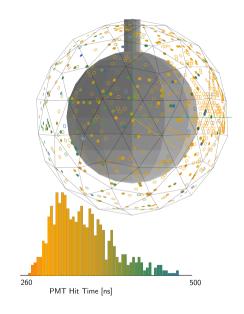
PMT Timing Calibration with In Situ Radioactive Backgrounds NPML 25

October 30, 2025

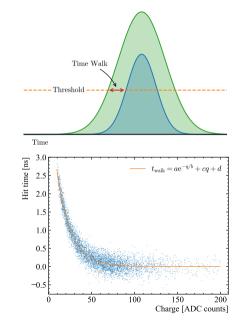
Scott DeGraw, on behalf of the SNO+ collaboration scott.degraw@physics.ox.ac.uk



Introduction

SNO+ is a 780 t general purpose liquid scintillator detector

- Charged particles deposit energy and produce isotropic scintillation light
- ► Detected by around 9000 PMTs
- Energy reconstruction uses number of PMT hits
- 2nd most important quantity is PMT hit times
 - Position and time
 - Energy corrections
 - Classifiers
- Accurate timing is needed for good event reconstruction


Time Walk and Electronic Delays

Each PMT has a constant delay and time walk

- Front end electronics give PMTs different delays
- PMTs trigger on individual thresholds
- ► Time walk: larger pulses biases to earlier hit times
- Parametrize time walk by PMT charge

Standard calibration involves a deployed laserball source

- Requires dedicated calibration runs
- Resource intense
- Contamination risk

Time Residuals

events

Time residuals correct event position dependence of hit times to first order For hit i

$$t_{
m res}^i = t_{
m hit}^i - t_{
m time\ of\ flight}^i - t_{
m event}$$

Find time residual distribution from MC

- ► Fit skew-t distribution to MC time residuals
- ▶ Use fit as likelihood loss function Dataset we use is \sim 10 million 210 Po α
 - ► Abundant and point like deposition
 - Distributed throughout detector

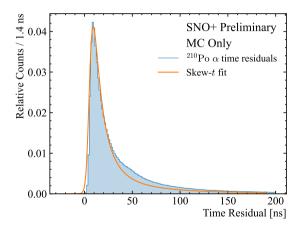


Figure: MC ²¹⁰Po time residual distributions

PMT Timing Calibration

We want to fit a falling exponential time walk and delay d_i for PMT i

$$t_{\mathsf{walk}}^i(q) = a_i \mathrm{e}^{-q/b_i} + c_i q + d_i$$

If position/time of α from ²¹⁰Po is known

- lacktriangle Calculate $t_{\mathsf{res}}^i = t_{\mathsf{uncal}\ \mathsf{hit}}^i t_{\mathsf{walk}}^i(q^i) t_{\mathsf{time}\ \mathsf{of}\ \mathsf{flight}}^i t_{\mathsf{event}}$
- ▶ Fit time walk against time residual distribution

PMT Timing Calibration

We want to fit a falling exponential time walk and delay d_i for PMT i

$$t_{\mathsf{walk}}^i(q) = a_i \mathrm{e}^{-q/b_i} + c_i q + d_i$$

If position/time of α from 210 Po is known

- lacktriangle Calculate $t_{\mathsf{res}}^i = t_{\mathsf{uncal}\ \mathsf{hit}}^i t_{\mathsf{walk}}^i(q^i) t_{\mathsf{time}\ \mathsf{of}\ \mathsf{flight}}^i t_{\mathsf{event}}$
- ► Fit time walk against time residual distribution

²¹⁰Po are distributed throughout the detector

- ▶ Could reconstruct α position
- Reconstruction depends on PMT timing calibration

PMT Timing Calibration

We want to fit a falling exponential time walk and delay d_i for PMT i

$$t_{\mathsf{walk}}^i(q) = a_i \mathrm{e}^{-q/b_i} + c_i q + d_i$$

If position/time of α from $^{210}{\rm Po}$ is known

- lacktriangle Calculate $t_{\mathsf{res}}^i = t_{\mathsf{uncal}\;\mathsf{hit}}^i t_{\mathsf{walk}}^i(q^i) t_{\mathsf{time}\;\mathsf{of}\;\mathsf{flight}}^i t_{\mathsf{event}}$
- ► Fit time walk against time residual distribution

²¹⁰Po are distributed throughout the detector

- ▶ Could reconstruct α position
- Reconstruction depends on PMT timing calibration

Solution: Train time walk and position reconstruction simultaneously

▶ As time walk is calibrated, position reconstruction changes with it

ML Based Position/Time Reconstruction

Fitting position and time across 10 million events to t_{res} distribution is challenging

- ▶ Alternative: use neural network for event position + time
- ► Model used is transformer based model (see Cal's talk)

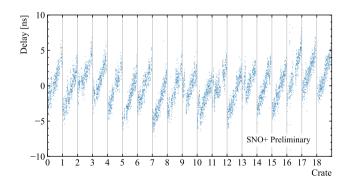
ML Based Position/Time Reconstruction

Fitting position and time across 10 million events to t_{res} distribution is challenging

- ▶ Alternative: use neural network for event position + time
- ▶ Model used is transformer based model (see Cal's talk)

Procedure for each ²¹⁰Po batch:

- $ightharpoonup t_{
 m uncal\ hit}^i t_{
 m walk}^i(q^i)$ given to neural network (not pre trained)
- Network predicts event position and time
- Calculate time residuals with current time walks


$$t_{\mathsf{res}}^i = t_{\mathsf{uncal\ hit}}^i - t_{\mathsf{walk}}^i(q^i) - t_{\mathsf{time\ of\ flight}}^i - t_{\mathsf{event}}$$

- Loss function is the time residual distribution fit
- Gradient descent simultaneously trains time walks and neural network

Electronic Delays

Delays come from front end electronics

- ► PMT electronics are grouped in crates, cards and channels
- Can sort PMTs by crate/card/channel number and plot delays
- Calibrated delays show expected crate by crate structure

Data Driven Calibration Comparison

Radioactive ²¹⁴Bi to ²¹⁴Po events provide data driven comparison of timing calibrations

- Visible energy > 1 MeV
- ▶ ²¹⁴Po has short (164 µs) half-life
- ► Minimal displacement from ²¹⁴Bi
- ▶ Reconstructed displacement of 214 Bi to 214 Po (ΔR) dominated by position resolution
- ▶ Better calibrations \rightarrow smaller $\Delta R \equiv \|\vec{x}_{Po} \vec{x}_{Bi}\|$

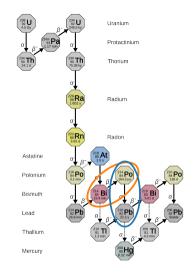
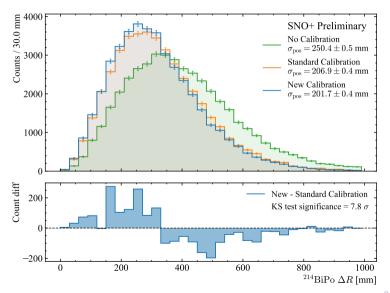
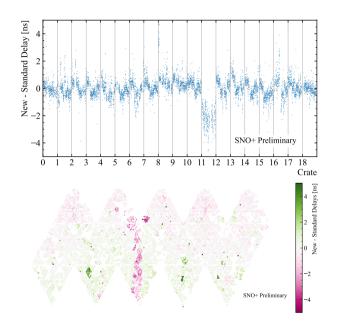



Figure: Uranium-238 decay chain

214 BiPo ΔR Comparison

Small (\sim 5 mm), but significant, improvement in position reconstruction resolution.


 $\sigma_{
m pos}$ assumes $\vec{x}_{
m Po} - \vec{x}_{
m Bi}$ is an isotropic gaussian

Electronics Monitoring

Change in delays may indicate change in electronics

- ► Found temporary timing drop in crate 11
- Out dated lower level calibration identified as cause
- Other plots use updated lower level calibration

Summary

New method of calibration performs well

- Reproduces structure of electronics
- ▶ Improves 214 BiPo ΔR distributions

This calibration has numerous advantages

- ► Can calibrate using regular physics runs
- Much less resource intensive
- ightharpoonup Can perform on a \lesssim weekly basis
- Monitor electronics

Method should be applicable to other large liquid scintillator detectors