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Liquid Scintillator Neutrino Detector (LSND)
[1992-1998]

e 30 m from muon antineutrino beam target

e Observed electron antineutrinos 5-times
greater than the expected beam intrinsic
background

e Inspired a series of experiments to test the
non-standard neutrino oscillation


https://journals.aps.org/prd/pdf/10.1103/PhysRevD.64.112007

MiniBooNE, and MicroBooNE

PhysRevD.103.052002
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MiniBooNE [2002-2017]

Mineral oil cherenkov detector placed in
Fermilab Booster Neutrino Beam (BNB), 541 m
from the beam target, searching for both

v, — veand v, — Ve channels.

Reported a 4.80 excess of CCQE v_ events
across the energy range of 200-1250 MeV.

One possible signal contamination is 7 — vy

PhysRevlett.128.241802
MicroBooNE 2021 (Inclusive FC unconstrained)
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MicroBooNE [2013-2023]

e Liquid Argon Time Projection Chamber
(LArTPC) at BNB, 470 m from the beam
target.

e Found no low energy CCQE v_ excess,
however the nature of MiniBooNE excess
remained inconclusive.


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.110.030001
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.128.241802

The Short Baseline Neutrino (SBN) Program

Short-Baseline Neutrino Program
at Fermilab (2024)

Target SBND ICARUS

Horn + decay pipe 760 tons of argon

] L] |
0 600 meters

SBN [2021 ~ ]

e Situated in the BNB beamline, consists of the Short Baseline Near Detector (SBND) at 110 m and
ICARUS detector at 600 m. Both detectors are LArTPC.

e Aims to address the LSND anomaly with the “near-far detectors” technique and simultaneous fit
for appearance and disappearance channels.



BNB Beam Flux @ ICARUS
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e Intrinsic electron (anti)neutrino background
exists in the beam

e Efficient and accurate v, signal selection is
critical for SBN oscillation analysis - see more on
the selection in D. Carber and D. Totani’s talks
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https://arxiv.org/abs/1503.01520
https://indico.ipmu.jp/event/462/contributions/8704/
https://indico.ipmu.jp/event/462/contributions/8699/

The ICARUS Detector and Data Taking
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e Wire LArTPC at surface-level, 500 tons fiducial mass.

Max drift time is 1 ms at the nominal field (500 V/cm)

o BNB beam: ~0.03 Hz neutrinos
o In-time cosmic activity: ~0.25 Hz



ICARUS Event display - Can you find the neutrino interaction?

ICARUS MC
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Optical Readout in ICARUS

LAr has a large scintillation light yield at
O(10k) per MeV
e LAris transparent to its scintillation
photons
e Fast component 4~8 ns
e Slow component 1.5~1.6 us

360 PMTs behind the wire plane register
optical information called “flash”

Require a coincidence within 1.6 us for the
charge and optical readouts to select
neutrino interactions inside the detector.




Charge Readout in ICARUS - How Does A Wire LArTPC Work?

arxiv.org/abs/1704.02927

wewe @ 3 wire planes oriented at different angles
register the drifting charges at anode.
} \\ o First two planes have negative voltage
\/ applied and register the inductive charge
Cathoce L oaadidaannnions signals
rone . o The third plane collects charges
Y ol e o Each pair of 2 planes forms a projection
1 % view of the 3D particle trajectories
- il e 3 mm wire pitches in ICARUS helps
p———, achieving O(1) mm spatial resolution


http://arxiv.org/abs/1704.02927

Charge Readout in ICARUS - Forming 3D Spacepoints

A wire hit on the wire plane p is defined T Usher
by the hit time and wire ID

The 2 hits from different wire planes

(p&q) that have a hit time coincidence

are used to reconstruct a 3D spacepoint.

a: (t,w)

Since this is the very first step in event ¢ / >

reconstruction, the algorithm (Cluster3D) is
prioritized to maximize the efficiency while
leave the spurious spacepoints “ghosts” to be )
removed in the downstream process.

So

- All 3D candidate space points
s \_ from 2D wire plane hits 10

z [cm]
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Scalable Particle Imaging with Neural Embeddings (SPINE) Sl AR o
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Paper: https://arxiv.org/abs/2102.01033
Github: https://github.com/Deepl earnPhysics/spine
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https://indico.ipmu.jp/event/462/contributions/8742/
https://arxiv.org/abs/2102.01033
https://github.com/DeepLearnPhysics/spine

Deghosting with SPINE
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Deghosting with SPINE F.Drielsma @ SPINE workshop 2025
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Using UResNet + Sparse Convolution on voxelized particle trajectories to extract the features
and classify “non-ghost” vs. “ghost”

Re-distribute the charge based on the number of times each wire hit is used in the deghosted

voxels.
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https://indico.nevis.columbia.edu/event/11/timetable/#20250929

Reconstruction with SPINE

F.Drielsma @ SPINE workshop 2025
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More details in
F. Drielsma’s talk

Semantic segmentation at
voxel level with UResNet
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Particle trajectories are voxelized in 3D space with O(1) mm? resolution
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https://indico.nevis.columbia.edu/event/11/timetable/#20250929
https://indico.ipmu.jp/event/462/contributions/8742/

Michel electrons in LArTPC

BNB v, semantic segmentation
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Delta{ 0.001
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ICARUS work in progress
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A michel electron can deposit energy in LArTPC via ionization (primary michel) and
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Selecting Michel electrons with SPINE

ICARUS work in progress

In MC, a Michel electron is considered

successfully reconstructed if the Intersection N\
over Union (loU) between the matched truth N
and reconstructed particle voxels’ semantic N
type is greater than 50%.

IoU = 2

|zUy|

In addition, we require the parent muon track Reco True
to have at least 20 voxels of reconstructed
visible energy deposition. Matched for delta, unmatched for Michel.

Red: track, , purple: delta

16



Selecting Michel electron with SPINE

To improve the selection purity, we apply two
more selection criteria:

e The reconstructed Michel electron has
at least 20 voxels of reconstructed
visible energy deposition

e The reconstructed primary Michel
electron is at most 3 cm away from
the parent muon track end

ICARUS work in progress

~140k Michel electrons

Matched &
Muon n voxel > 20

Michel n voxel > 20

Attached at muon end

Efficiency

82.2%

80.0%

78.8%

Purity

89.8%

92.8%

94.0%

*Efficiency = n_reco_truth / n_truth
Purity = n_reco_truth/n_reco

ProtoDUNE-SP (PhysRevD.107.092012): ~15% efficiency and 95% purity

17


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.092012

Reconstructing Michel electron with SPINE
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Reconstruction and MC truth show a strong correlation, with smearing
from various systematic uncertainties, e.g. deghosting, calorimetry, etc.
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SPINE performance check: Data/MC shape comparisons

ICARUS work in progress
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Achieved 92.45% “yield” over ~80k data samples with the current selection.
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Correcting missing energy of Michel electron

ICARUS work in progress
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e Due to various detector effects, not all of particle’s kinetic energy are deposited
e The reconstructed energy deposition is differed from the MC truth due to
reconstruction errors

e We apply a constant multiplicative factor from a linear regression for reconstructed
Michel electron kinetic energy
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Energy scale calibration with Michel electron

ICARUS work in progress Bin 3
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.092012

Neutral pion events in ICARUS
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Target topology: Charged-Current (CC)
muon neutrino interaction on argon with

-140

a single 1 in the final state: e,
v, +Ar - 1y~ + 110+ 0+ X &
X =180
where X represents any final state
particles other than muons or charged ~200
pions.

-220

ICARUS BNB Run 9435

L. Kashur
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Neutral pion selection with SPINE

Selection Cuts Efficiency Purity
In-time flash 97.1% 0.5%
Fiducial Volume 96.6% 2.7%
Single Muon 90.8% 3.6%
No Charged Pions 83.3% 3.6%
2 Photons 70.2% 83.7%
m <400 MeV/c? 70.0% 85.5%

*Efficiency = n_reco_truth / n_truth
Purity = n_reco_truth /n_reco

L. Kashur

Trigger window by
LArTPC optical
readout “flash”

Confusion between
electron and photon
shower is the leading
error source in the
selection inefficiencies
and impurities.

MicroBooNE (arxiv.org/pdf/2404.09949): 8.5% efficiency and 69% purity 93



http://arxiv.org/pdf/2404.09949

Shower energy correction
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Shower energy is estimated calorimetrically by summing charge depositions

A constant factor can be applied to correct the missing shower energy
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Neutral m° mass reconstruction
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Study to account for the missing un-contained shower energy is ongoing
Crystal Ball fit to derive a multiplicative correction factor
The resulted 1° mass reconstruction shows nice agreement between MC and data.

L. Kashur
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Conclusion and outlook

e SPINE achieved much better selection efficiency and purity compared to preceding
work:
o Michel electron: 78.8% efficiency, 94.0% purity.
o v,CC % 70.0% efficiency, 85.5% purity

e Energy resolution with Michel electrons in ICARUS is better than preceding results, yet
still limited by deghosting performance and semantic segmentation accuracy

e The unprecedented accuracy of ° mass reconstruction in LArTPC shows promising
future of its application in SBN oscillation analysis

e How may SPINE and reconstruction/calibration be better?
o Improvement of the UResNet segmentation accuracy?
o In-situ shower energy correction instead of simple multiplicative factors?
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The Standard Neutrino Oscillation

/\m‘ m, m,

Hamiltonian basis

# flavor basis Y2 I/3 \ Traverse distance
4 . (1,2,3)

f v : AmAlL
1 ¢ P(vy — vg) ~ Z Re U(;"Z-UganjUgj sin? [—;%—] +...
\ ‘v t>) — .
f“vi H (o, B) € (e, p,T) Mixing matrix neutrino energy
{

l 5. = sin 6,

Atmospheric Reactor Solar C;; = COSC —{,:
Ve 1 0 0 C13 0 813671.50P C12 s;2 0 121
Vp | =10 co3 823 0 1 0 —s12 ci2 0| »
Vr 0 —s93 co3 —s13€¥cr Q) c13 0 0 1 V3

e The oscillation parameters are getting better constrained by reactor, atmospheric, and long
baseline [O(100) km] neutrino oscillation experiments

Oscillation probability:

e Afew anomalies were seen in the short baseline oscillation experiments
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Scintillation in LArTPC

Scintillation photons are produced from a dissociation of excited argon

Scintillation light: ! _
dimmers (Ar*,, also known as eximers).

Ar
g onaion 2. 1. When an electron is released from an argon atom, the Ar* can
form an ionized dimer Ar*2 via
i SR Ar" +2Ar — Ary + Ar

ionized C which can recombine with the released electron and form an

e excimer.

recombmanon\ 2. Ar can also be directly exited to Ar* and combines with a nearby
- Ar via Ar* + 2Ar — Arj + Ar

!

‘" Depending on the recombined electron spin, the excimers formed by
@)f \G) process 1 can exist in either a singlet (4~8 ns) or triplet (1.5~1.6 ps) state.

VOV scniltion The characteristic wavelength of Ar*, scintillation light is 128 nm.
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MC and data samples

For both analyses the ICARUS Monte Carlo simulation consisting of BNB neutrinos L Kashur
(GENIE-based) and cosmics (CORSIKA-based) is used.

The Michel electron analysis uses the ICARUS BNB off-beam data, which for the majority
consists of cosmic muons.

The 11° analysis uses 1.62x10"® POT of ICARUS BNB Run 2 (winter 2022 ~ spring 2023)
on-beam data in addition to the off-beam.

Sample Type POT
BNB Run 2 On-Beam Majority Trigger Data (On-Beam) *1.62 x 10"
BNB Run 2 Off-Beam Maijority Trigger Data (Off-Beam) N/A
BNB v + Cosmic Simulation 1.68 x 102

icaruscode v09_89 00 01 *after data/beam quality cuts
30



Impact of deghosting error
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J. Xia
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Unmatched reconstructed Michel electrons

Reconstructed particles Truth particles

/

Reco not in truth
seg error

Blue: shower, Red: track, green: michel, purple: delta,



Unmatched reconstructed Michel electrons

Reconstructed particles Truth particles

.

Reco not in truth
Seg-error

Blue: shower, Red: track, green: michel, purple: delta,



Michel is >3 cm from muon track (in truth space)

Truth particles

Reconstructed particles
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dist~18 cm

Blue: shower, Red: track, green: michel, purple: delta,



Michel is >3 cm from muon track (in truth space)

Reconstructed particles Truth particles

Blue: shower, Red: track, green: michel, purple: delta,




Michel electron reconstruction with SPINE

ICARUS work in progress

ICARUS work in progress

Bin Center [MeV] | Fitted Bias (%) Stats. Bias (%)
16.56 10.39 14.35
24.36 7.44 7.59
29.19 6.12 4.83
33.10 5.13 2.86
36.52 4.06 1.36
39.61 3.34 -0.16
42.51 2.93 -0.70
45.31 2.49 -2.14
48.14 1.39 -3.18
51.19 0.83 -4.26

Bin Center [MeV] |Fitted Resolution (%) |Stats. Resolution (%)
16.56 31.10 35.04
24.36 27.11 28.97
29.19 25.34 27.42
33.10 24 .57 27.13
36.52 23.82 26.35
39.61 24.15 26.58
42.51 22.53 26.22
45.31 22.32 26.41
48.14 22.47 26.63
51.19 22.41 26.78

Biases of reconstructed kinetic energy

Energy resolution
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