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What’s the problem?

● ν-A interactions poorly understood, low-energy nuclear physics is hard

● Difficult to design analyses to measure signals we don’t simulate at 
all… particularly if we also don’t know where to look…

There are 
unknown 
unknowns...
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Sources of inspiration
● ArgoNeut hand-scanning: observed 

“back-to-back” protons
● Hypothesis: short range correlated n-p 

pairs in the nucleus
● Led to new theory and measurements

PRD90 (2014) 012008, arXiv:1405.4261

● LZ studies looking at both simulation 
and early calibration data

● Use dimensionality reduction (30→2) 
to look for unexplained clusters

● Example: cyan had an unexpected 
bug in the pulse shape model

C. Amarasinghe, CoSSURF 2022 talk
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Can unsupervised ML clustering 
algorithms “hand scan” neutrino 
datasets and provide interesting 

hypotheses for testing?
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A pilot study with FSD data

● Playing with neutrino data is discouraged, 
so this is a pilot study using cosmic data

● Data+simulation here is from the DUNE ND 
“full scale demonstrator” (FSD) prototype:

● 3m x 1m x 1m LArTPC

● ~4x4 mm pixel charge readout (anode)

● Raw charge deposits projected onto the anode

● Separated into events by timing

● Task: group visually or physically similar 
events to enable data-driven exploration

Instrum
ents 5 (2021) 4, 31

Anode 
plane

Central 
cathode

Light 
readout
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This work relies entirely on the collective 
work of lots of people! 

Detector, data, simulation and software...
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Example FSD cosmic simulation

● Example simulated cosmic events, with very rough truth labels
● I’m going to use the simulation later to see whether the data-driven 

clustering is doing “sensible” things
● But, these labels are not used in training at all

DUNE simulation, work in progress
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Methods 1: SimCLR (arXiv:2002.05709)

General idea: train a model to distinguish between “similar” and 
“dissimilar” data without labels through augmentation invariance

Positive 
pair

Negative 
pairs

, τ is a “temperature” hyperparameter

1) Take a batch of N images
2) Augment each image twice → positive pair
3) Pass each image through an encoder
4) Project encoded features to a latent space with MLP
5) Use NT-Xent loss to pull positive pairs together, and 

use other images in the batch as negative pairs



11

Augmentations

Aim: prevent the model from learning 
to use certain features, e.g., rotational 
invariance through random rotations

Challenges: FSD aspect ratio and the 
large extent of many images

Use a variety of operations including 
skews, flipping, rotations, distortions, 
dropping blocks of pixels, …

Full list in backups, I’m hiding a lot of 
trial and error here

Original

DUNE work in progress
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Methods 2: Contrastive Clustering 
(arXiv:2009.09687)

Extends SimCLR with a clustering head which produces soft cluster 
assignments, + compares those across the two augmented batches

So far so 
SimCLR!

arXiv:2009.09687



13

Huh?

Sparse CNN with (6x) 3x3 downsampling 
and fully convolutional layers
→ Global pooling for output

(Probably deeper than it needs to be)

(Two-layer) MLP that takes 
output from the CNN 
→64D latent space

NT-Xent term in the loss

(Two-layer) MLP + softmax, 
outputs soft cluster assignments

Adds NT-Xent + small entropy 
term to the loss

Input two 
augmented 
batches of 

images

arXiv:2009.09687
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Training results (Ncluster = 25)

● Trained with 5M data images (possibly overkill)
● After training, pass 100k new data and 100k simulation 

images through the encoder + clustering head
● Hard cluster index = max soft clustering assigment

Max. soft clustering 
assignment value

Distribution of hard 
clustering assignments
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Clustering results: the good

● Data cluster 6 appears to correspond to 
stopping muons in simulation

● Randomly chosen examples from data look 
consistent with that interpretation

D
U

N
E

 w
ork in progress

#6

#6 Data events
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Clustering results: the good (2)

● Most non-muon induced events in simulation 
appear to correspond to two data clusters

● Those clusters also appear to have 
meaningful differences
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ork in progress
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ork in progress

#8

#24

#8 Data events

#24 Data events
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Clustering results: the bad

● “Clean” through-going simulation tracks 
correspond to multiple data clusters

● Generally these clusters have less 
confident assignments

● My guess is that it’s due to the 
imbalance between event types
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U
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 w
ork in progress

D
U

N
E

 w
ork in progress

DUNE work in progress

#0 Data events

#7 Data events

#13 Data events D
U

N
E

 w
ork in progress
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Clustering results: the interesting

● Some data clusters don’t seem to 
correspond to simulation labels

● Likely caused by event separation 
failures in data, to be investigated…

● But a fun observation from this method
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T-SNE for comparison

● 64D instance contrastive head output → 2D
● Colourscale from clustering head hard assignments

Stopped Mostly 
showers

Mostly tracks

Event 
mergers

Short 
tracks

Event 
mergers
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Outlook
● Investigated using unsupervised clustering for event exporation 
● Qualitative assessment:

● Clear clusters of different “event types”
● Including some interesting surprises
● All generally sensible

● But, quantitative metrics are a challenge, 
lots of trial and error involved 

● Method improvements: improved clustering techniques exist, 
refined architecture/augmentations, 3D images...

● Physics improvements: move to neutrino-scattering simulation

● Suggestions very welcome!

“There are lies, 
damned lies, 

and summary 
statistics”

- Mark Twain
(low confidence)
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Questions?
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Missing data: nuclear de-excitation
● Liege intranuclear cascade (INCL) 

+ABLA nuclear de-excitation model

● Significant fraction of Eν goes to very 
low energy cluster production

● Energy loss to clusters increases with 
nuclear size (only 16O shown)

νμ-16O

Figure from A. Ershova

INCL

ABLA

● Bias to both Hyper-K and DUNE 
energy reconstruction…

● No available data constraints, limited 
theory inputs, but a major impact

Phys. Rev. D108, 112008
Phys. Rev. D106, 032009

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.112008
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.032009
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Assessing clustering performance
● There are many tunable hyper parameters, the most important are:

● The augmentations used
● The number of clusters
● Strength of entropy term
● Temperatures in the two NT-Xent contributions to the loss

● But, quantitative tuning of these is difficult. Unlabeled cluster quality 
metrics exist, but can give misleading results:

“There are lies, 
damned lies, 

and summary 
statistics”

- Mark Twain
(low confidence)

● Weak augmentations improve all metrics… 
because the model learns angular information

● Small N. clusters perform better on all cluster 
separation metrics→ but qualitatively fail completely

● Ideas welcome...
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Training plots

5 million events, ~10 hours on 4 A100s
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What is the CNN encoder structure?

To paraphrase: “ChatGPT please make this code dump into a 
nice table showing the model structure”:
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Augmentation procedure
Series of operations which randomly:

● Zero out blocks of varying size:
● 0–50 blocks of 5–10 x 5–10 pixels
● 500–2000 blocks of 1–3 x 1–3 pixels

● Mirror image in x/y both in-place and globally
● Image shear in x and y (Gaus,  σ = 0.1)
● Rotation (Gaus, σ = 6°)
● Grid distortion: 
● Scale image (Gaus, σ = 10%)
● Scale all + individual charges:

● +/-2% on the raw charge (Q)
● +/-2% after taking log10(1+Q)

● Splat onto regular grid
● Semi-random crop to 768x256
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Clustering results: the good again

● “Messy” through-going tracks are mostly 
sensibly grouped together

● The additional separation in data seems 
sensible, simulation labels very coarse

#15
#19
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#4 Data events

#15 Data events

#4

#19 Data events
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