

End-to-End Machine Learning Reconstruction for the Short Baseline Near Detector

Bear Carlson - bcarlson1@ufl.edu

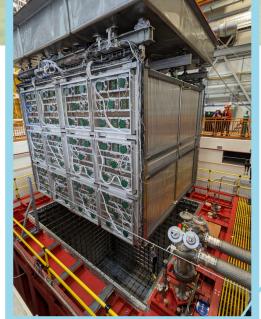
On Behalf of the SBND Collaboration

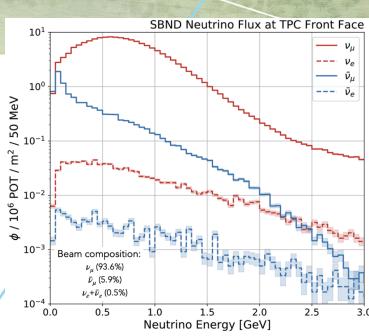
NPML 2025

October 29, 2025

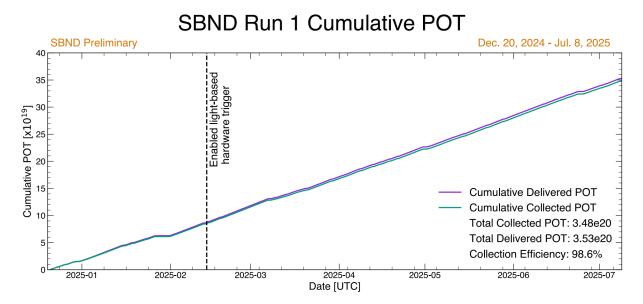
Short Baseline Near Detector (SBND)

112 ton LArTPC 110 m from BNB target First ν July 2024 Largest ν -Ar dataset to date



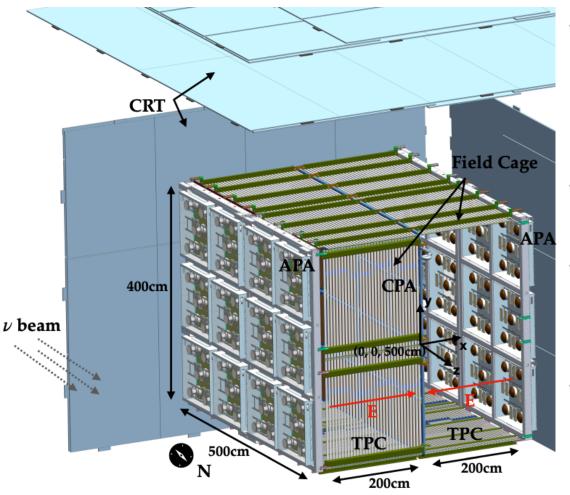


SBND Data Taking



- Run 1 collected neutrinos from > 3.48e20
 POT already equivalent to 3M NC & CC
 neutrino interactions
- Expect millions of neutrino interactions for SBND's lifetime (10e20 POT)

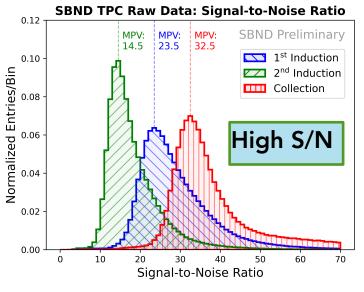
SBND Specifications

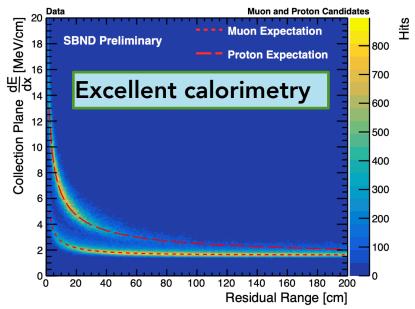


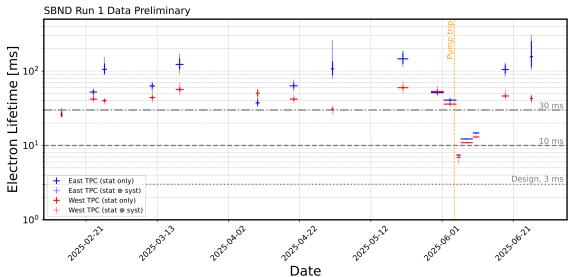
- [1] Construction of precision wire readout planes for the Short-Baseline Near Detector (SBND) arXiv:2002.08424
- [2] Scintillation Light in SBND: Simulation, Reconstruction, and Expected Performance of the Photon Detection System arXiv:2406.07514

- SBND is a monolithic LArTPC with 2 TPCs divided by a cathode plane assembly (CPA) [1]
- 3 mm wire and inter-plane spacing
- Photon detection system has 17% coverage of each APA wall [2]
- External cosmic ray tagger (CRT) with 4π coverage

Calibrations and Detector Performance







Stable operation conditions

SBN

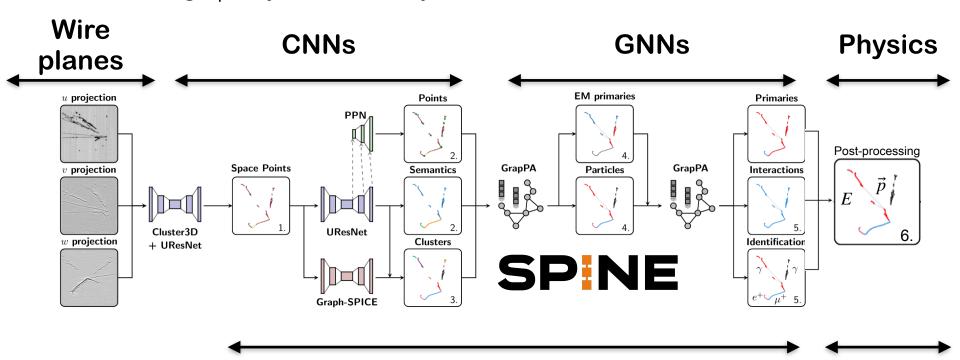
SPINE for SBND [3]

SPINE (Scalable Particle Imaging with Neural Embeddings) [4]

Fast - Process the entire SBND dataset (full 3 year data-taking) in 2 weeks

Automated - Only requires training, minimal manual optimization needed

Effective - High purity and efficiency neutrino identification and reconstruction



[3] B. Carlson, Machine-Learning-Based Data Reconstruction Chain for the Short Baseline Near Detector, SLAC FPD Seminar [4] F. Drielsma, K. Terao, L. Dominé, D.H. Koh https://arxiv.org/abs/2102.01033

0.5 s / event

1 s / event

SPINE for SBND [3]

SPINE (Scalable Particle Imaging with Neural Embeddings)

Fast - Process the entire SBND dataset (full 3 year data-taking) in 2 weeks
Automated - Only requires training, minimal manual optimization needed
Effective - High purity and efficiency neutrino identification and reconstruction

Wire planes

CNNs

GNNs

Physics

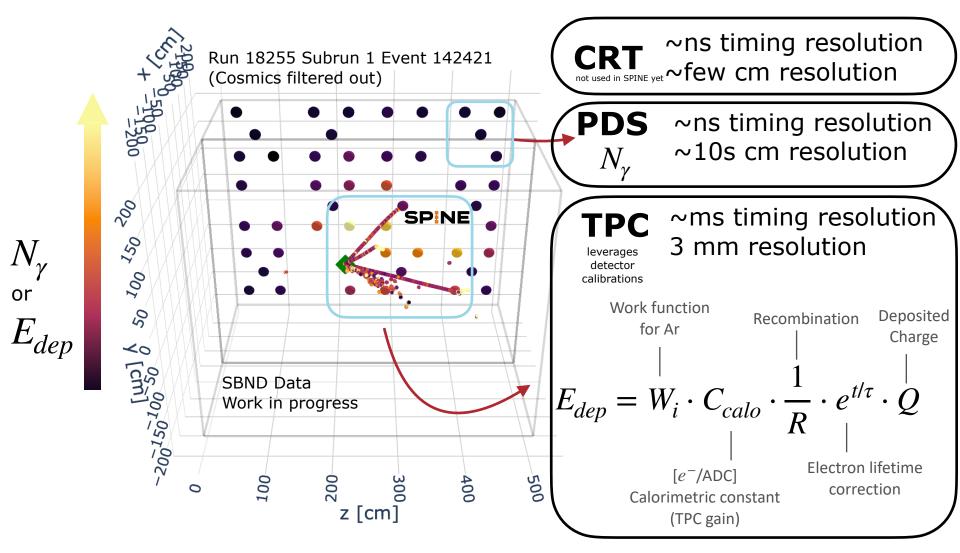
See SLAC FPD Seminar for SBND full chain performance

SPINE

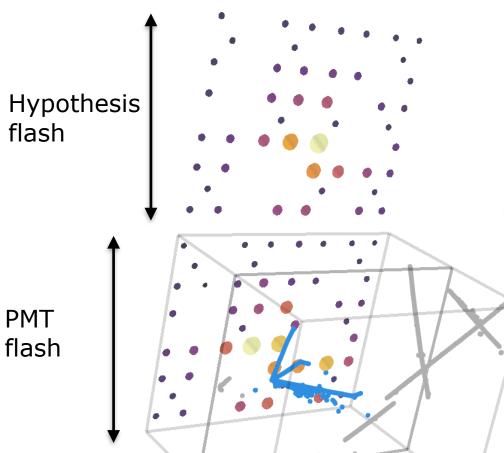
[3] B. Carlson, <u>Machine-Learning-Based</u>
Data Reconstruction Chain for the Short
Baseline Near Detector, <u>SLAC FPD Seminar</u>

[4] F. Drielsma, K. Terao, L Dominé, D.H. Koh https:// arxiv.org/abs/2102.01033 0.5 s / event

Complimentary Subsystems



Flash Matching



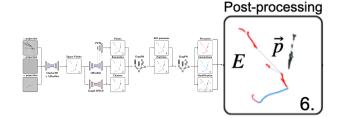
SBND Data Work in progress

Run 18255 Subrun 1 Event 142421

How do we use light information?

- 1. Compute hypothesis (*H*) from charge in interaction using semianalytical model [5]
- 2. Flash score calculated using χ^2
- 3. Select interaction that matches flash (R) with lowest χ^2

$$\chi^{2} = \frac{1}{N_{PDS}} \sum_{i} \frac{(R_{i} - H_{i})^{2}}{R_{i}}$$

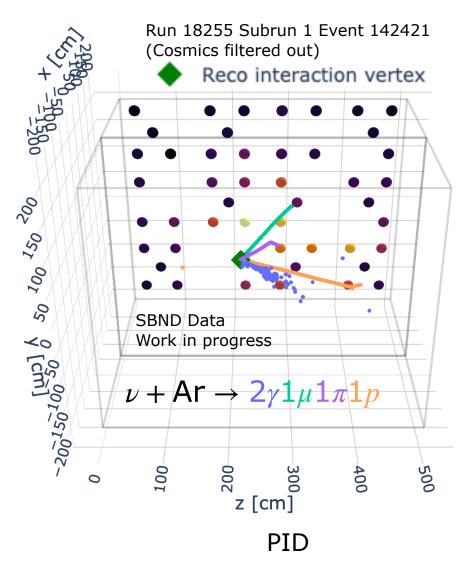


[5] D. Garcia-Gamez, P. Green, A.M. Szelc Eur. Phys. J. C 81, 349 (2021)

SBND SPINE Analyses

Oct. 29, 2025

u_{μ} CC Inclusive Selection

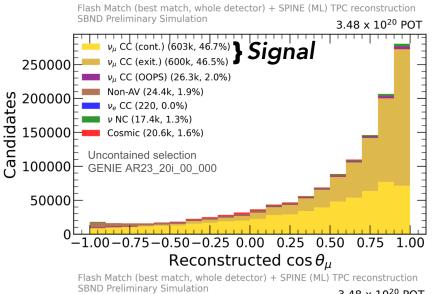


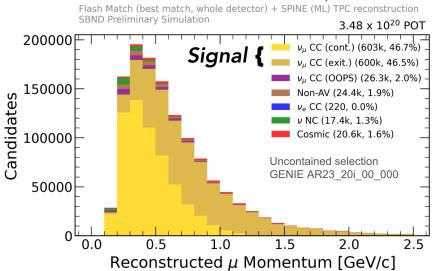
- Utilize **SPINE** to select ν_{μ} CC candidate and muon
- Demonstrate ability to reject cosmics - largest background
 - >90% interactions pre-cuts

- Cross section and ν_{μ} disappearance searches
- Probe final state muon kinematics where there are minimal nuclear effects

B. Carlson / SBND

u_{μ} CC Inclusive Selection





- Utilize **SPINE** to select ν_{μ} CC candidate and muon
- Demonstrate ability to reject cosmics - largest background
 - >90% interactions pre-cuts

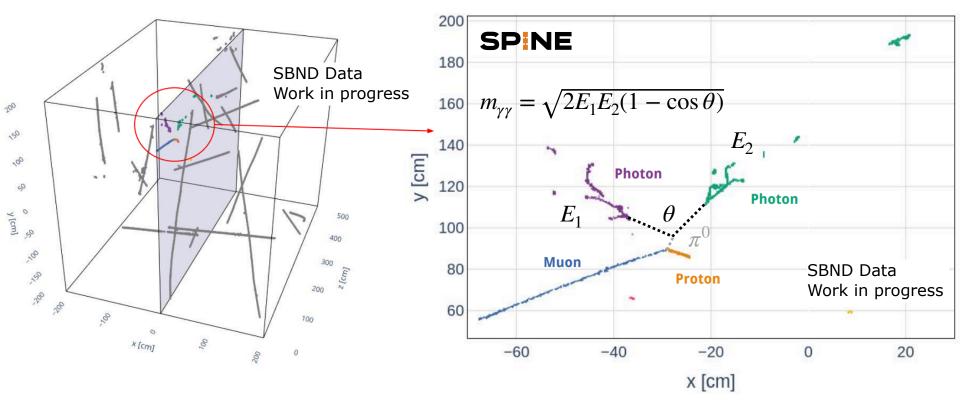
<u>Contained</u>
Purity = 93%
Efficiency = 91%

Contained or exiting
Purity = 93%
Efficiency = 79%

- Cross section and ν_{μ} disappearance searches
- Probe final state muon kinematics where there are minimal nuclear effects

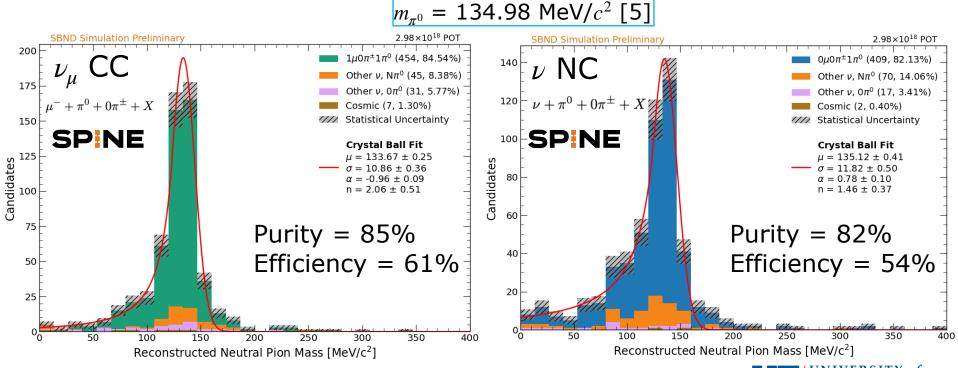
π^0 Selections

- Background for electron searches
- Detector calibration, ensure $m_{\gamma\gamma}$ agrees with m_{π^0}
- Important for cross section measurements



π^0 Selections

- Background for electron searches
- Detector calibration, ensure $m_{\gamma\gamma}$ agrees with m_{π^0}
 - Sharp peak for selected π^0 -> excellent shower reconstruction
- Important for cross section measurements

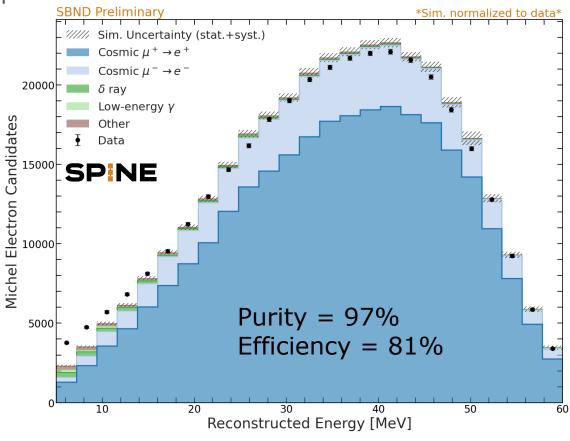


Michel e- Selection

• Michel electrons from decaying electrons from muons

• Useful for low energy calibrations, probe low E with

unprecedented precision



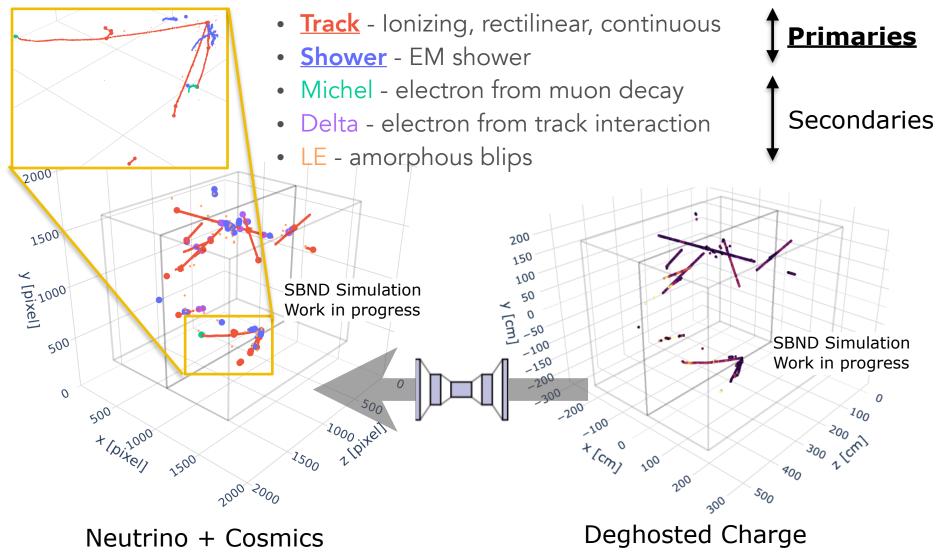
Conclusion

- SBND is calibrated and exhibits excellent performance
- Already collected 1yr or around 3M neutrino interactions to-date
- SBND SPINE has many mature selections, ready to compare to data
 - Early simulation selections show promising performance
 - Michel selection can probe low energies with high purity sample

Thanks!

SBND Collaboration Meeting, Sheffield, June 2025

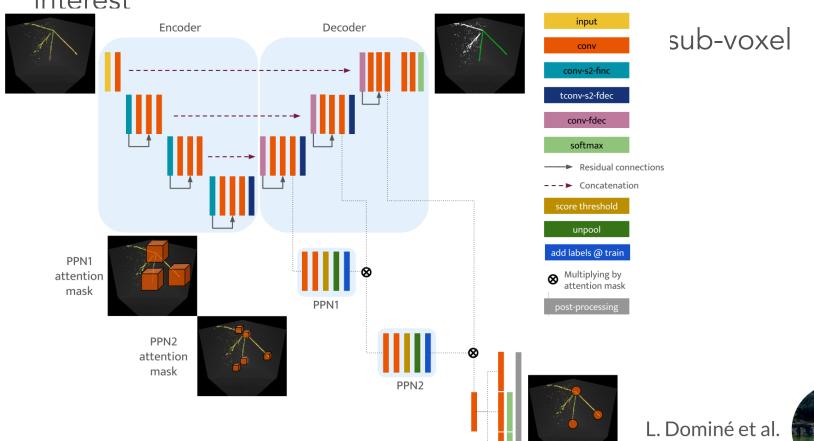
Semantic Segmentation



UF FLORIDA

PPN

Point proposal network (PPN) learns attention mask for points of interest



Fragment Clustering

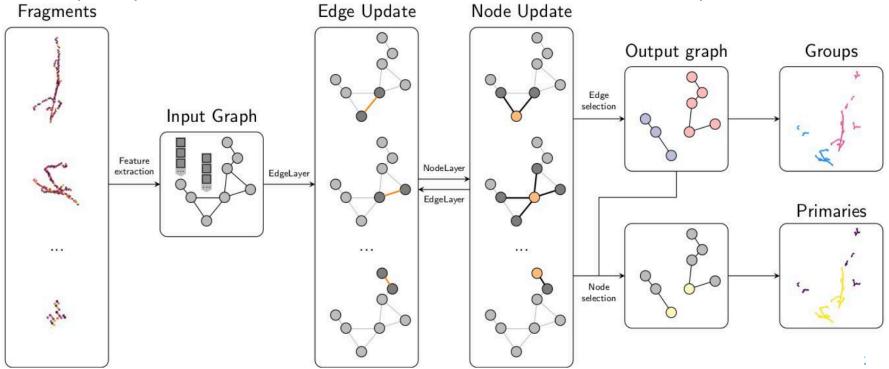
- Construct intermediate representation of particles called fragments
 - Reduces complexity of downstream GNNs
- GraphSPICE is "smart" version of DBSCAN

Avoids clustering particles together at vertices Construct Nearest-Neighbor Graph Point Sparse **Drop Edges** Trainable Bilinear Kernel **UResNet** Features **Find Connected** Components $P(e_{ij}) = 0.9$ * O Nodej \rightarrow O O L_{edge} Edge Feature D. Koh et al.

Particle Clustering

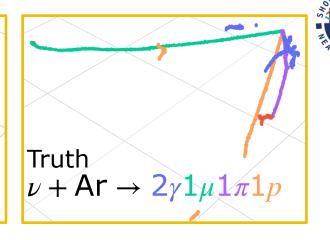
 Aggregate fragments into particles using a Graph Neural Network (GNN)

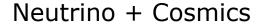
• Edge representation is the correlation between fragments



#today

Particle ID Photon Electron Muon Reco Pion $\nu + \mathsf{Ar} \to 2\gamma 1\mu 1\pi 1p$ Proton 200 150 100 y [cm] SBND Simulation Work in progress _100 _150 -200 _300 -200 100

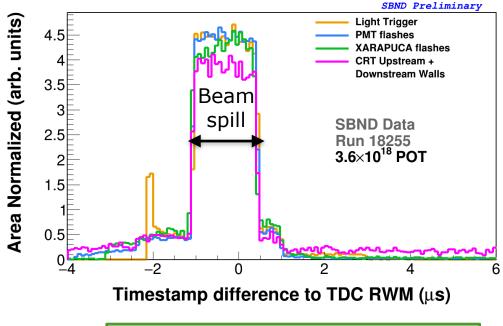




#today

400

Calibrations and Detector Performance

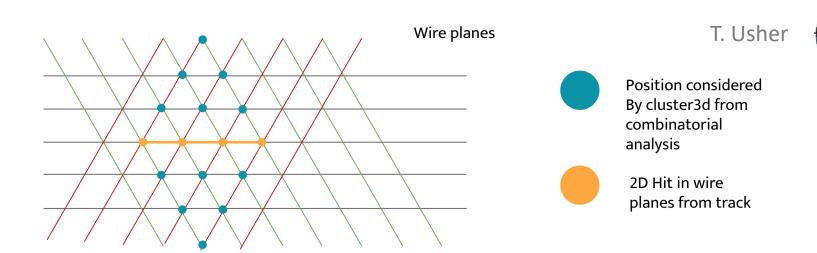


Subsystems synchronized and can identify beam-induced activity

2D -> 3D Projection

Consume 2D hits in each of 3 projections to make space points

- Finds pairs of hits compatible within a time threshold
- Forms a **space point** from 3 wires where 2 hits are compatible in time to form candidate space point

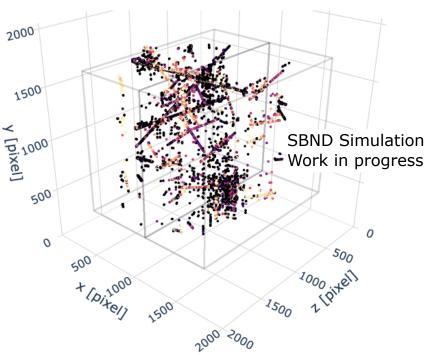


False combinations create <u>ghost</u> points, which are de-ghosted using a UResNet CNN

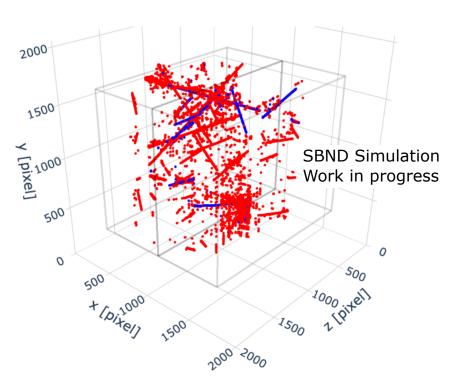
#today

Deghosting

- Label each point in simulation sample as ghost/non-ghost
- Learn ghost/non-ghost from reconstructed spacepoint information



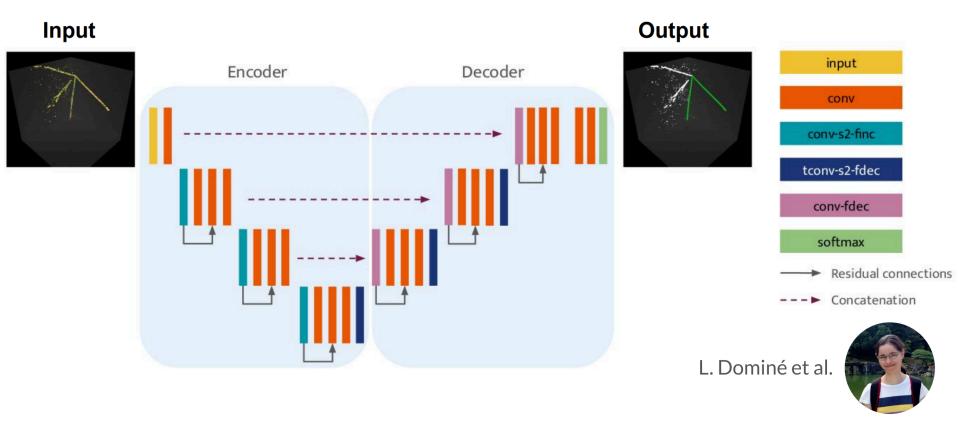
Raw Charge

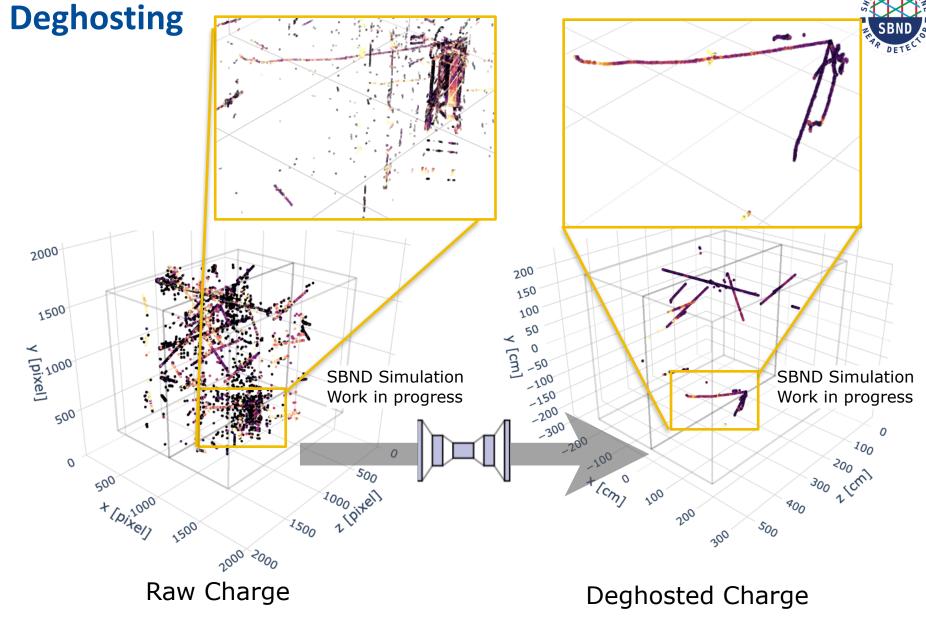


Ghost vs Non-ghost label

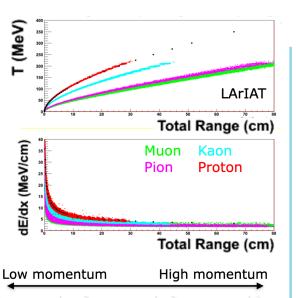
UResNet Sparse CNN

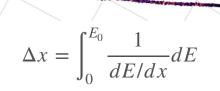
- Point-wise feature extraction uses Sparse Convolutional Neural Network (CNN)
- UResNet architecture used as backbone feature extractor





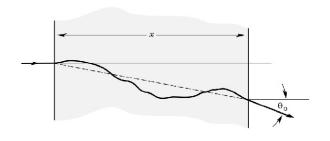
Energy





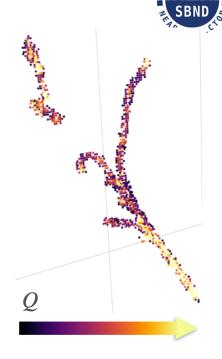
CSDA

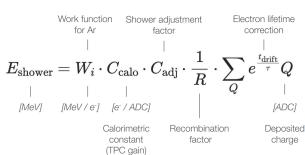
Oct. 9, 2025



$$\theta_0 = \frac{S_2}{p\beta c} z \sqrt{\frac{x}{X_0}} \left[1 + \epsilon \log \left(\frac{x}{X_0} \right) \right]$$

MCS

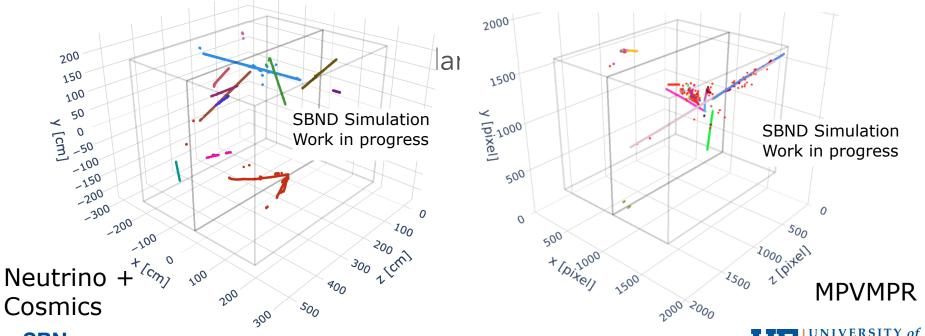




Calorimetric

Training Sample

- Multi-particle vertex multi-particle rain (MPVMPR) sample 2 generators
 - Rain (MPR) <—> cosmic activity
 - Vertex (MPV) <—> neutrino activity
- Use this over neutrino + cosmics event generators to...
 - Sample particle abundances and energies from uniform



UResNet Sparse CNN

Semantic Segmentation

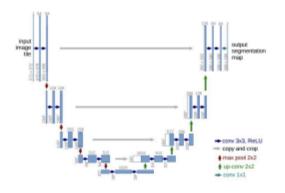
1

Backbone (L. Dominé)

UResNet (<u>UNet</u> + <u>ResNet</u> + <u>Sparse Conv.</u>) as the **backbone feature extractor**

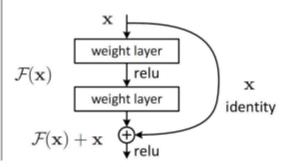
UNet

- Downsizing -> expand receptive field
- Skip connections -> preserve resolution



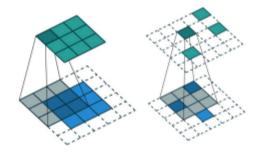
ResNet

- Identity bypass + convolution -> learns residual transform
- Speeds up learning, enables deeper networks



Sparse Convolutions

- Only applies convolutions on active pixels
- Saves memory, execution speed (dramatically)



ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

15

