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Deep learning in neutrino physics
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Current approach: deep neural network(s) trained used simulated datasets 
with labels via fully supervised learning.

Extremely successful, but:
● Vulnerable to data-simulation discrepancies ⇒ heavy calibration efforts
● “Smart vs. big” models: can removing hand-crafted physical priors result in 

better performance with the introduction of more compute? [1]
● Task-specific, trained separately from scratch.

[1] Richard Sutton, The Bitter Lesson. http://www.incompleteideas.net/IncIdeas/BitterLesson.html

http://www.incompleteideas.net/IncIdeas/BitterLesson.html


Task specificity
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Attention maps from image 
classification in a vision 
transformer
DINO (2104.14294)

Attention maps

Cat/dog classifier will not learn anything about the difference between 
trees and flowers.

https://arxiv.org/abs/2104.14294


Foundation models are generalists
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Supervised Self-supervised

Attention maps from image 
classification and 
self-supervised tasks in a 
vision transformer
DINO (2104.14294)

FM = learn more than the task requires so you can reuse it later

https://arxiv.org/abs/2104.14294


Foundation models are generalists
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Multi-view
Reconstruction  [3]

Monocular depth estimation  
[1]

Point Correspondence  [2]

Video Tracking [4]
DINO (SSL) [2]

https://arxiv.org/abs/2312.12337
https://arxiv.org/abs/2403.14548
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2403.14548
https://arxiv.org/abs/2104.14294


Foundation models are generalists
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Multi-view
Reconstruction  [3]

Monocular depth estimation  
[1]

Point Correspondence  [2]

Video Tracking [4]
DINO (SSL) [2]

Let’s apply to LArTPC data

https://arxiv.org/abs/2312.12337
https://arxiv.org/abs/2403.14548
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2403.14548
https://arxiv.org/abs/2104.14294


Dataset: PILArNet-Medium
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Raw Depositions

Young, S. et. al, Particle Trajectory Representation Learning with Masked Point Modeling (2025)

Open data!

● Simulated dataset of 1.2M 3D events 
● (2.3 m)3 cube (768 px)3. ~5B non-zero voxels.
● +1M events on top of previous open dataset, 

PILArNet (2020).
● Simply 3D energy depositions, equivalent to “digital 

hits” from a LArTPC (e.g., DUNE Near Detector)
● 1024 - 30,000 voxels/event

Interactions per Image Particles per Image

https://arxiv.org/abs/2006.01993


Semantic Segmentation Labels
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Semantics Reconstruction Particle ID ReconstructionRaw Depositions

Young, S. et. al, Particle Trajectory Representation Learning with Masked Point Modeling (2025)

Open data!



Instance Labels
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Interaction-level Particle-levelRaw Depositions

Young, S. et. al, Particle Trajectory Representation Learning with Masked Point Modeling (2025)

Open data!



BERT
(1810.04805)

MAE
(2111.06377)

Point-MAE
(2203.06604)

PoLAr-MAE
(2502.02558)

3D LArTPC Image

Masked Autoencoders

10
[adapted from PointMAE: arXiv:2203.06604]

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2111.06377
https://arxiv.org/abs/2203.06604
https://arxiv.org/abs/2502.02558
https://arxiv.org/abs/2203.06604
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PoLAr-MAE: Point-based LAr Masked Autoencoder [1]

● Encoder-decoder is asymmetric, i.e. encoder params ≫ decoder params.

https://arxiv.org/abs/2502.02558
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Young, S. et. al, Particle Trajectory Representation Learning with Masked Point Modeling (2025)

PoLAr-MAE: Point-based LAr Masked Autoencoder [1]

Embed via permutation invariant encoder 
(e.g., DeepSets [2], PointNet [3]):

https://arxiv.org/abs/2502.02558
https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1612.00593
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Patch Encoder
Reconstruction Heads

Large Encoder
(Transformer)

Tiny Mask Decoder
(Transformer)

(Chamfer distance)
I R

Young, S. et. al, Particle Trajectory Representation Learning with Masked Point Modeling (2025)

PoLAr-MAE: Point-based LAr Masked Autoencoder [1]

https://arxiv.org/abs/2502.02558


Patch Representations
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Patch makeup semantic segmentation

t-SNE

A look at patch representations.

Remember: one patch contains a group 
of pixels, so can contain >1 particle type.

Young, S. et. al, Particle Trajectory Representation Learning with Masked Point Modeling (2025)



Instance and Vertex Patch Classification
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Young, S. et. al, Particle Trajectory Representation Learning with Masked Point Modeling (2025)



Instance and Vertex Patch Classification

16
Young, S. et. al, Particle Trajectory Representation Learning with Masked Point Modeling (2025)
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Comparison to State of the Art (UResNet): Semantic Segmentation
What we care about: per-pixel classification
● Beats state-of-the-art in data-constrained environment, but not in the limit of 

many events.

Young, S. et. al, Particle Trajectory Representation Learning with Masked Point Modeling (2025)
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Comparison to State of the Art (UResNet): Semantic Segmentation

100x less data

What we care about: per-pixel classification
● Beats state-of-the-art in data-constrained environment, but not in the limit of 

many events.

Young, S. et. al, Particle Trajectory Representation Learning with Masked Point Modeling (2025)
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Comparison to State of the Art (UResNet): Semantic Segmentation

100x less data

What we care about: per-pixel classification
● Beats state-of-the-art in data-constrained environment, but not in the limit of 

many events.

does not beat UResNet at 
high event counts.

→ fundamental limit in 
PoLAr-MAE architecture.

Young, S. et. al, Particle Trajectory Representation Learning with Masked Point Modeling (2025)



Reco● Small features poorly modeled, i.e. “paint brush” 
classification.

● This is due to single-scale patches being used, 
which smears tiny structures.
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“Small”
classes

Comparison to State of the Art (UResNet): Semantic Segmentation

Truth

Young, S. et. al, Particle Trajectory Representation Learning with Masked Point Modeling (2025)



Panda: Self-distillation and hierarchy
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Young, S. et al., Panda: Self-distillation of Reusable Sensor-level Representations for High Energy Physics (2025)

instead of reconstructing 
masked portions of image 
directly,

let’s predict where they 
would would end up on a unit 
sphere
(i.e.,  classify them),

by enforcing consistency 
between global and local 
views of the same image.

RESEARCH IN PROGRESS; RESULTS SUBJECT TO CHANGE
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Panda: Self-distillation and hierarchy

Young, S. et al., Panda: Self-distillation of Reusable Sensor-level Representations for High Energy Physics (2025)

Based on Sonata [1]
Figure from DINO [1,2]

+ Translations & Rotations in 3D
+ O(0.5 voxel) Point Jitter

Global ViewLocal Crops

RESEARCH IN PROGRESS; RESULTS SUBJECT TO CHANGE

https://openaccess.thecvf.com/content/CVPR2025/papers/Wu_Sonata_Self-Supervised_Learning_of_Reliable_Point_Representations_CVPR_2025_paper.pdf
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2304.07193
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Panda: Self-distillation and hierarchy

Encoder Before

Example Encoded Event

Patchified
Image

[1]

Young, S. et al., Panda: Self-distillation of Reusable Sensor-level Representations for High Energy Physics (2025)RESEARCH IN PROGRESS; RESULTS SUBJECT TO CHANGE

https://arxiv.org/abs/2010.11929
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Panda: Self-distillation and hierarchy

Encoder After
(Point Transformer V3 [1])

Example Encoded Event

Raw
Image

concat

Young, S. et al., Panda: Self-distillation of Reusable Sensor-level Representations for High Energy Physics (2025)RESEARCH IN PROGRESS; RESULTS SUBJECT TO CHANGE

https://arxiv.org/abs/2312.10035
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Young, S. et al., Panda: Self-distillation of Reusable Sensor-level Representations for High Energy Physics (2025)

Structure within the Feature Manifold

t-SNE 1

t-
SN

E 
2

Pre-trained on 1M events

RESEARCH IN PROGRESS; RESULTS SUBJECT TO CHANGE



Structure within the Feature Manifold
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Young, S. et al., Panda: Self-distillation of Reusable Sensor-level Representations for High Energy Physics (2025)

Pre-trained on 1M events

RESEARCH IN PROGRESS; RESULTS SUBJECT TO CHANGE



Semantic Segmentation: Motif
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1,000x less labels

+2.9%

Young, S. et al., Panda: Self-distillation of Reusable Sensor-level Representations for High Energy Physics (2025)

Normalized by Prediction Column
(diag.=precision)

Pre-trained on 1M events

RESEARCH IN PROGRESS; RESULTS SUBJECT TO CHANGE
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Young, S. et al., Panda: Self-distillation of Reusable Sensor-level Representations for High Energy Physics (2025)RESEARCH IN PROGRESS; RESULTS SUBJECT TO CHANGE



Semantic Segmentation: Particle
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Young, S. et al., Panda: Self-distillation of Reusable Sensor-level Representations for High Energy Physics (2025)

10,000x less labels

Normalized by Truth Column
(diag.=recall/efficiency), 1M fine-tune 

Pre-trained on 1M events

RESEARCH IN PROGRESS; RESULTS SUBJECT TO CHANGE



Instance Segmentation: separating particles from one another
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Backbone

Decoder

Per-voxel Features

Transformer 
Decoder Layer x3

Learned Queries x32

Instance Kernels

Key &
Value

❄

Panda

Reconstructed Event

mask

class

Remove LEDs

Young, S. et al., Panda: Self-distillation of Reusable Sensor-level Representations for High Energy Physics (2025)

LED mask

Input ImageRESEARCH IN PROGRESS



Instance Segmentation: Particle 
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Young, S. et al., Panda: Self-distillation of Reusable Sensor-level Representations for High Energy Physics (2025)

Truth

Reco (%: confidence)

RESEARCH IN PROGRESS; RESULTS SUBJECT TO CHANGE



Instance Segmentation: Particle 

32
Young, S. et al., Panda: Self-distillation of Reusable Sensor-level Representations for High Energy Physics (2025)

Truth

Reco (%: confidence)

RESEARCH IN PROGRESS; RESULTS SUBJECT TO CHANGE



Instance Segmentation: Particle 
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Young, S. et al., Panda: Self-distillation of Reusable Sensor-level Representations for High Energy Physics (2025)

Truth

Reco (%: confidence)

RESEARCH IN PROGRESS; RESULTS SUBJECT TO CHANGE

over-segmentation 
(FP) 



Instance Segmentation: Interaction
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Young, S. et al., Panda: Self-distillation of Reusable Sensor-level Representations for High Energy Physics (2025)

Truth

Reconstructed

RESEARCH IN PROGRESS; RESULTS SUBJECT TO CHANGE



Takeaways
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● Self-supervised learning works, and we’re just getting started.
● A generic feature extractor unlocks new possibilities that were simply not possible 

before:
○ Few-shot learning w/o well-calibrated sim: track/shower, Michel tagging, particle ID, …
○ Reasoning over images/captioning with language (human-in-the-loop)
○ Content-retrieval at scale: “find events like this” in this dataset.
○ Cross-experiment datasets → invariant embeddings across detector conditions, easy adaptation.

● Future paths: multi-modal sensors (optical, 2D projection, …), incorporating 
(neuro-)symbolic reasoning, cross-experiment datasets, detector-related effects.

● Reproducing the results of other models is really hard and time-consuming 
(specific data formats, dependencies, closed-source). Common benchmark(s) 
would go a long way in accelerating the work we do.

The future is exciting!

Questions? Want to collaborate? Email: youngsam@stanford.edu



Extras

36



Sharpening + Centering
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Sharpening:

From Emerging Properties in Self-Supervised Vision Transformers 
(arXiv:2104.14294)

https://arxiv.org/abs/2104.14294


Augmentations
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Rotation + Translation (XYZ)

Rotation + Translation (YZ), remove XYZ from input

Rotation + Translation (YZ)

What about diffusion/attenuation?

mF1

Linear Evaluation on pre-training – 1M events

WORK IN PROGRESS



Example Sem Seg - Motif
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Example Sem Seg - PID
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Sem Seg PID – 100 events
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Normalized by Prediction Column
(diag.=precision)

Normalized by Truth Row
(diag.=recall/efficiency)



Sem Seg PID – UResNet Confusion
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Normalized by Truth Column (sorry)
(diag.=recall)

Normalized by Truth Row
(diag.=recall/efficiency)



Poor instance reconstruction – particle
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Poor instance reconstruction - interaction
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Serialized Attention

45From https://xywu.me/talk/20250609_Stanford_Spatial_Representations.pdf

See Point Transformer V3 paper (arXiv:2312.10035) for more detail

https://xywu.me/talk/20250609_Stanford_Spatial_Representations.pdf
https://arxiv.org/abs/2312.10035


Serialized Attention

From https://xywu.me/talk/20250609_Stanford_Spatial_Representations.pdf 46

See Point Transformer V3 paper (arXiv:2312.10035) for more detail

https://xywu.me/talk/20250609_Stanford_Spatial_Representations.pdf
https://arxiv.org/abs/2312.10035


Serialized Attention – 256 voxel patches

● not perfect, but good enough with enough depth.
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Receptive field at a single point at stage 0



Scalability
Semantic Segmentation  (measured on single A100)
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Peak throughput:
8.3 ms/image
120 img/sec

Mem@peak:
 ~1.75 GB



Scalability
Instance/Panoptic Segmentation (model forward + NMS post-processing)
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Peak throughput:
34.5 ms / image
29 img/sec

Mem@peak:
~20 GB

NMS post-processing is 
serial, but parallelized 
via multiprocessing



Scaling Model Params
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WORK IN PROGRESS


