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For XENONnT field shaping rings and 
geometry, see Eur. Phys. J. C 84, 138 (2024)
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https://link.springer.com/article/10.1140/epjc/s10052-023-12296-y
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I know where my electrons ended up (sort of).
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1. Can I learn where the electrons started?
2. Can I infer the electric field?

3. Can I quantify my uncertainties?

detector

I know where my electrons ended up (sort of).
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detector

distribution of 
Calibration source

final position 
distribution
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Adapted from Peter Gaemers

time

y

x

initial positions 
of Calibration 
source

detected position 
distribution

What we actually detect We pop open the detector 
(this is unfeasible)
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Field distortion correction (FDC) 
map that maps every given (x,y,z) 
to its radial correction

Following XENONnT binning scheme 
and method, see arXiv:2409.08778

radial displacement
= FDC
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https://arxiv.org/abs/2409.08778
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This is terrible! 😱

Following XENONnT binning scheme 
and method, see arXiv:2409.08778

radial displacement
= FDC
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e-

This is terrible! 😱
(for the record, this is the electric field used for 
generating simulation data for this correction map)

Figure from Juehang Qin

Following XENONnT binning scheme 
and method, see arXiv:2409.08778

radial displacement
= FDC
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Not:
- smooth 
- differentiable 
- curl-free
- cheap to make 
(too much data)
- realistic

This is terrible! 😱
(for the record, this is the electric field used for 
generating simulation data for this correction map)

Figure from Juehang Qin

Following XENONnT binning scheme 
and method, see arXiv:2409.08778

radial displacement
= FDC
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Not:
- smooth 
- differentiable 
- curl-free
- cheap to make 
(too much data)
- realistic

This is terrible! 😱
(for the record, this is the electric field used for 
generating simulation data for this correction map)

Figure from Juehang Qin

Following XENONnT binning scheme 
and method, see arXiv:2409.08778

radial displacement
= FDC

Can we do better?21

https://arxiv.org/abs/2409.08778
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1. Can I learn where the electrons started?
2. Can I infer the electric field?

3. Can I quantify my uncertainties?

detector

We want a field 
transformation 
that is:
- differentiable 
- curl-free
- cheaper to make
- realistic
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Good

CheapFast
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1. Can I learn where the electrons started?
2. Can I infer the electric field?

3. Can I quantify my uncertainties?

detector

We want a field 
transformation 
that is:
- differentiable 
- curl-free
- cheaper to make
- realistic

Can we search the space of physically possible electric fields 
to find the best transformation that matches our data?

Good

CheapFast
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time

Can we search the space of physically possible electric fields 
to find the best transformation that matches our data?

Figure from Juehang Qin

Continuous 
normalizing flow

initial positions 
of Calibration 
source

detected position 
distribution

Neural ODE: arXiv:1806.07366
Normalizing Flows for Inference: arXiv:1912.0276225

https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/1912.02762
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detector

vd = 
~0.7 mm/μs

E field is 
~20V/cm 

Following XENONnT electron drift velocity 
and field, see arXiv:2409.08778

Slow E-field: e- take 2.2 
ms to travel the whole 
detector in XENONnT

Let’s build a simulator! What is an example of a worst case field?
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detector

vd = 
~0.7 mm/μs

E field is 
~20V/cm 

Following XENONnT electron drift velocity 
and field, see arXiv:2409.08778

Slow E-field: e- take 2.2 
ms to travel the whole 
detector in XENONnT

Let’s build a simulator! What is an example of a worst case field?

E-field is fairly 
vertically 
straight, let’s 
assume z 
correction is 
minimal:
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detector

vd = 
~0.7 mm/μs

E field is 
~20V/cm 

Following XENONnT electron drift velocity 
and field, see arXiv:2409.08778

Slow E-field: e- take 2.2 
ms to travel the whole 
detector in XENONnT

Let’s build a simulator! What is an example of a worst case field?

We can solve 
this 
differential 
equation!
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https://arxiv.org/abs/2409.08778


We want a field 
transformation 
that is:
- differentiable 
- curl-free
- cheaper to make
- realistic

Let’s be more 
clever:
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We want a field 
transformation 
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- curl-free
- cheaper to make
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Let’s be more 
clever:

Let’s learn the 
scalar 
potential 
instead!
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We want a field 
transformation 
that is:
- differentiable 
- curl-free
- cheaper to make
- realistic

Let’s be more 
clever:

Let’s learn the 
scalar 
potential 
instead!

To move through our 
model, we solve the ODE:
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We have an idea!
Let’s apply this to a realistic 

simulator of a xenon TPC.
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The ionization electron starts from the first scintillation signal 
(S1) and ends at the second ionization (S2) signal.

S1

S2

drift 
time 
(depth)

PMT Array

PMT Array

(Left) arXiv:2402.10446

The LXeTPC has a liquid layer 
and a gaseous layer of xenon, 
electric fields, and PMT arrays 
above and below the detector. 

(Right) adapted from arXiv:2404.19524
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https://arxiv.org/abs/2402.10446
https://arxiv.org/abs/2404.19524


We pop in a calibration source that diffuses uniformly and 
simulate an expected electron survival probability map.

S1

S2

drift 
time 
(depth)

PMT Array

PMT ArrayWhat we expect 
(initial position dist):

Figure from Peter Gaemers
35



We recover the expected position distribution!
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We need an order of magnitude less data with the flow!

We want a field 
transformation that 
is:
- differentiable 
- curl-free
- cheaper to make
- realistic

37



And we preserve local clustering patterns better than the FDC.

*normalized by subtracting ground 
truth 2 point correlation function
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And we preserve local clustering patterns better than the FDC.

*normalized by subtracting ground 
truth 2 point correlation function
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The ultimate question…do we get 
back the electric field? 🥁
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flow ground truth 

Yes! We can infer the electric field using machine learning!

🎉
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Can we use this to quantify and propagate uncertainties?

(xint,yint,zint)

(xS2,yS2,drift_time) 

we make 
corrections 

:)

(hit_pattern,tS1,tS2,...
) 

S2 position 
reconstruction

Data-Driven Field Distortion 
Correction Map (LUX + XENON)
Uniform monoenergetic 
calibration source 
→ bin the data
→ find radial correction per bin 
→ interpolate the map

Maximum likelihood fitter (LZ) or 
train a dense NN (XENONnT)
Input: hit pattern
Output: (xS2,yS2)
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Yes it is possible to build a fully probabilistic framework for 
position reconstruction!

(xS2,yS2,drift_time) 

we make 
corrections 

:)

(hit_pattern,tS1,tS2,...
) 

S2 position 
reconstruction

Conditional normalizing flows for 
probabilistic position reconstruction
Based on work from Sebastian Vetter and 
Juehang Qin (paper and repo 
forthcoming)

Continuous normalizing flows for 
determining electric fields in TPCs 
(this work!)
Paper and repo forthcoming, stay tuned!

Data-Driven Field Distortion 
Correction Map (LUX + XENON)
Uniform monoenergetic 
calibration source 
→ bin the data
→ find radial correction per bin 
→ interpolate the map

Maximum likelihood fitter (LZ) or 
train a dense NN (XENONnT)
Input: hit pattern
Output: (xS2,yS2)
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Future work is in making our data pipeline probabilistic to have 
proper uncertainty quantification and propagation.

(xS2,yS2,drift_time) 

S2 probabilistic 
position

e- e-e-

e-

differentiable 
corrections

get initial 
position ± 
uncertainty

(hit_pattern,tS1,tS2,...
) 
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Future work is in making our data pipeline probabilistic to have 
proper uncertainty quantification and propagation.

(xS2,yS2,drift_time) 

S2 probabilistic 
position

differentiable 
corrections

get initial 
position ± 
uncertainty

Got a TPC? Collaborate with us! 
Ivy Li (il11@rice.edu)
Peter Gaemers (pgaemers@stanford.edu)
Juehang Qin (qinjuehang@rice.edu)
Naija Bruckner (naija.bruckner@rice.edu)

We want a field 
transformation that is:
- differentiable 
- curl-free
- cheaper to make

- realistic

(hit_pattern,tS1,tS2,...
) 

arxiv preprint on the way, stay tuned45

(xint,yint,zint)

mailto:il11@rice.edu
mailto:pgaemers@stanford.edu


Backup
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Future XLZD with perfect electric field :)

In particle detector 
experiments, we have 
known (observed data) 
and unknown 
parameters.

- Known:  
- light measured by photosensors,  
termed hit patterns 

 
- Unknown:  

- true position at top of detector (x,y) 
- electric field lines 
- true interaction position (xi,yi) 

E-Field 
Lines 

True 
Position 

Hit 
Pattern 

e- e- 
e- 

e- e- 

e- 

Interaction 
Point 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Moreover, there are 
uncertainties for each 
measurement, e.g. position 
uncertainty contour.

- Known:  
- light measured by photosensors,  
termed hit patterns 

 
- Unknown:  

- true position at top of detector (x,y) 
- electric field lines 
- true interaction position (xi,yi) 

Future XLZD with imperfect electric field :(

Position 
Contours 

E-Field 
Lines 

Interaction 
Contours 

48



How do we infer these unknown parameters?

Infer parameters from data by using a simulator: give a 
simulator some parameters and generate data from it.  
 
arXiv:1911.01429 
 

Simulations-based inference 
Using optimization techniques (e.g. machine learning models) 
to approximate complex probability distributions (e.g. posterior 
probability density). 
 
 arXiv:2108.13083 
 

Variational inference 

posterior

priorlikelihood

normalization 
term

49

https://arxiv.org/abs/1911.01429


In a perfect world, we would immediately recover the 
interaction position without corrections. 

(xint,yint,zint
)

(xS2,yS2,drift_time) 

no 
corrections

:)

(hit_pattern,tS1,tS2,...
) 

S2 position 
reconstruction

Future XLZD experiment!  😊  

e-
e-e

-
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But we are not so perfect.

Future XLZD experiment? 🥲  

(xint,yint,zint
)

(xS2,yS2,drift_time) 

we need 
corrections

:(

(hit_pattern,tS1,tS2,...
) 

S2 position 
reconstruction

e- e-e-

e-
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Simulation of drift 
field from XENONnT.

arXiv:2309.11996

(xint,yint,zint
)

(xS2,yS2,drift_time) 

we need 
corrections

:(

(hit_pattern,tS1,tS2,...
) 

S2 position 
reconstruction

Charge build up on the PTFE walls and the geometry of the 
detector result in an imperfect electric field.
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https://arxiv.org/abs/2309.11996


The ionization electron starts from the first scintillation signal 
(S1) and ends at the second ionization (S2) signal.

S1

S2

drift 
time 
(depth)

PMT Array

PMT Array
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The ionization electron starts from the first scintillation signal 
(S1) and ends at the second ionization (S2) signal.

S1

S2

drift 
time 
(depth)

PMT Array

PMT Array

The LXeTPC has a liquid layer 
and a gaseous layer of xenon, 
electric fields, and PMT arrays 
above and below the detector. 

(Right) adapted from arXiv:2404.19524
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(xint,yint,zint
)

(xS2,yS2,drift_time) 

(hit_pattern,tS1,tS2,...
) 

S2 position 
reconstruction

Conditional normalizing flows for 
probabilistic position reconstruction
Based on work from Sebastian Vetter and 
Juehang Qin (paper and repo 
forthcoming)

Continuous normalizing flows for 
determining electric field lines for TPCs 
(this work!)
Paper and repo forthcoming, stay tuned!

Traditional Data-Driven Field 
Distortion Correction Map 
(XENONnT and LUX)
Uniform monoenergetic 
calibration source 
→ bin the data
→ find radial correction per bin 
→ interpolate the map

Maximum likelihood fitter (LZ) or 
train a dense NN (XENONnT)
Input: hit pattern
Output: (xS2,yS2 )

We use a physics-informed continuous normalizing flow to 
model the electron movement due to the electric field.

corrections
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A normalizing flow transforms a simple distribution into 
an observed distribution. 

Normalizing Flow 

(z1,z2)

(x,y)

Bivariate normal

56



A conditional 
normalizing flow 
takes an additional 
condition. 

Hit Pattern (c)

Normalizing Flow (Conditional)

(z1,z2)

A normalizing flow transforms a simple distribution into 
an observed distribution. 

(x,y)
57



Normalizing Flow (Conditional)

(z1,z2)

Find the most 
probable (x,y) given 
a hit pattern 
(inverse problem) 

Hit Pattern (c)

A normalizing flow transforms a simple distribution into 
an observed distribution. 

A conditional 
normalizing flow 
takes an additional 
condition. 

(x,y)
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(z1)
Hit Pattern (c)

arXiv:1906.04032

Architecture: 
Coupling Flow 

+ 
Neural Spline 

Series of 
invertible, 
flexible,  
nonlinear 
transformations 

(z2)

Neural spline

Norm
alizing Flow

Neural spline

… 

transform

transform

transform

(x) (y)
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Density estimation to determine 68% and 95% exact contours on a given 
test dataset. An example of a reconstructed S2 contour looks like this. 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Instead of modeling the electric field lines directly, the 
continuous normalizing flow learns a scalar potential map and 
then applies an ODE solver for each step.
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Instead of modeling the electric field lines directly, the 
continuous normalizing flow learns a scalar potential map and 
then applies an ODE solver for each step.
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Instead of modeling the electric field lines directly, the 
continuous normalizing flow learns a scalar potential map and 
then applies an ODE solver for each step.
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Instead of modeling the electric field lines directly, the 
continuous normalizing flow learns a scalar potential map and 
then applies an ODE solver for each step.
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We cannot directly measure the interaction vertex but we can 
measure a highly localized S2 hit pattern and the drift time.

(xint,yint,zint
)

(xS2,yS2,drift_time) 

corrections

S1

S2

drift 
time 
(depth)

PMT Array(hit_pattern,tS1,tS2,...
) 

PMT Array

S2 position 
reconstruction
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We would like a machine learning way to build this electric field 
correction for position reconstruction.

(xint,yint,zint
)

(xS2,yS2,drift_time) 

(hit_pattern,tS1,tS2,...
) 

S2 position 
reconstruction

time

S1

S2

drift time

An illustration of the 
sum waveforms of S1 
and S2 signals.
Drawing by me

t
s1

t
s2 A simulated 

S2 hit pattern from 
the top array of PMTs.E-field
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