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What's the problem?

 v-A interactions poorly understood, low-energy nuclear physics is hard

* Difficult to design analyses to measure signals we don’t simulate at
all... particularly if we also don’'t know where to look...

e

There are
unknown A
unknowns... Lails




Sources of inspiration

* ArgoNeut hand-scanning: observed

“back-to-back” protons S o S :
- 32 interaction vertex
* Hypothesis: short range correlated n-p | _ p1~:-4d° R
pairs in the nucleus P

Led to new theory and measurements

PRD90 (2014) 012008, arXiv:1405.4261

C. Amarasinghe, CoOSSURF 2022 talk

“ » LZ studies looking at both simulation

8 and early calibration data
o “ il * Use dimensionality reduction (30 - 2)
2 ) o '
7 to look for unexplained clusters

o - s « Example: cyan had an unexpected

- ‘ Simulated data ‘ bug in the pulse shape model




Can unsupervised ML clustering

algorithms “hand scan” neutrino

datasets and provide interesting
hypotheses for testing?



Unsupervised clustering for redtHnre
cosmic event exploration

Callum Wilkinson, LBNL

On behalf of the DUNE
Collaboration

~

A
(rereee ml

BERKELEY LAB




A pilot study with FSD data

Anode
plane
* Playing with neutrino data is discouraged,

so this is a pilot study using cosmic data

e Data+simulation here is from the DUNE ND
“full scale demonstrator” (FSD) prototype:

* 3mx1mx1m LArTPC
* ~4x4 mm pixel charge readout (anode)

* Raw charge deposits projected onto the anode

W w wwm

e Separated into events by timing

oy W
1€ ‘v (T202) G swuawnisu

* Task: group visually or physically similar
events to enable data-driven exploration

Central
cathode

Light
readout
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A pilot study with FSD data

Event 132, 1D 132 - 2024-11-06 21:02:59 UTC

* Playing with neutrino data is discouraged,
so this is a pilot study using cosmic data

ISDJJ

e Data+simulation here is from the DUNE ND
“full scale demonstrator” (FSD) prototype:
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e 3MmX1Imx1m LArTPC
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* ~4x4 mm pixel charge readout (anode)

ssalboud ul yiom INNA
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* Raw charge deposits projected onto the anode

* Separated into events by timing ~1odo

* Task: group visually or physically similar
events to enable data-driven exploration
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This work relies entirely on the collective
work of lots of people!

Detector, data, simulation and software...



Example FSD cosmic simulation

* Example simulated cosmic events, with very rough truth labels
* I'm going to use the simulation later to see whether the data-driven

clustering is doing “sensible” things
e But, these labels are not used in training at all

DUNE simulation, work in progress
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Methods 1: SImMCLR (arXiv:2002.05709)

General idea: train a model to distinguish between “similar’ and
“dissimilar” data without labels through augmentation invariance

Maximize agreement

1) Take a batch of N images {}f‘ : : } "
g\ LS
2) Augment each image twice - positive pair AR R SR

3) Pass each image through an encoder 1)
4) Project encoded features to a latent space with MLP

5) Use NT-Xent loss to pull positive pairs together, and
use other images in the batch as negative pairs

Positive
4 | exp(sim(zi, z;) /7) pair
i, = T 108 2N ) _
1 Lik£q exp(sim(z;, zk)/T)‘\NTO%?:;ve
ulv

sim(u,v) = , Tis a “temperature” hyperparameter
all vl 10



Augmentations

Aim: prevent the model from learning
to use certain features, e.q., rotational
invariance through random rotations

Challenges: FSD aspect ratio and the
large extent of many images

Use a variety of operations including
skews, flipping, rotations, distortions,
dropping blocks of pixels, ...

Full list in backups, I'm hiding a lot of
trial and error here
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Methods 2: Contrastive Clustering
(arXiv:2009.09687)

Pair Construction Backbone

L e

:

: i

: Be
: Weight :Sharing

: y

1

' N wa

: m @ ﬁ @4;// ‘
: 2’ file) h®

arXiv:2009.09687

-\ aimize | SO far SO
IS ’ Simiarity 1+ SIMCLR!
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a Maximize ,
> Similarity |

I

I

I

Extends SImMCLR with a clustering head which produces soft cluster
assignments, + compares those across the two augmented batches
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(Two-layer) MLP that takes
output from the CNN
- 64D latent space

NT-Xent term in the loss

Pair Construction Backbone _
ﬁ 7 RO e Maximize ,

n @ 2 i\~ Similarity &
" v f() \ 5

Weight :Sharing
. i

Input two
augmented
batches of

Images

i

[

I

a Maximize ,
Similarity |

arXiv:2009.09687

(Two-layer) MLP + softmax,

Sparse CNN with (6x) 3x3 downsampling  outputs soft cluster assignments
and fully convolutional layers

—. Global pooling for output Adds NT-Xent + small entropy
term to the loss

(Probably deeper than it needs to be)
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N. images
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Training results (Ncuster = 25)

[ Data mm PION . STOPPINGMICHEL [ Data m PION mm STOPPINGMICHEL

EM MULTIMUON STOPPINGOTHER EM MULTIMUON STOPPINGOTHER
NEUTRON mm EXTERNAL mmm THROUGHCLEAN NEUTRON mmm EXTERNAL mmm THROUGHCLEAN
PROTON STOPPINGCAPTURE THROUGHMESSY PROTON STOPPINGCAPTURE THROUGHMESSY

Max. soft clustering wsoo| | Distribution of hard
assignment value | s clustering assignments
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Max. cluster value Max. cluster index

* Trained with 5M data images (possibly overkill)

 After training, pass 100k new data and 100k simulation
Images through the encoder + clustering head

* Hard cluster index = max soft clustering assigment
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Clustering results: the good

1 Data = PION STOPPINGMICHEL

EM MULTIMUON STOPPINGOTHER #6 Data eve ntS
NEUTRON  mmm EXTERNAL m=s THROUGHCLEAN /
PROTON STOPPINGCAPTURE THROUGHMESSY ‘

17500 A

15000 +

12500 A

=
© 10000 A
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7500 1

5000 ~

2500 A

e Data cluster 6 appears to correspond to
stopping muons in simulation

* Randomly chosen examples from data look
consistent with that interpretation
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Clustering results: the good (2)

S e oo #8 Data events
o e T &
pd
m
17500 A ; ; E
R — )
15000 - #8 ’ / ~
>
12500 i “\'\\\ °
%10000- \-\\: \‘\\ /j/’l\ é
= L/’ ! 8
7500 A ’ N
0 )
-
. Z
m
S
* Most non-muon induced events in simulation T =
o >
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» “Clean” through-going simulation tracks #13 Data events

correspond to multiple data clusters \

* Generally these clusters have less ,
confident assignments

* My guess is that it's due to the
Imbalance between event types

— Ssalboud ul yiom INNQ
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« Some data clusters don’t seem to #17/ Data events

correspond to simulation labels

* Likely caused by event separation N
fallures in data, to be investigated... .

 But a fun observation from this method W

— Ssalboud ul yiom éNnG



T-SNE for comparison

Event Stopped Mostly
mergers\ ShOWGI‘S 24
. ol 21
18
Short 204 3
tracks @ I R 15
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y T T T \ O
—60 —40 —20 0 20 40 60

t-SNE #0

Event
mergers

* 64D instance contrastive head output - 2D

* Colourscale from clustering head hard assignments
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Outlook

 Investigated using unsupervised clustering for event exporation

e Qualitative assessment:

_“There are lies,
& damned lies,
and summary
statistics”

e Clear clusters of different “event types”

* Including some interesting surprises

E Mark Twain

 All generally sensible Ny (low confidence)

e But, guantitative metrics are a challenge,
lots of trial and error involved

* Method improvements: improved clustering techniques exist,
refined architecture/augmentations, 3D images...

* Physics improvements: move to neutrino-scattering simulation

* Suggestions very welcome!
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Questions?

Corporate needs you to find the differences
between this picture and this picture.

: hlhey're the same picture.
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Missing data: nuclear de-excitation

« Liege intranuclear cascade (INCL) INCL >
+ABLA nuclear de-excitation model

®<T

 Significant fraction of E, goes to very
low energy cluster production

* Energy loss to clusters increases with
nuclear size (only **O shown)

Figure from A. Ershova

V|_,|'160 e INCL+ABLA
INCL

 Bias to both Hyper-K and DUNE
energy reconstruction...

 No available data constraints, limited
theory inputs, but a major impact

Phys. Rev. D108, 112008
Phys. Rev. D106, 032009

300 500 700 900 1100 1300 1500
E, MeV)
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.112008
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.032009

Assessing clustering performance

* There are many tunable hyper parameters, the most important are:
* The augmentations used
* The number of clusters
« Strength of entropy term

* Temperatures in the two NT-Xent contributions to the loss

* But, guantitative tuning of these is difficult. Unlabeled cluster quality
metrics exist, but can give misleading results:

_“There are lies,

* Weak augmentations improve all metrics... | dzmned lies,
because the model learns angular information SR e and summary

statistics”
 Small N. clusters perform better on all cluster . Mark Twain
separation metrics — but qualitatively fail completely A\ (low confidence)

* |deas welcome...
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loss/total

Training plots

6.7 4
9.75 4
6.6 1 3.0
9.50 4
6.5 4
9.25 4 2.84
6.4 4 >
- s
9.00 A 2 6.3 !
7 S 2.6
8.75 2 6.2+ E
=]
8.50 611 2.4
6.0 4
8.25 4
5.9 1 224
800 L T T T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10
Epoch Epoch
0.005 A
0.040 -
0.004 -
0.035 A
2 0.003 A
©0.030 <
. g
3 s
0 =
a 0.002 -
< 0.025 -
0.001 A
0.020
0.000 A
0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch

5 million events, ~10 hours on 4 A100s
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What is the CNN encoder structure?

To paraphrase: “ChatGPT please make this code dump into a

nice table showing the model structure”:

Visual / Table summary

Stage

Input

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Operation

Sparse tensor

Conv3x3 (stride 2),

2xConv3x3

Conv3x3 (stride 2),

2xConv3x3

Conv3x3 (stride 2),

2xConv3x=3 + BN

Conv3x3 (stride 2),

2xConv3x=3 + BN

Conv3x3 (stride 2),

2xConv3x3 + BN

Conv3x3 (stride 2),

2xConv3x=3 + BN

Channels

1

48

96

192

192

192

192

Spatial size (Hxw)

768x256

384x128

192x64

96x32

48x16

24x8

12x4

Notes

Initial downsample

Output features
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Augmentation procedure

Series of operations which randomly:

e Zero out blocks of varying size:
* 0-50 blocks of 5-10 x 5-10 pixels
e 500-2000 blocks of 1-3 x 1-3 pixels

* Mirror image in x/y both in-place and globally
* Image shearin x andy (Gaus, 0 =0.1)
e Rotation (Gaus, 0 = 6°)
* Grid distortion:
e Scale image (Gaus, g = 10%)
e Scale all + individual charges:
* +/-2% on the raw charge (Q)
e +/-2% after taking logio(1+Q)
« Splat onto regular grid

* Semi-random crop to 768x256

26
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Max. cluster index

* “Messy” through-going tracks are mostly #19; Daia SLens

sensibly grouped together |

/

* The additional separation in data seems 1A
sensible, simulation labels very coarse
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