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Introduction

SNO+ is a 780t general purpose liquid scintillator
detector

» Charged particles deposit energy and produce
isotropic scintillation light
» Detected by around 9000 PMTs
» Energy reconstruction uses number of PMT
hits
» 2nd most important quantity is PMT hit times
» Position and time
» Energy corrections
> Classifiers
» Accurate timing is needed for good event
reconstruction
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Time Walk and Electronic Delays

Each PMT has a constant delay and time walk

» Front end electronics give PMTs different
delays
» PMTs trigger on individual thresholds
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Time Residuals

Time residuals correct event position
dependence of hit times to first order
For hit /

i g i
tres = thit — ttime of flight — tevent

Find time residual distribution from MC

» Fit skew-t distribution to MC time
residuals

» Use fit as likelihood loss function

Dataset we use is ~ 10 million 21%Po «
events

» Abundant and point like deposition
» Distributed throughout detector
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Figure: MC #'%Po time residual distributions




PMT Timing Calibration

We want to fit a falling exponential time walk and delay d; for PMT
tiai(q) = aie” 9P + cig + d;

If position /time of a from 2%Po is known

> Calculate ties = tincal hit — twalk(9') = time of flight — fevent
> Fit time walk against time residual distribution
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PMT Timing Calibration

We want to fit a falling exponential time walk and delay d; for PMT
tiai(q) = aie” 9P + cig + d;

If position /time of a from 2%Po is known
> Calculate tre = tinor hit — tnak(9') — time of fight — fevent
> Fit time walk against time residual distribution
210pg are distributed throughout the detector
» Could reconstruct « position
» Reconstruction depends on PMT timing calibration
Solution: Train time walk and position reconstruction simultaneously

> As time walk is calibrated, position reconstruction changes with it



ML Based Position/Time Reconstruction

Fitting position and time across 10 million events to ts distribution is challenging
> Alternative: use neural network for event position + time

» Model used is transformer based model (see Cal's talk)



ML Based Position/Time Reconstruction

Fitting position and time across 10 million events to ts distribution is challenging
> Alternative: use neural network for event position + time
» Model used is transformer based model (see Cal's talk)

Procedure for each 2'°Po batch:
> i ti

I almic — tio (") given to neural network (not pre trained)

> Network predicts event position and time
» Calculate time residuals with current time walks
tt{es = tllmcal hit = t\ivalk(ql) - téime of flight — tevent

» Loss function is the time residual distribution fit

v

Gradient descent simultaneously trains time walks and neural network



Electronic Delays

Delays come from front end
electronics
» PMT electronics are grouped
in crates, cards and channels
» Can sort PMTs by
crate/card/channel number
and plot delays
» Calibrated delays show
expected crate by crate
structure
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Data Driven Calibration Comparison

Radioactive 2*Bi to 2MPo events provide data driven
comparison of timing calibrations

» Visible energy > 1 MeV

> 21Po has short (164 ps) half-life

» Minimal displacement from 2'*Bi

> Reconstructed displacement of 2*Bi to 2'*Po (AR)
dominated by position resolution

> Better calibrations — smaller AR = ||Xpo — Xgil|
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214BiPo AR Comparison
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Electronics Monitoring

New - Standard Delay [ns]

Change in delays may indicate
change in electronics
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Summary

New method of calibration performs well
» Reproduces structure of electronics
» Improves 2*BiPo AR distributions
This calibration has numerous advantages
» Can calibrate using regular physics runs
» Much less resource intensive
» Can perform on a < weekly basis
» Monitor electronics

Method should be applicable to other large liquid scintillator detectors



