timing calibrations

▶ Visible energy > 1MeV

▶ 214Po has short (164 µs) half-life
▶ Minimal displacement from 214Bi

▶ Reconstructed displacement of 214Bi to 214Po (∆R)
dominated by position resolution

▶ Better calibrations → smaller ∆R ≡ ∥x⃗Po − x⃗Bi∥

Figure: Uranium-238 decay chain
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214BiPo ∆R Comparison

Small (∼ 5mm), but
significant, improvement
in position reconstruction
resolution.

▶ σpos assumes
x⃗Po − x⃗Bi is an
isotropic gaussian
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Electronics Monitoring

Change in delays may indicate
change in electronics

▶ Found temporary timing drop
in crate 11

▶ Out dated lower level
calibration identified as cause

▶ Other plots use updated lower
level calibration
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Summary

New method of calibration performs well

▶ Reproduces structure of electronics

▶ Improves 214BiPo ∆R distributions

This calibration has numerous advantages

▶ Can calibrate using regular physics runs

▶ Much less resource intensive

▶ Can perform on a ≲ weekly basis

▶ Monitor electronics

Method should be applicable to other large liquid scintillator detectors


