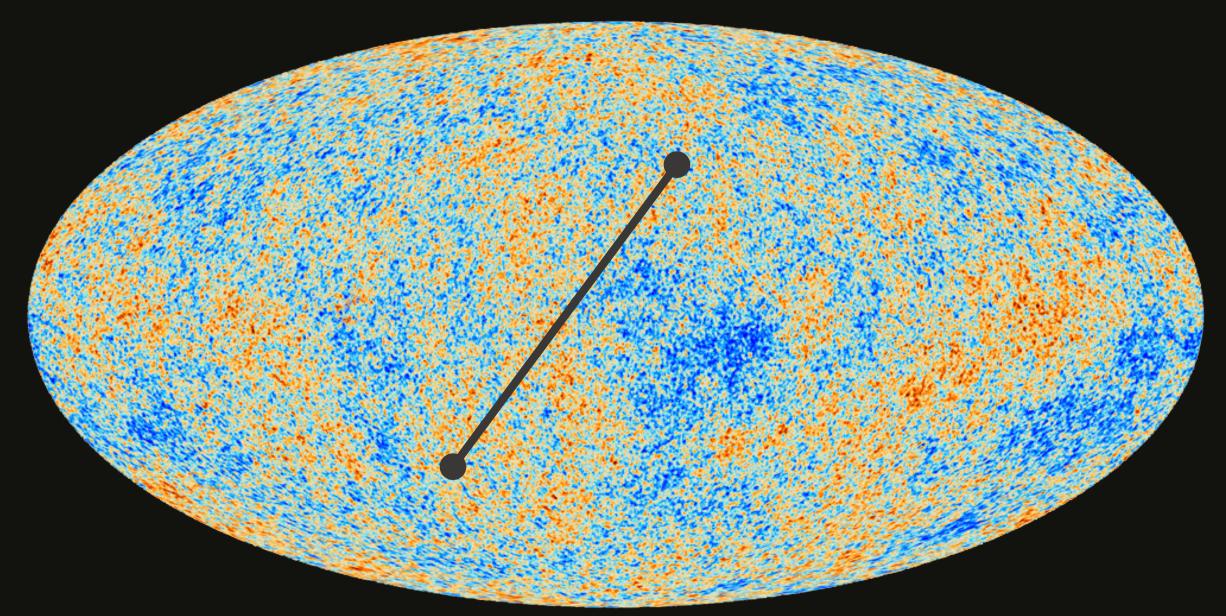
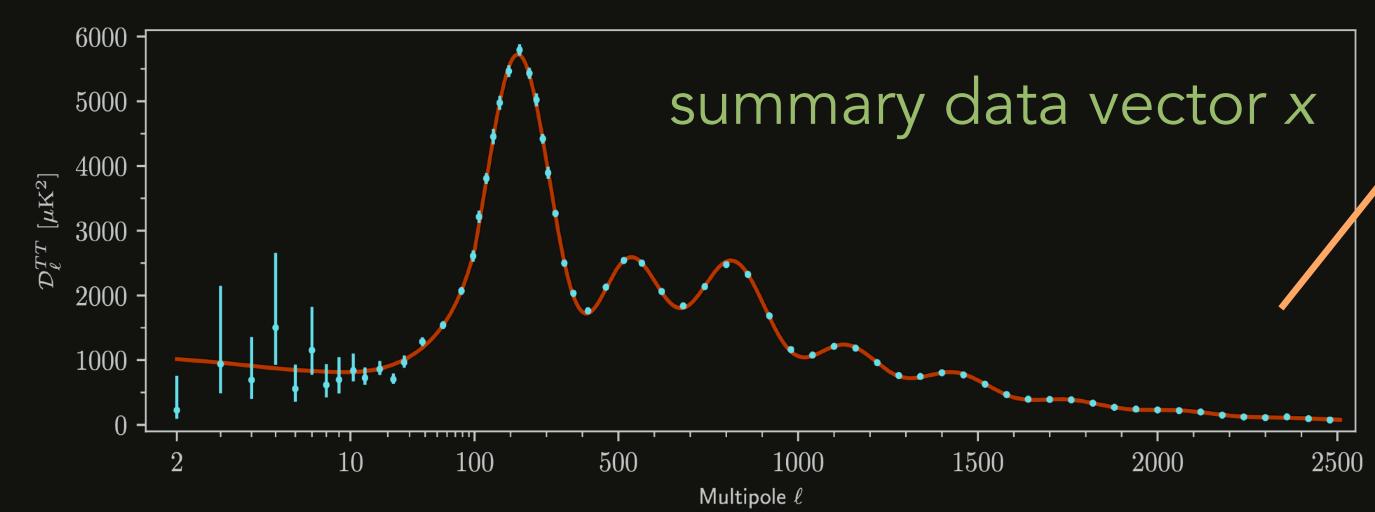
Implicit Likelihood Inference for Late-Time Cosmology

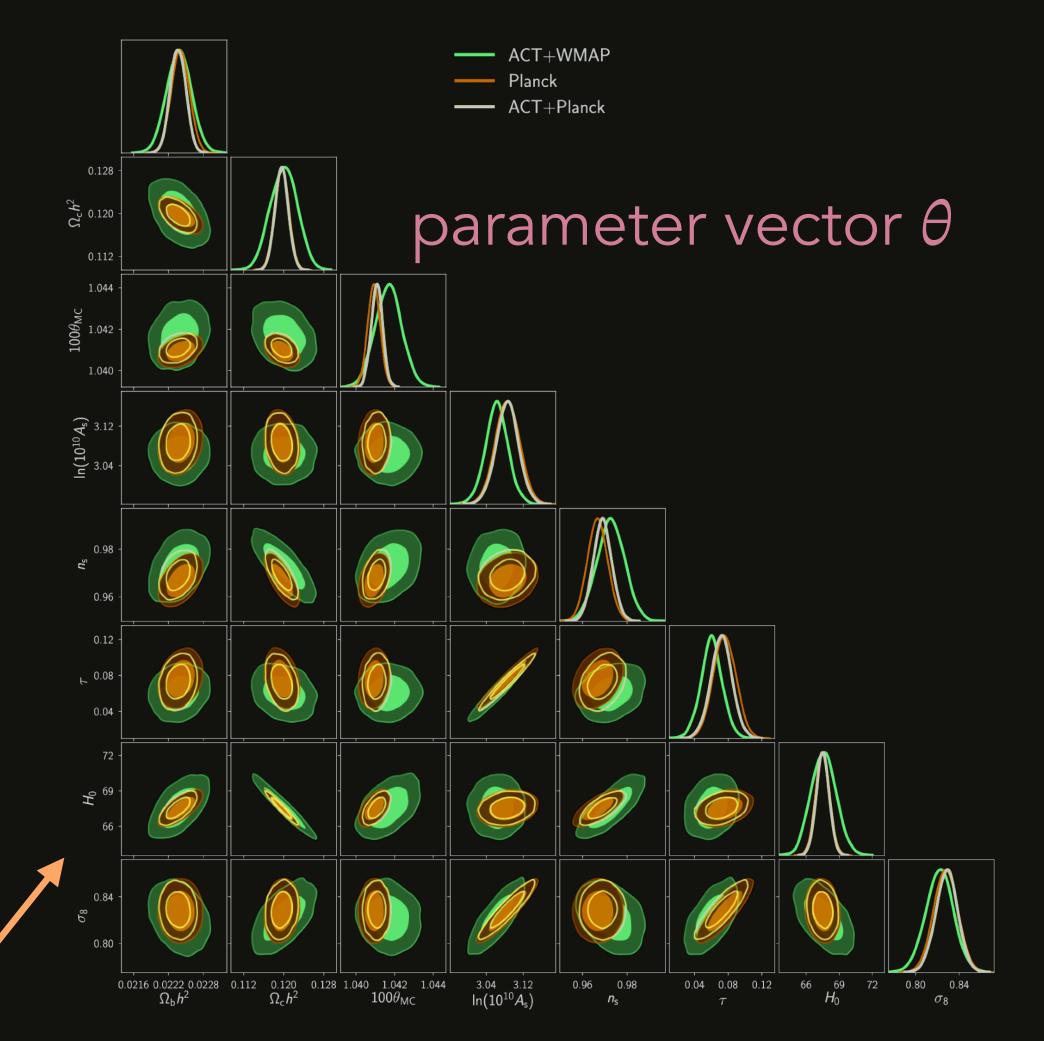
Leander Thiele (Center for Data-Driven Discovery, Kavli IPMU)

NPML, 10/28/2025

Likelihood-based cosmology



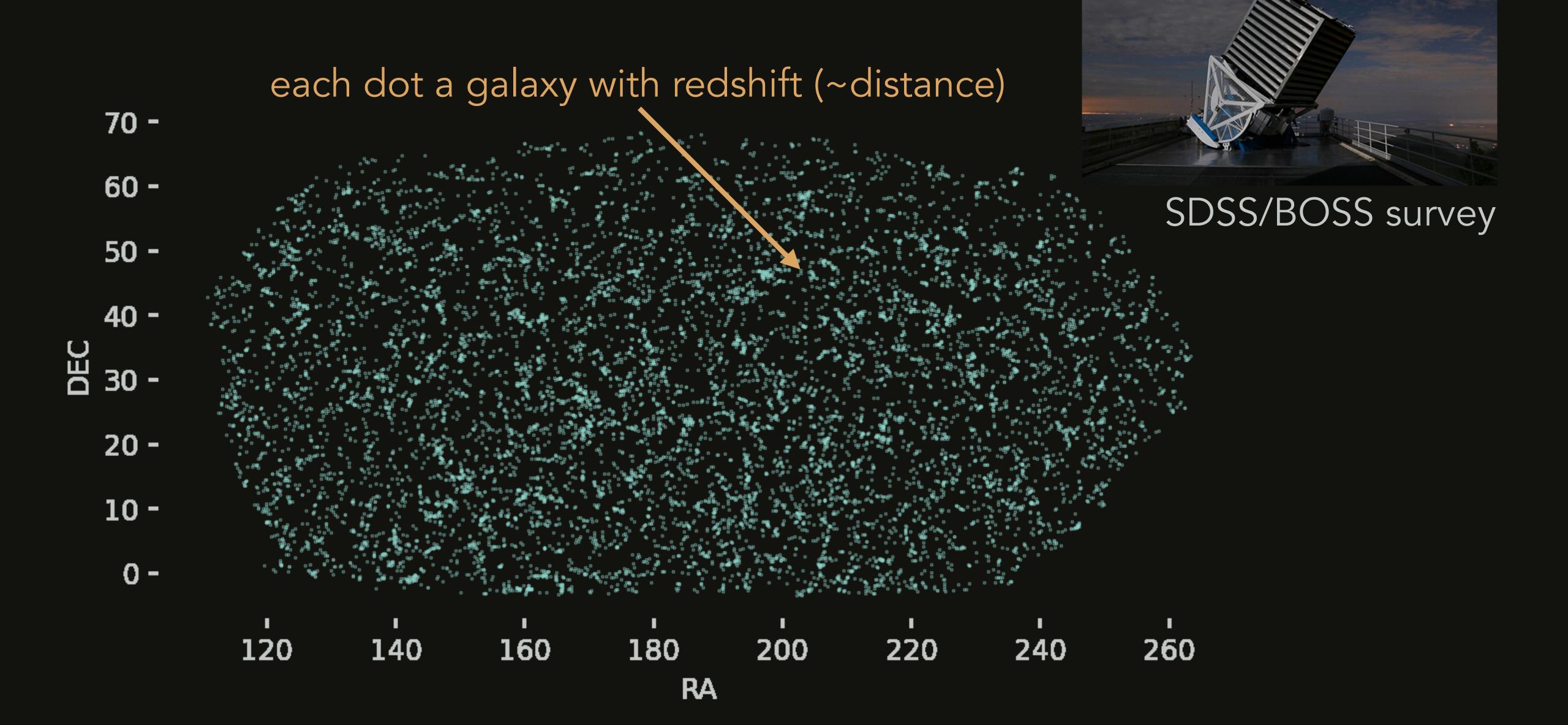




Explicit Likelihood:

$$-2\log p(x|\theta) \propto (x - \mu(\theta))^T \Sigma^{-1}(x - \mu(\theta))$$

A 3-D Map of the Universe



How to summarize this map?

70 -

60 -

50 -

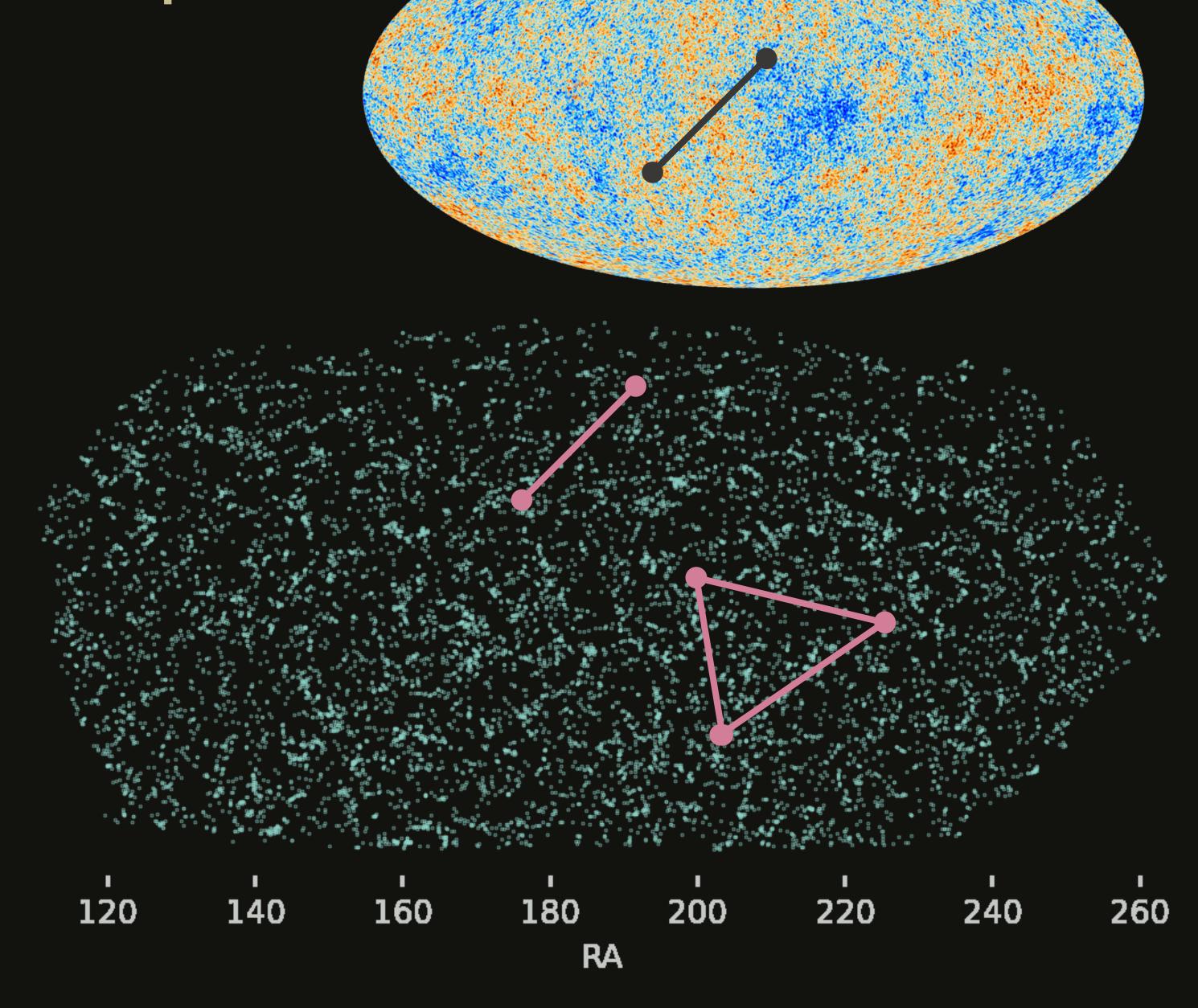
40 -

20 -

10 -

DEC -

- 1) pairs of galaxies (power spectrum)
- 2) triangles of galaxies (bispectrum)
- 3) ...



How to summarize this map?

70 -

60 -

50 -

40 -

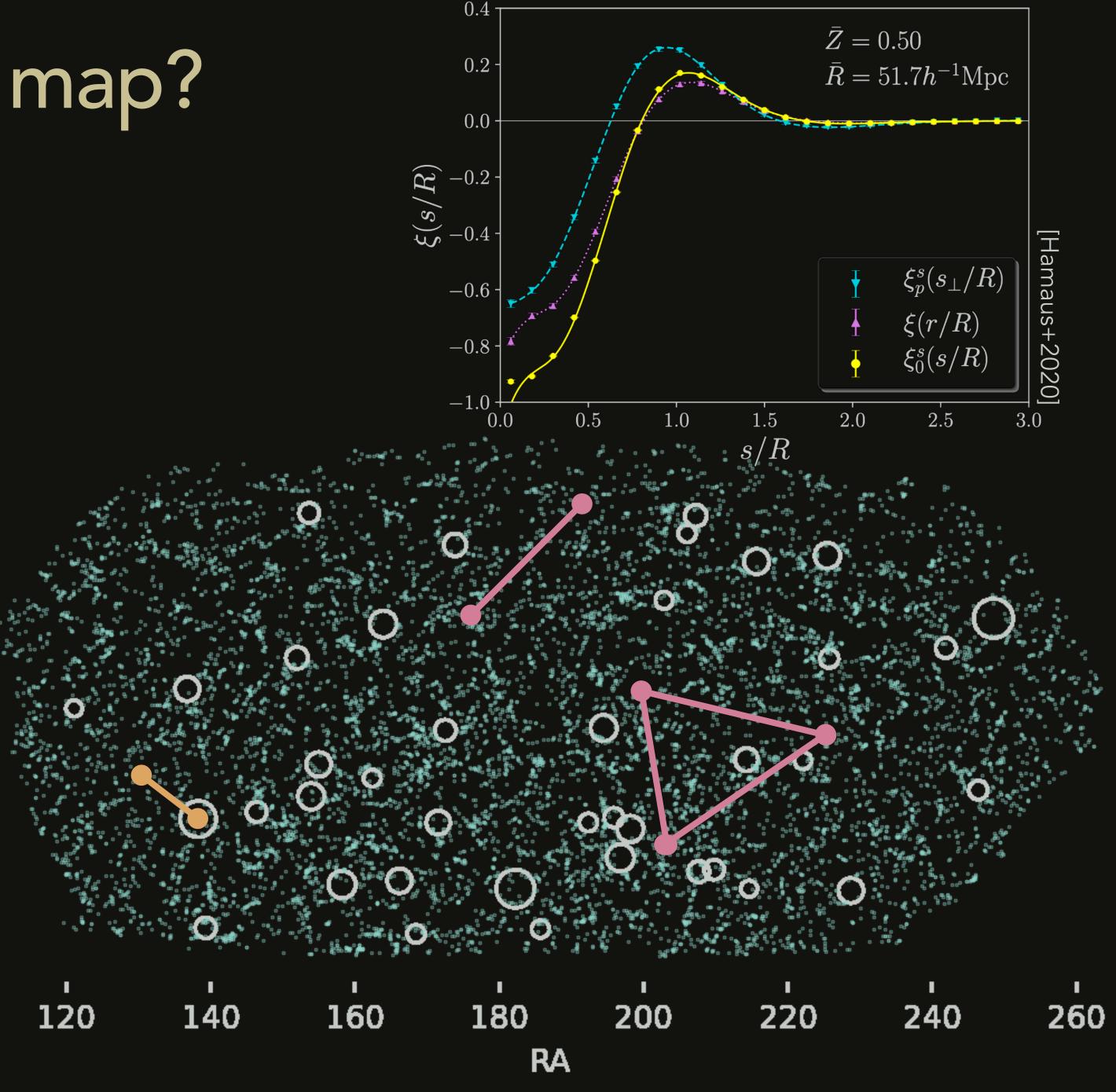
20 -

10 -

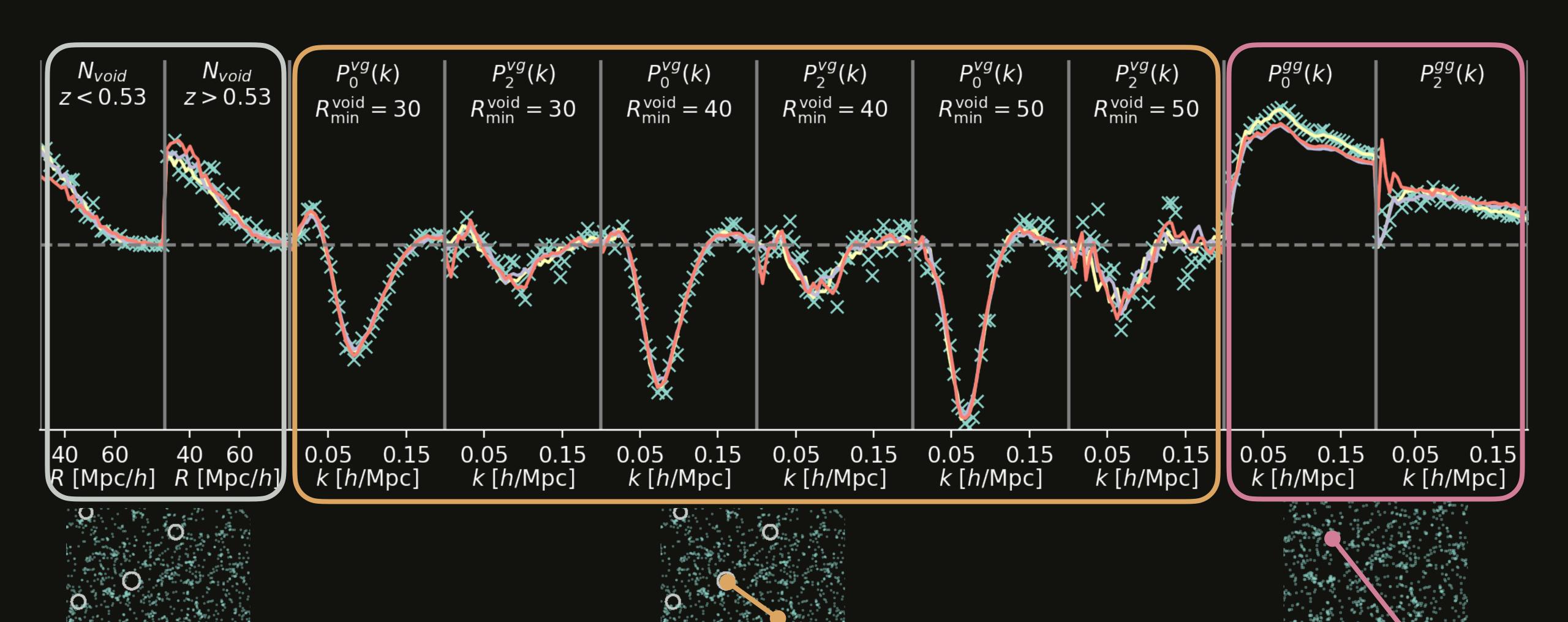
DEC -

- 1) pairs of galaxies (power spectrum)
- 2) triangles of galaxies (bispectrum)
- 3) ...
- 4) "empty regions": cosmic voids
 - size distribution
 - void-galaxy pairs

• ...

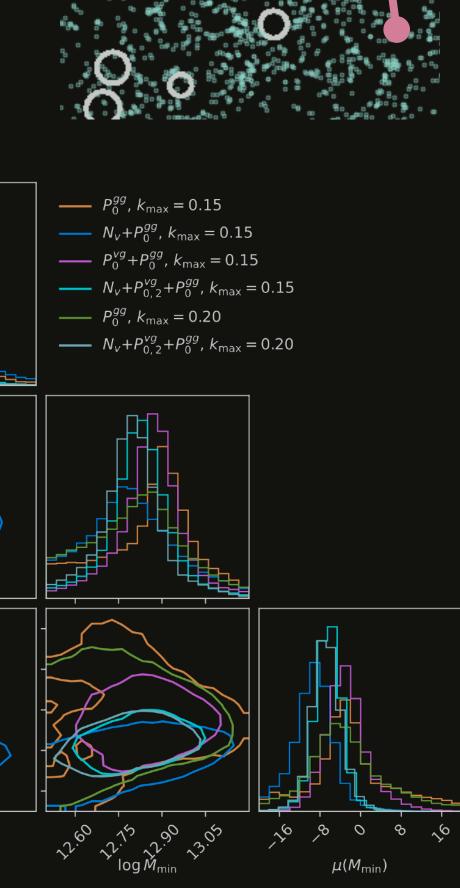


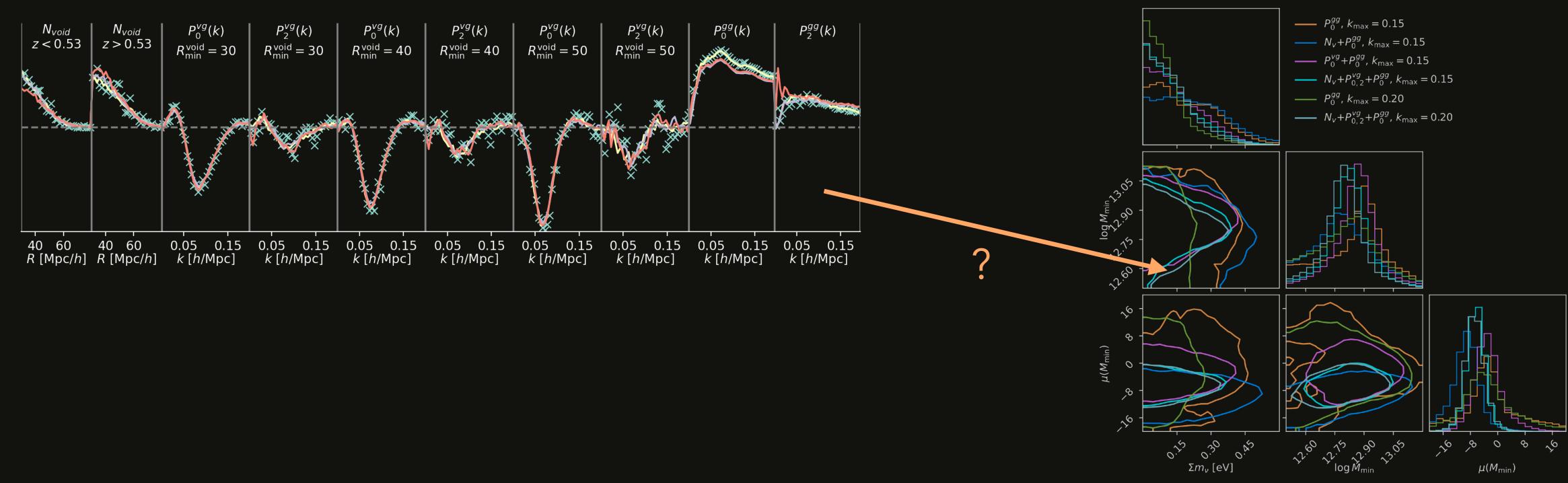
Data Vector



Inference?

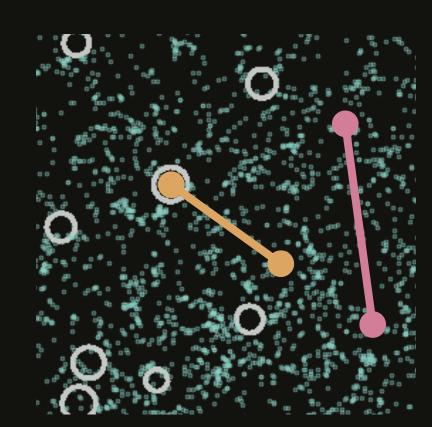
- Want to constrain cosmology with BOSS data:
 - galaxy auto power spectrum
 - void size function (histogram of void sizes)
 - void galaxy cross power spectrum (void profile)



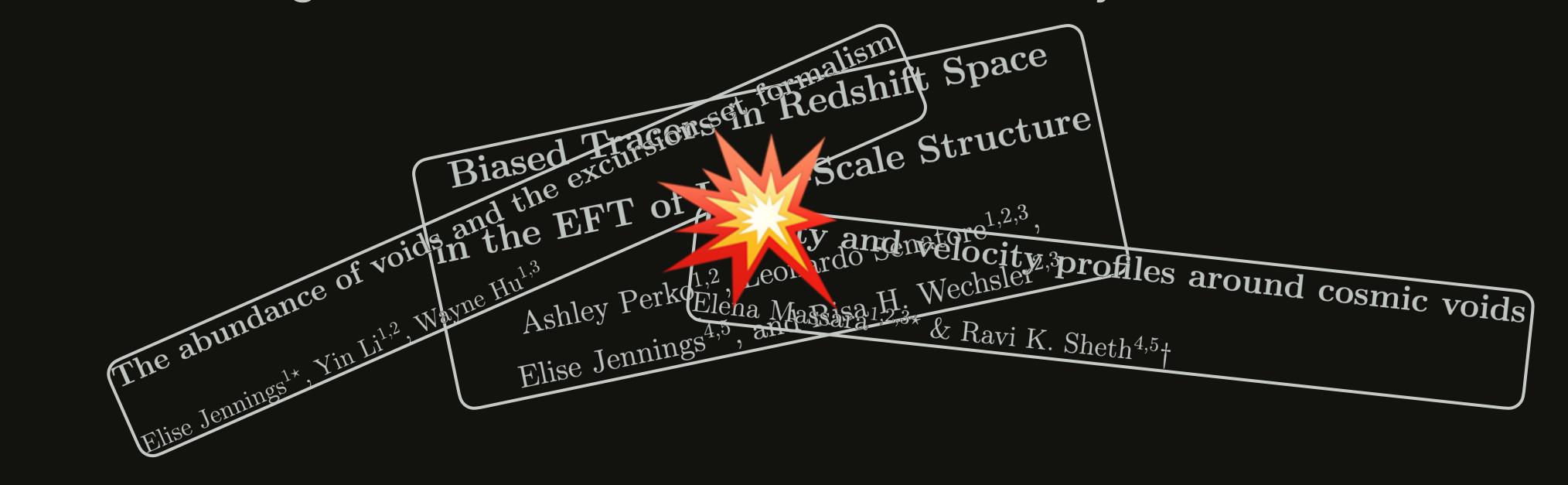


Inference?

- Want to constrain cosmology with BOSS data:
 - galaxy auto power spectrum
 - void size function (histogram of void sizes)
 - void galaxy cross power spectrum (void profile)

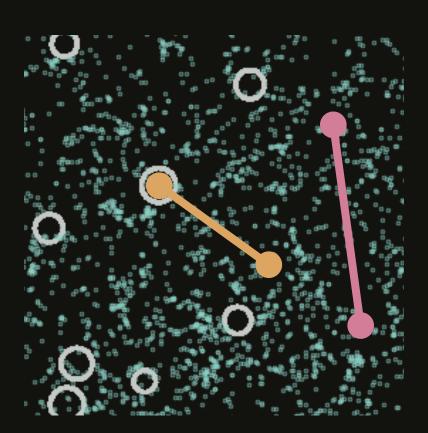


Joint modeling of these statistics difficult with analytic methods



Inference?

- Want to constrain cosmology with BOSS data:
 - galaxy auto power spectrum
 - void size function (histogram of void sizes)
 - void galaxy cross power spectrum (void profile)



- Joint modeling of these statistics difficult with analytic methods
- Likelihood unknown

$$-2\log p(x|\theta) (x-\mu(\theta))^T \Sigma^{-1}(x-\mu(\theta))$$

Outline

Why should nature have conspired to put all information into the (quasi-)linear modes we happen to be able to describe with perturbation theory?

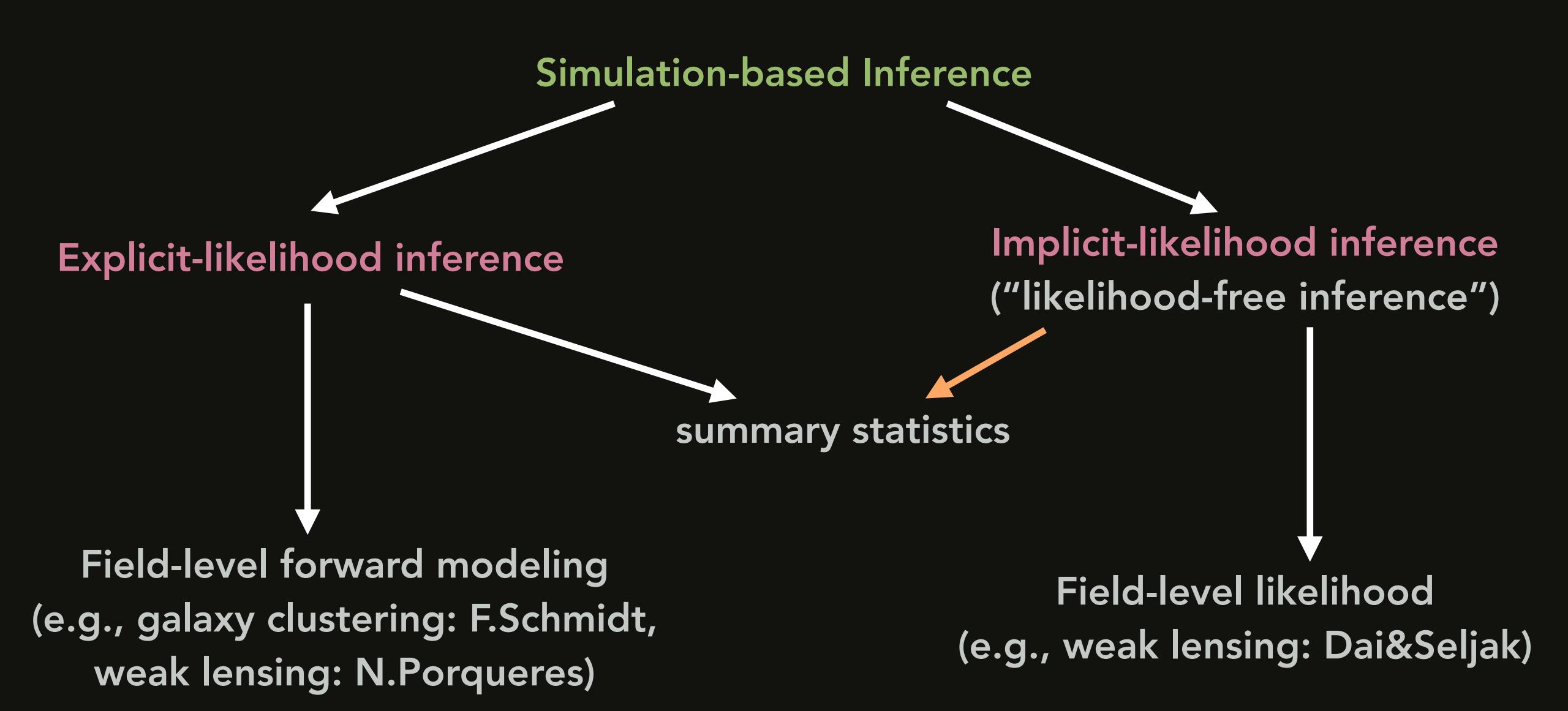
Accessing the information in non-linear regime typically requires simulation-based methods.

Outline

Implicit Likelihood Inference: A tool to solve inverse problems which are implicitly defined through simulations, typically using deep neural networks

- 1. Motivation & Overview of Methods
- 2.Example application to BOSS voids
- 3. The "elephant in the room": How to make it reliable and computationally feasible

A word about words



More concretely:

 θ =interesting parameters, η =nuisance parameters, ζ =initial conditions,

x=data, m=model:
$$P(x \mid \theta) = \int D\eta \ D\zeta \ \delta[\ x - m(\theta, \eta, \zeta)\]$$
 likelihood prior
$$P(\text{parameters} \mid \text{data}) = P(\text{data} \mid \text{parameters}) P(\text{parameters})$$
 posterior
$$P(\text{data})$$
 evidence

More concretely:

 θ =interesting parameters, η =nuisance parameters, ζ =initial conditions,

x=data, m=model:

$$P(x \mid \theta) = \int D\eta D\zeta \delta[x - m(\theta, \eta, \zeta)]$$

Traditional case:

$$P(x \mid \theta) = \int D\eta Gaussian[x - \mu(\theta, \eta), \Sigma]$$

[do remaining low-dimensional η -integral with Monte Carlo]

More concretely:

 θ =interesting parameters, η =nuisance parameters, ζ =initial conditions,

x=data, m=model:

$$P(x \mid \theta) = \int D\eta D\zeta \delta[x - m(\theta, \eta, \zeta)]$$

Traditional case:

$$P(x \mid \theta) = \int D\eta Gaussian[x - \mu(\theta, \eta), \Sigma]$$

But what do we do if the Gaussian approximation doesn't hold?

 \rightarrow assume we have simulator that evaluates m(θ, η, ζ) accurately

Neural Implicit Likelihood Inference (ILI)

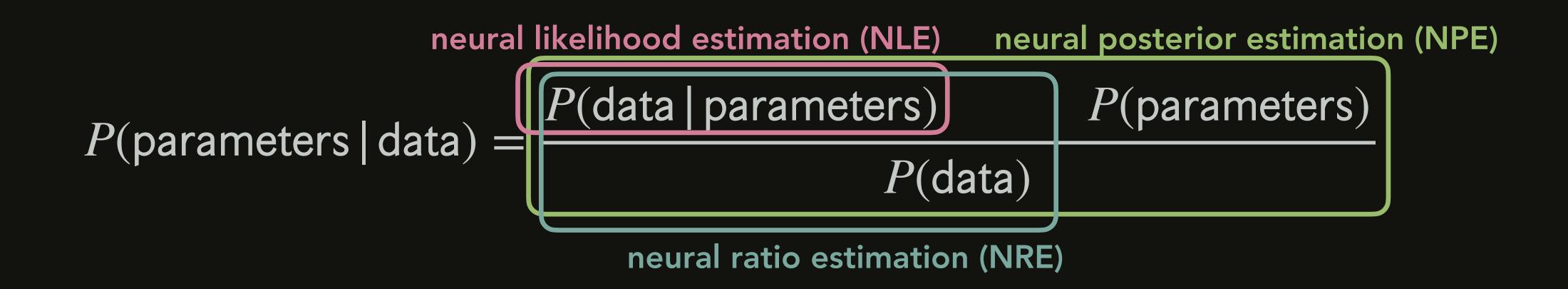
More concretely:

 θ =interesting parameters, η =nuisance parameters, ζ =initial conditions, x=data, m=model:

$$P(x \mid \theta) = \int D\eta D\zeta \delta[x - m(\theta, \eta, \zeta)]$$

But what do we do if the Gaussian approximation doesn't hold?

 \rightarrow assume we have simulator that evaluates m(θ , η , ζ) accurately



Neural Implicit Likelihood Inference (ILI)

 $P(\text{parameters} \mid \text{data}) = P(\text{data} \mid \text{parameters}) P(\text{parameters})$ $P(\text{data} \mid \text{parameters}) P(\text{parameters})$ $P(\text{data} \mid \text{parameters}) P(\text{data} \mid \text{parameters})$ $P(\text{data} \mid \text{parameters}) P(\text{data} \mid \text{parameters})$

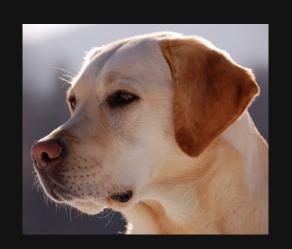
neural likelihood estimation (NLE): conditioned flow $q(x|\theta)$

neural posterior estimation (NPE): conditioned flow $q(\theta|x)$

 ho_0 [Albergo+2023]

neural ratio estimation (NRE):

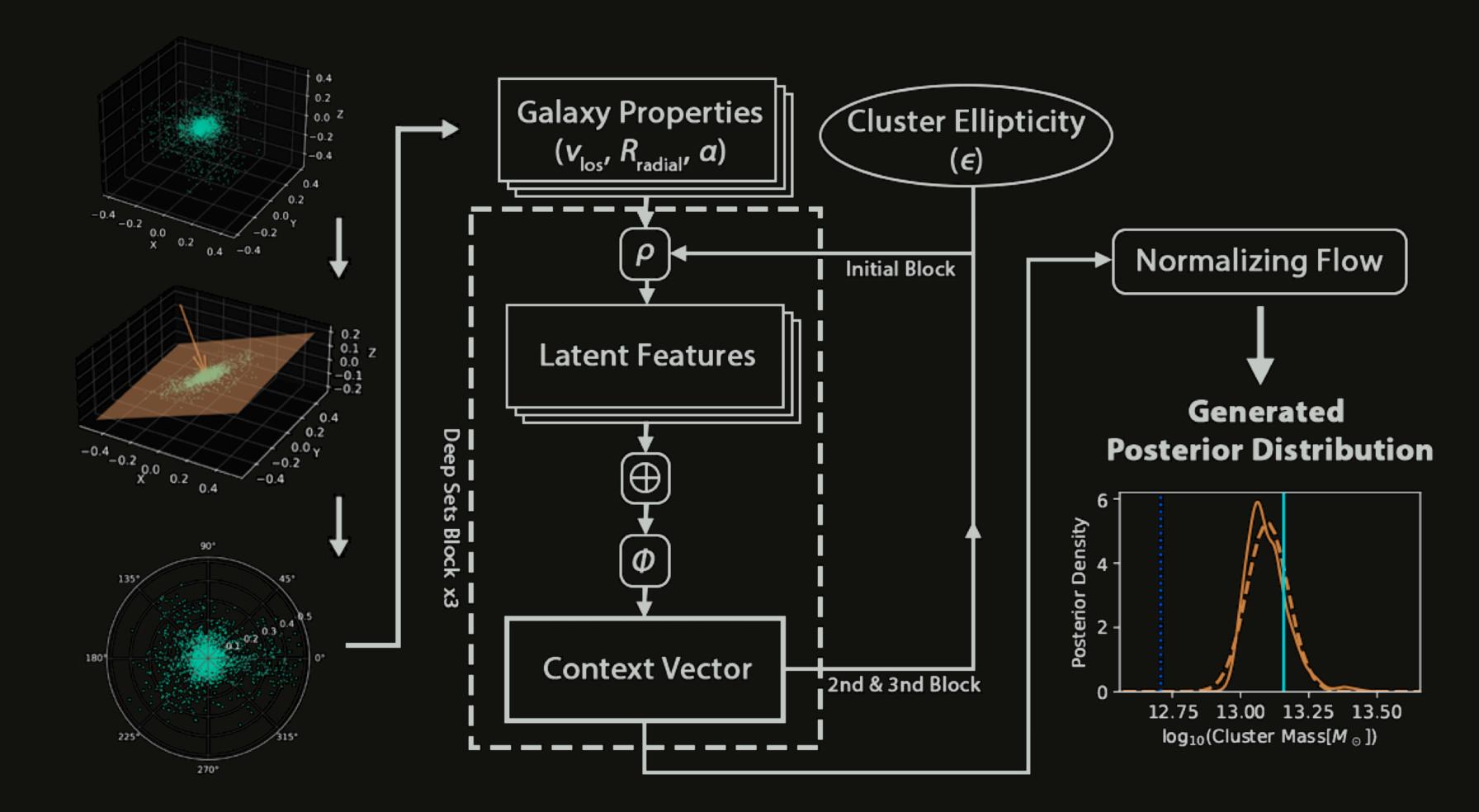
classifier between $(x, \theta) \sim p(x, \theta)$ and $\sim p(x)p(\theta)$



Practicality: data size & structure

Usually, data vectors too high dimensional or live in awkward spaces

→ We deal with this by constructing a useful latent representation through *embedding networks*



Neural Implicit Likelihood Inference (ILI)

- in the limit, any likelihood learnable
- any simulate-able effect can be incorporated
- no formal difference between nuisance parameters and initial conditions
- primary choice at the moment:
 - NPE: empirically good performance, need to deal with flow, not so convenient for i.i.d. data
 - \bullet NRE: classification \rightarrow super flexible, empirically more tuning required

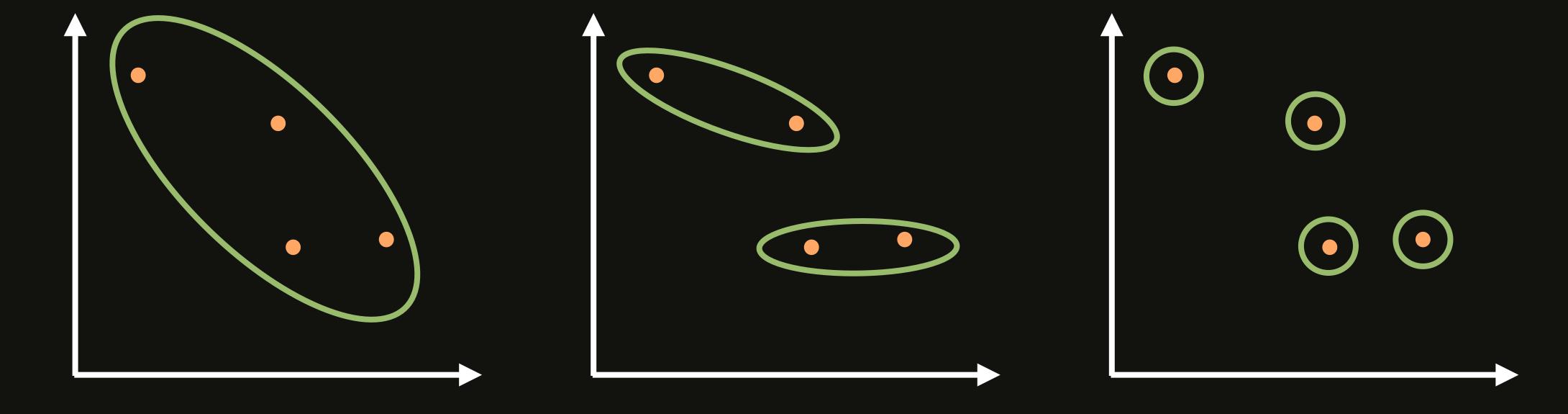
Curse of dimensionality

Let's say: 200,000 simulations, 10 model parameters, 10 data points → this is optimistic!

We're trying to learn a density in this 10+10 dimensional space

 $(200,000)^{1/(10+10)} = 1.8$, let's say 2

What is the implicit prior? Maybe theory can help?



How to summarize this map?

70 -

60 -

50 -

40 -

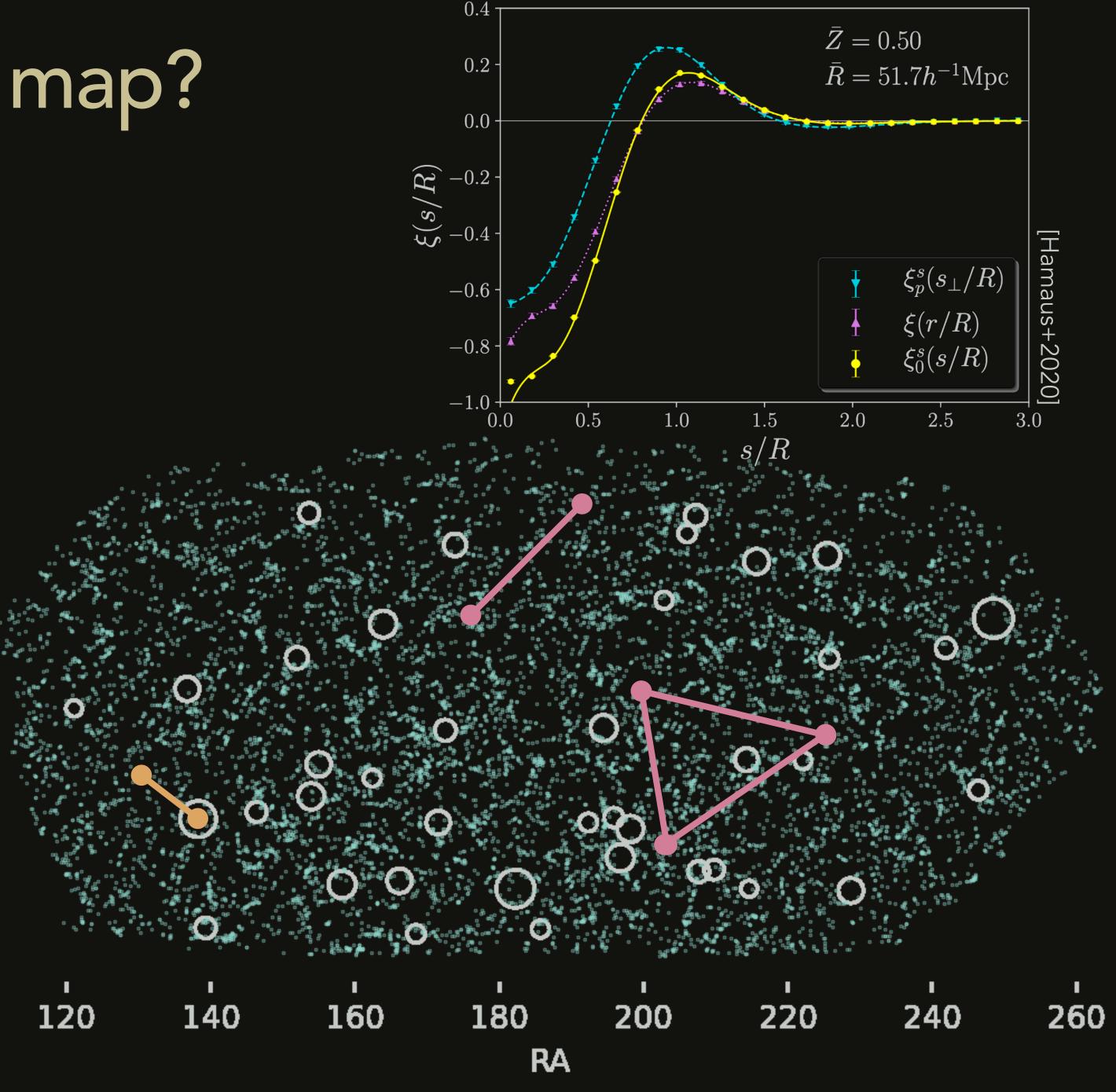
20 -

10 -

DEC -

- 1) pairs of galaxies (power spectrum)
- 2) triangles of galaxies (bispectrum)
- 3) ...
- 4) "empty regions": cosmic voids
 - size distribution
 - void-galaxy pairs

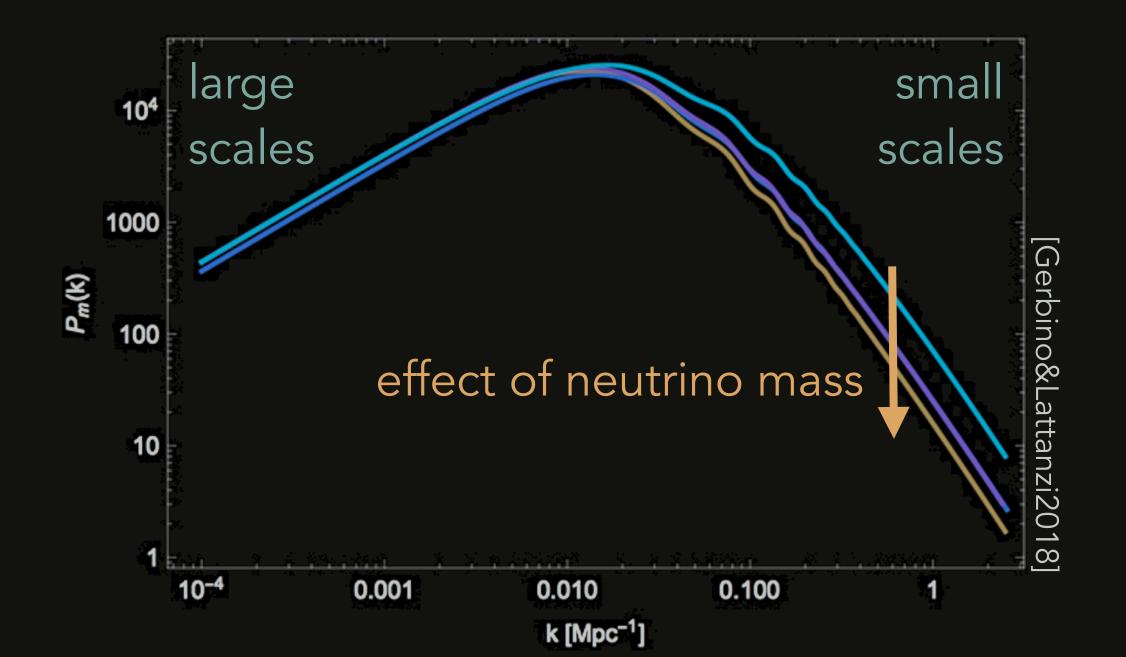
• ...



What can voids do for us?

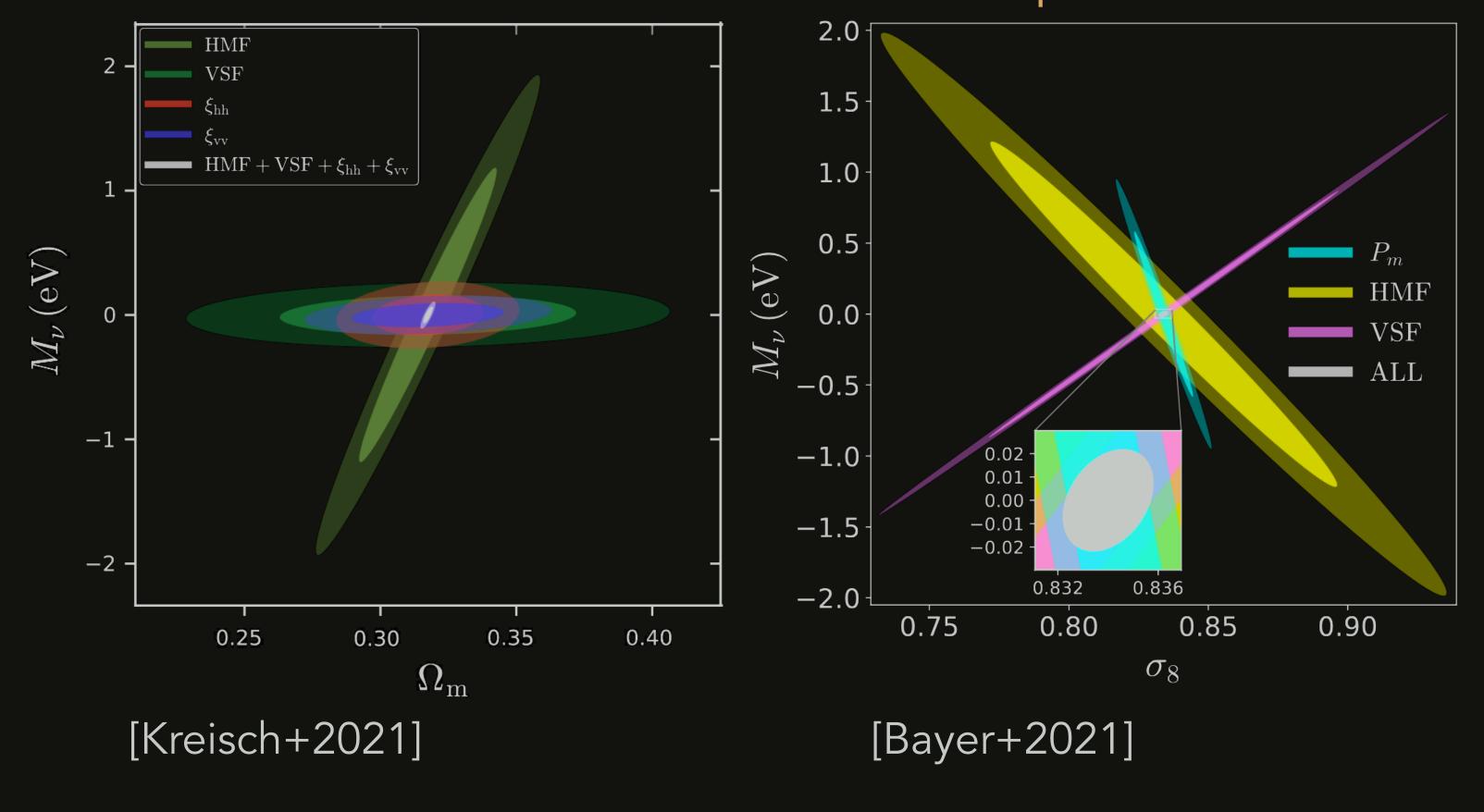
- upweight underdensities →
 complementary to correlation
 functions
 - corrections to general relativity
 - dark energy
 - neutrino mass



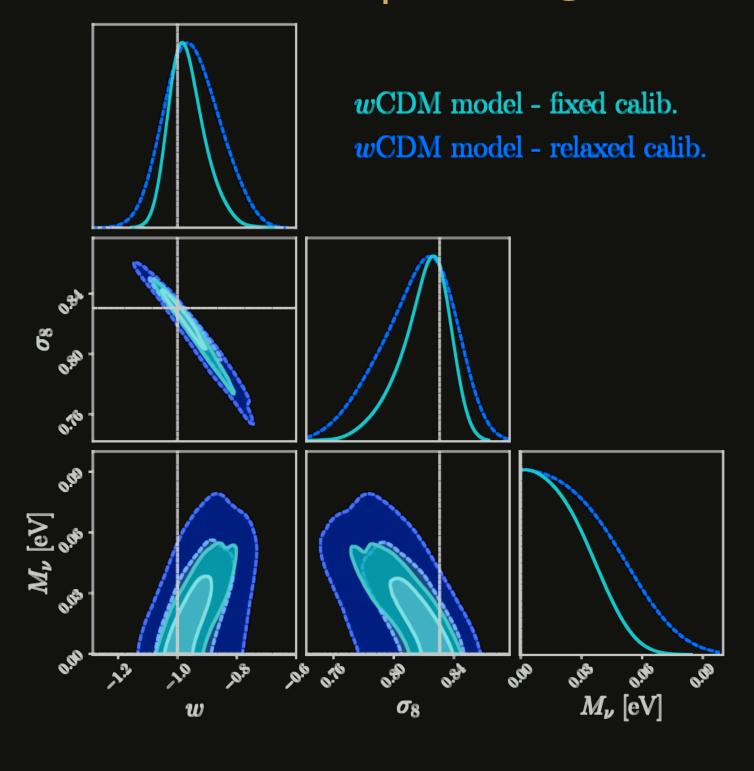


Voids & Neutrino Mass: Forecasts

QUIJOTE halos (1 Gpc/h)

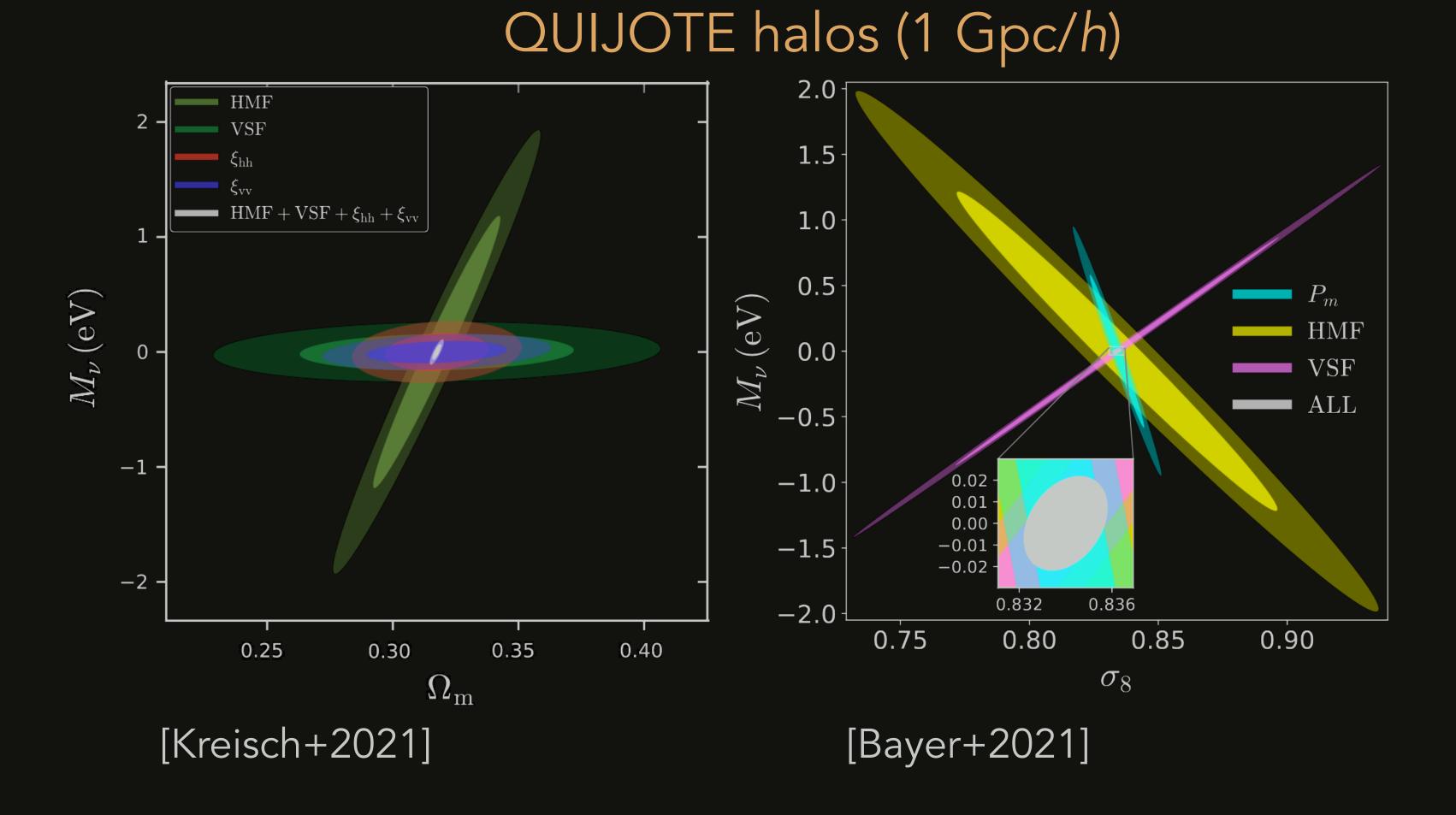


"Euclid" spec-z galaxies

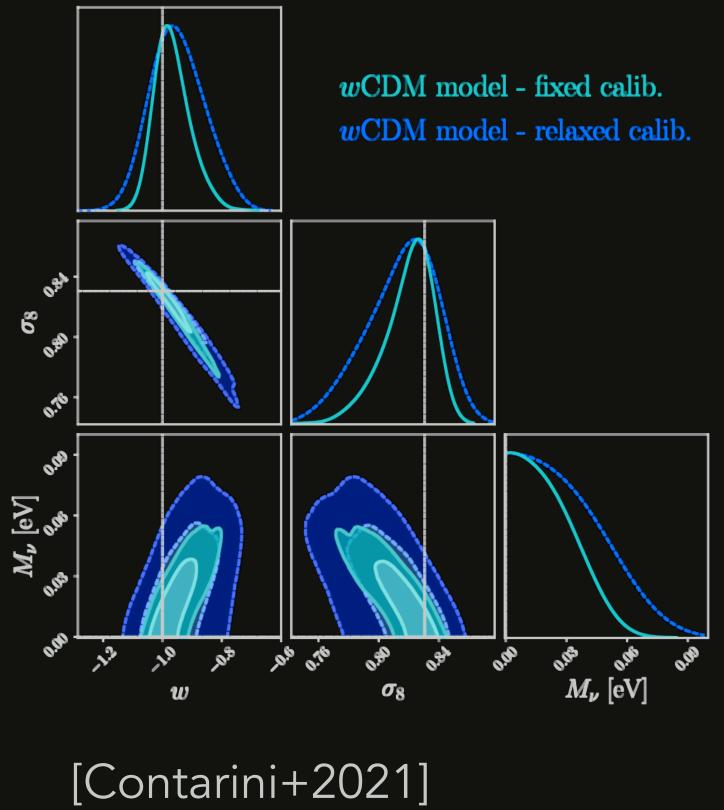


[Contarini+2021]

Voids & Neutrino Mass: Forecasts



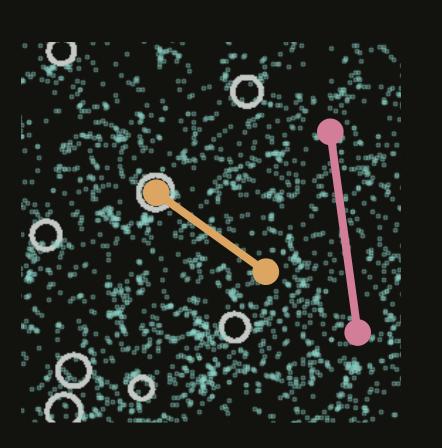
"Euclid" spec-z galaxies



→ take this to real data from BOSS, including complications from galaxy formation & survey systematics

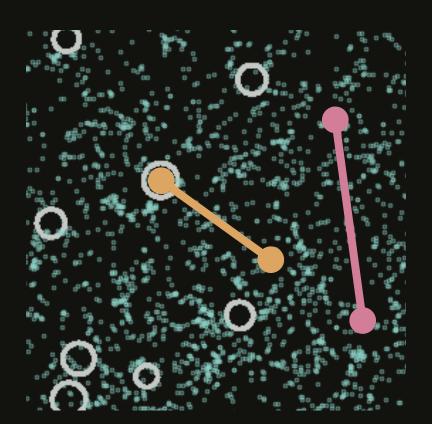
Simulation-based inference

- ullet Want to constrain neutrino mass sum, $\sum m_v$, with BOSS data:
 - galaxy auto power spectrum
 - void size function (histogram of void sizes)
 - void galaxy cross power spectrum (void profile)

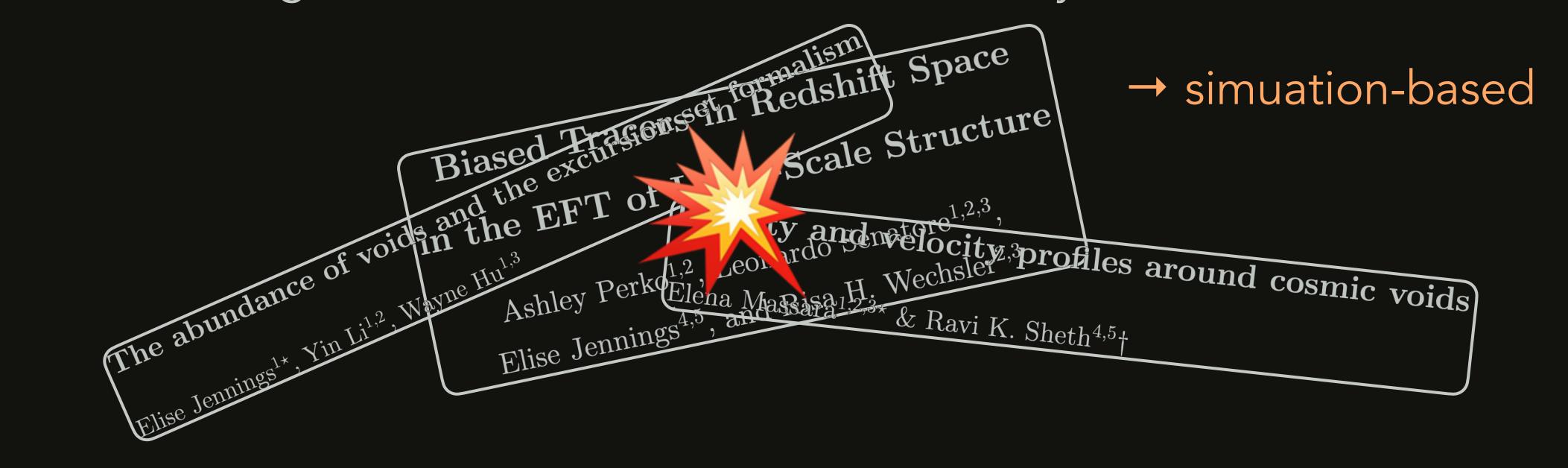


Simulation-based inference

- ullet Want to constrain neutrino mass sum, $\sum m_v$, with BOSS data:
 - galaxy auto power spectrum
 - void size function (histogram of void sizes)
 - void galaxy cross power spectrum (void profile)

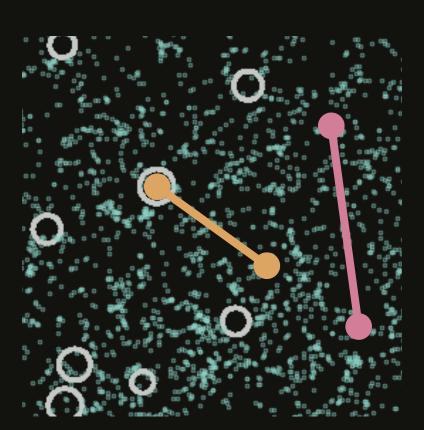


Joint modeling of these statistics difficult with analytic methods



Simulation-based inference

- ullet Want to constrain neutrino mass sum, $\sum m_v$, with BOSS data:
 - galaxy auto power spectrum
 - void size function (histogram of void sizes)
 - void galaxy cross power spectrum (void profile)

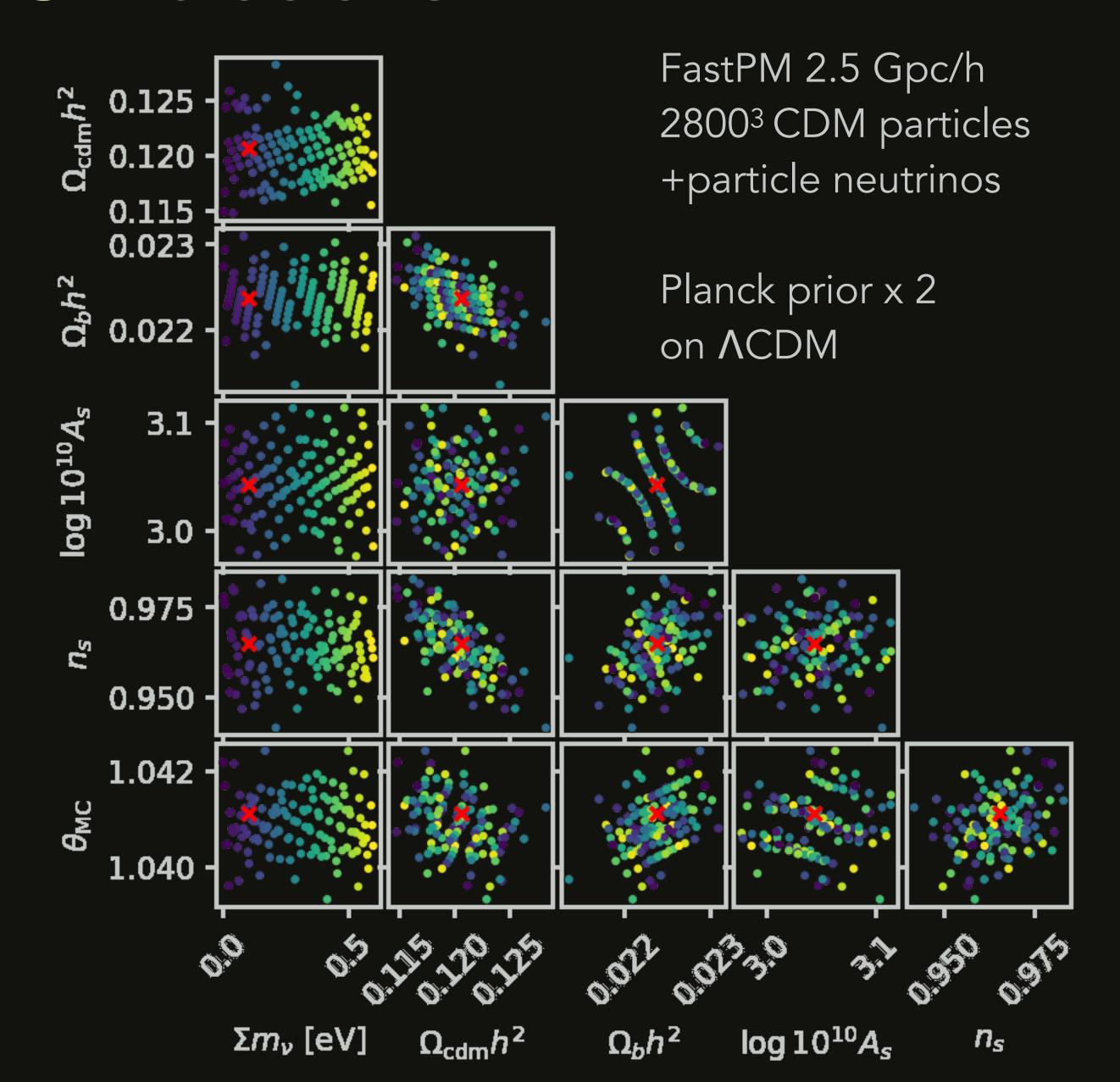


- Joint modeling of these statistics difficult with analytic methods
- Likelihood unknown

$$-2\log p(x|\theta) (x-\mu(\theta))^T \Sigma^{-1}(x-\mu(\theta))$$

→ implicit-likelihood

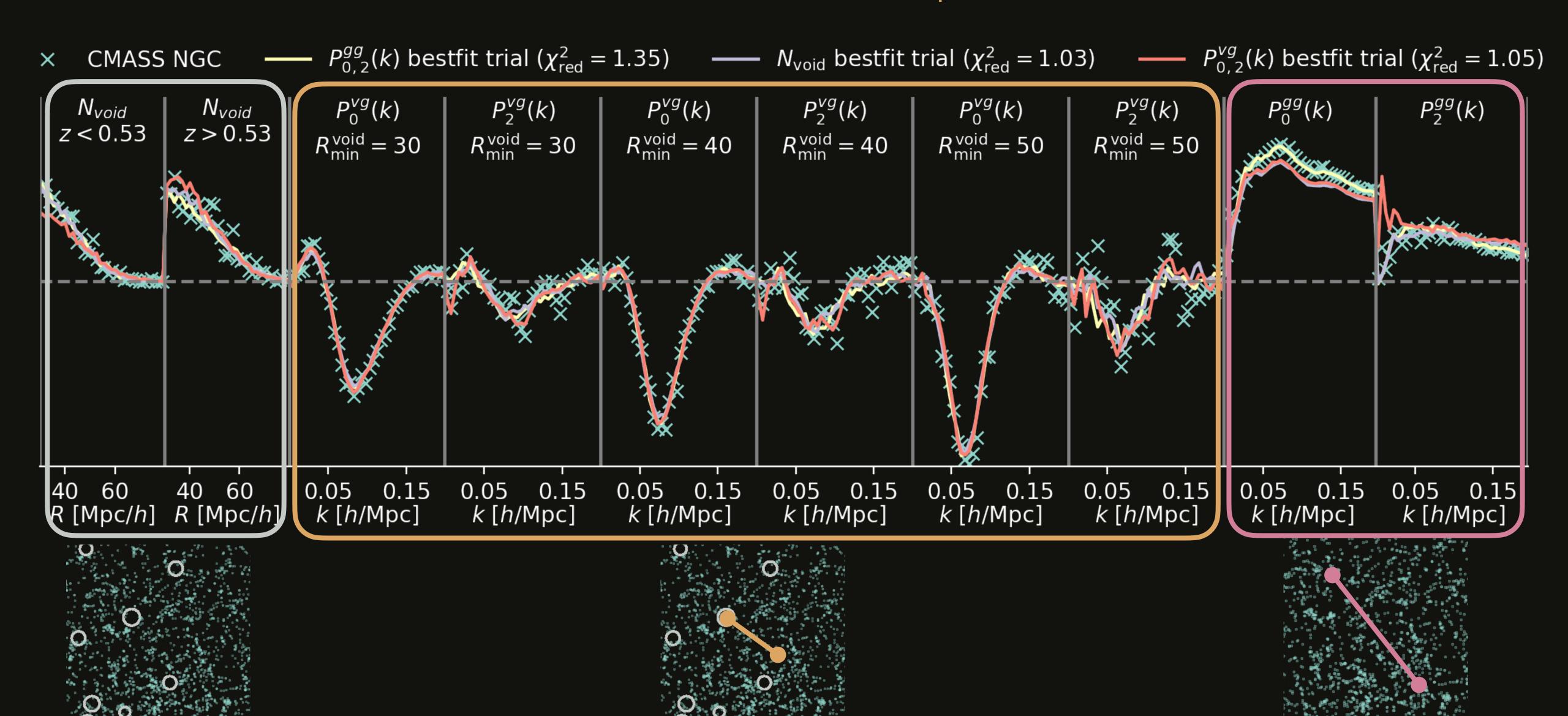
Simulations



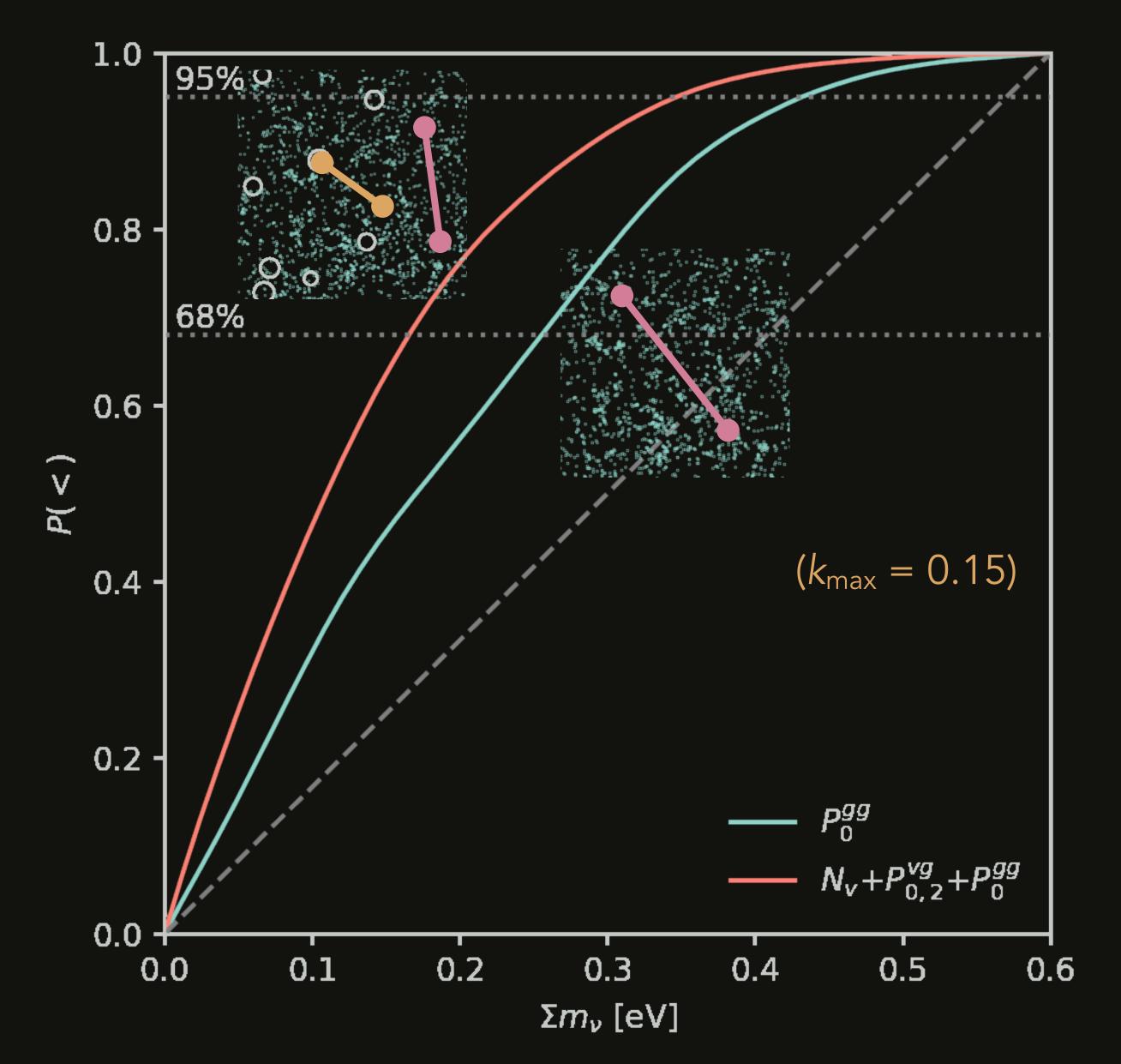
- populate gravity-only simulations with galaxies using HOD
- project on lightcone and add survey realism

Data Vector

Use MOPED compression to reduce dimensionality.

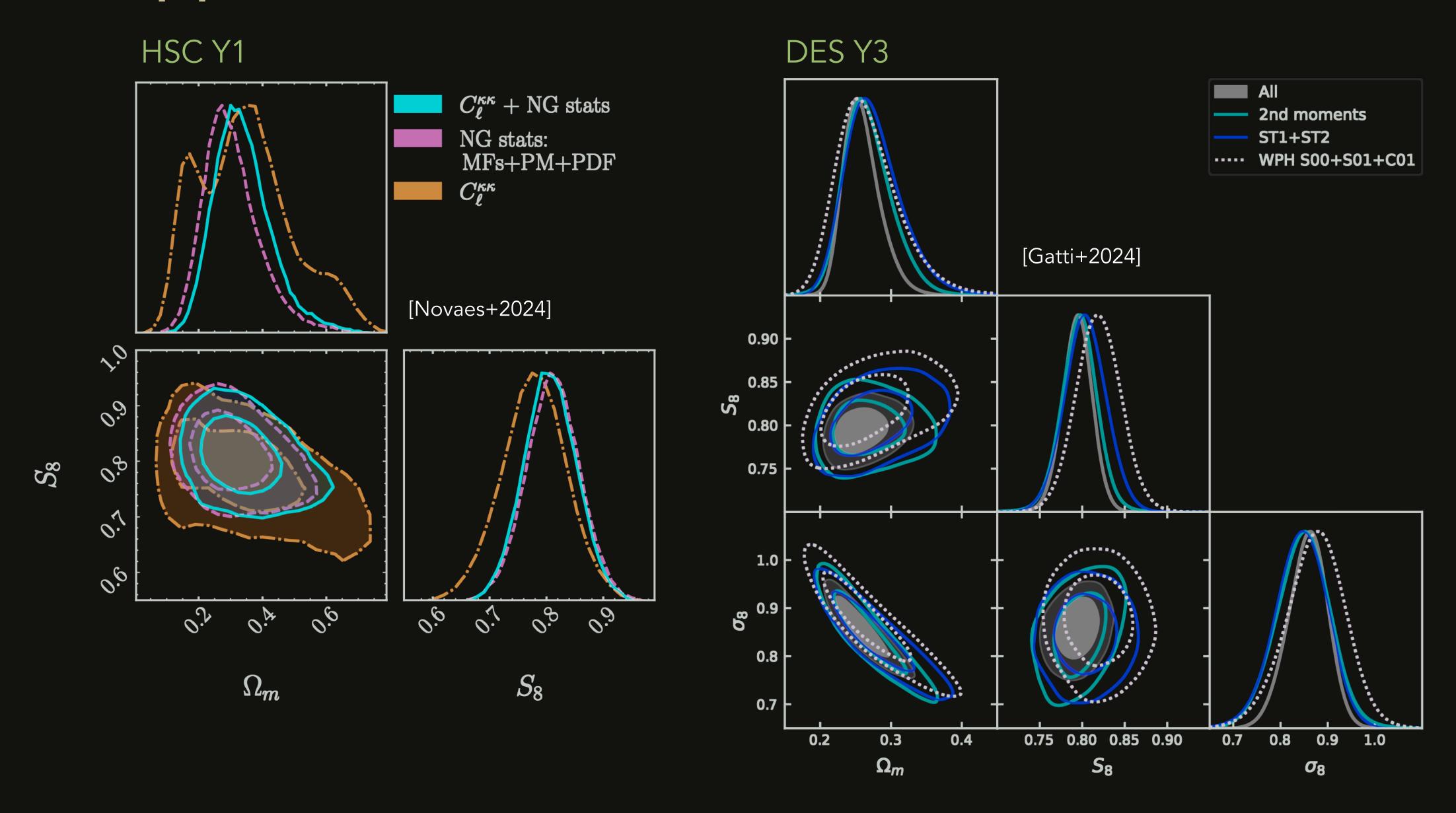


Main posterior

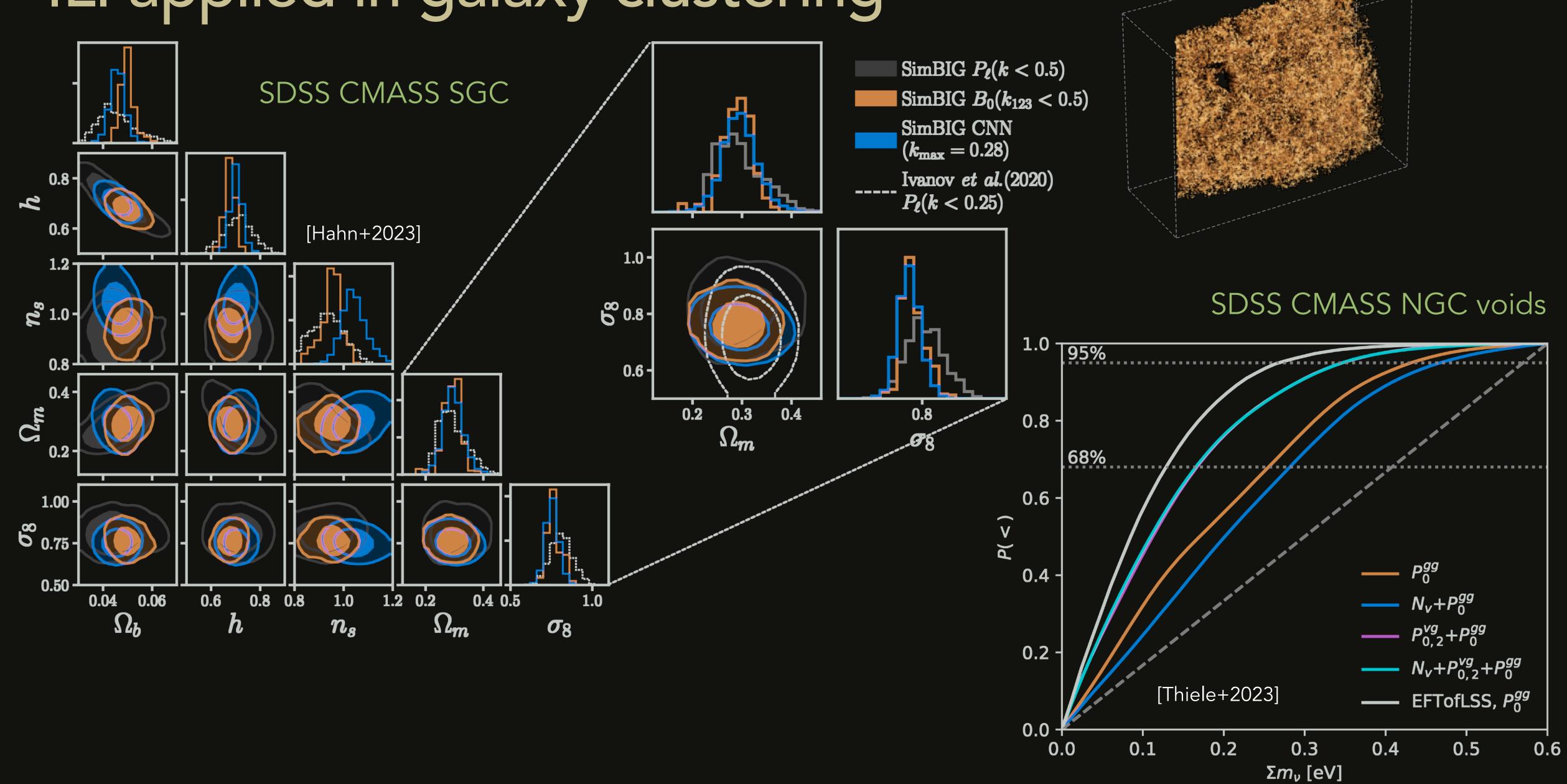


With conservative scale cut of k_{max} =0.15 hMpc⁻¹, voids tighten upper bound on neutrino mass.

ILI applied in weak lensing



ILI applied in galaxy clustering



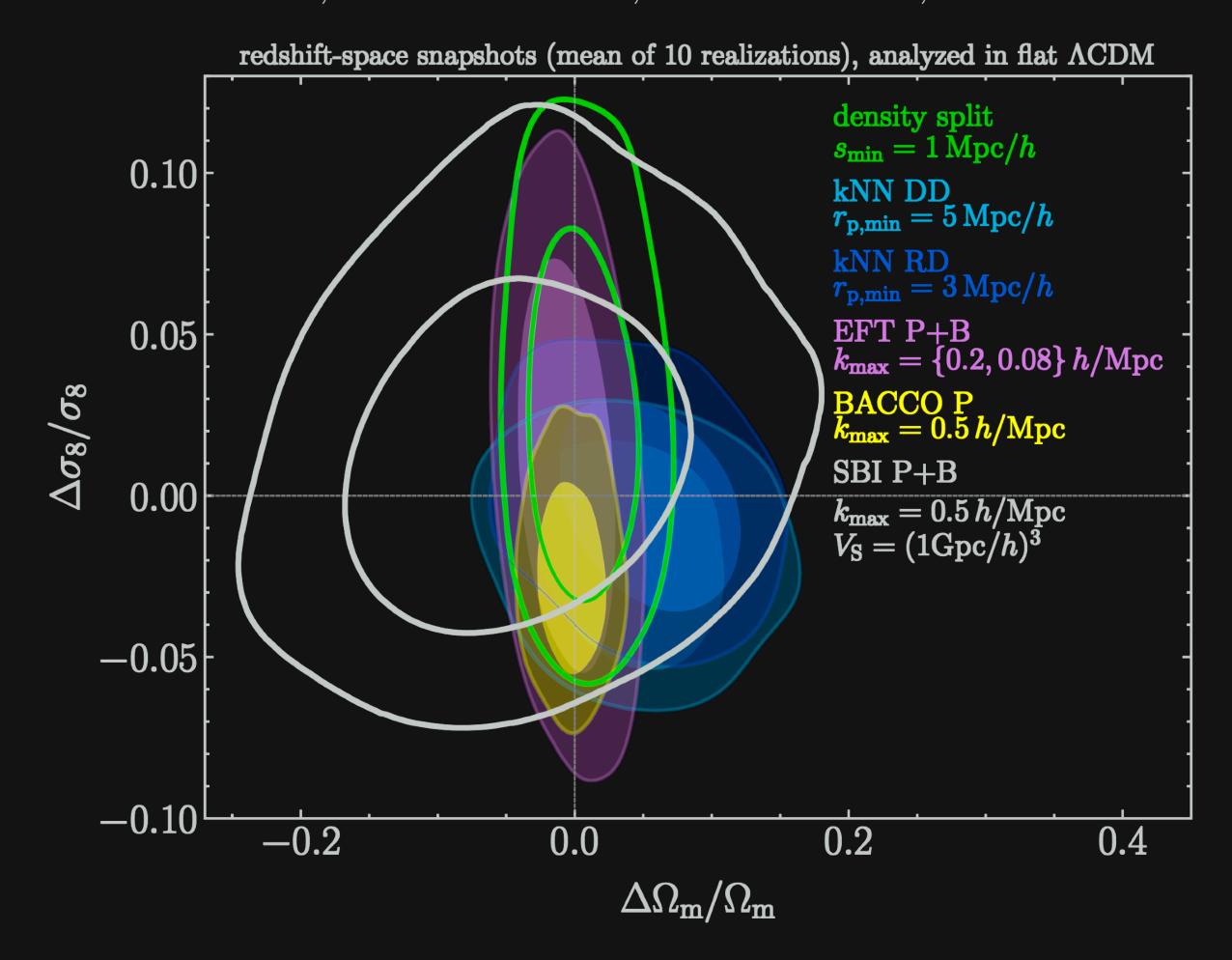
So far, more or less "toy examples".

Not the same level of trust as traditional analyses.

The Beyond-2pt Collaboration

Elisabeth Krause,¹ Yosuke Kobayashi,^{1,2} Andrés N. Salcedo,¹ Mikhail M. Ivanov,³ Tom Abel,^{4,5,6} Kazuyuki Akitsu,⁷ Raul E. Angulo,^{8,9} Giovanni Cabass,¹⁰ Sofia Contarini,^{11,12,13} Carolina Cuesta-Lazaro,^{14,15,16} Changhoon Hahn,¹⁷ Nico Hamaus,^{18,19} Donghui Jeong,^{20,21} Chirag Modi,^{22,23} Nhat-Minh Nguyen,^{24,25} Takahiro Nishimichi,^{2,26,27} Enrique Paillas,^{28,29} Marcos Pellejero Ibañez,³⁰ Oliver H. E. Philcox,^{31,32} Alice Pisani,^{33,22,34,17} Fabian Schmidt,³⁵ Satoshi Tanaka,²⁶ Giovanni Verza,^{36,22} Sihan Yuan,^{4,6} Matteo Zennaro,³⁷

building trust



Issues away from the limit

- in the limit, any likelihood learnable
- what is the limit?
 - infinite model expressivity (usually ok in cosmology)
 - ability to find good global optimum (usually ok)
 - infinite training set size / fast & accurate simulation codes

$$L = \int_{p(x,\theta)} \mathcal{L} \approx \sum_{\text{training set}} \mathcal{L}_{\text{approx}}$$

Implicit Likelihood Inference in Crisis?

A Trust Crisis In Simulation-Based Inference? Your Posterior Approximations Can Be Unfaithful

Joeri Hermans*
Unaffiliated

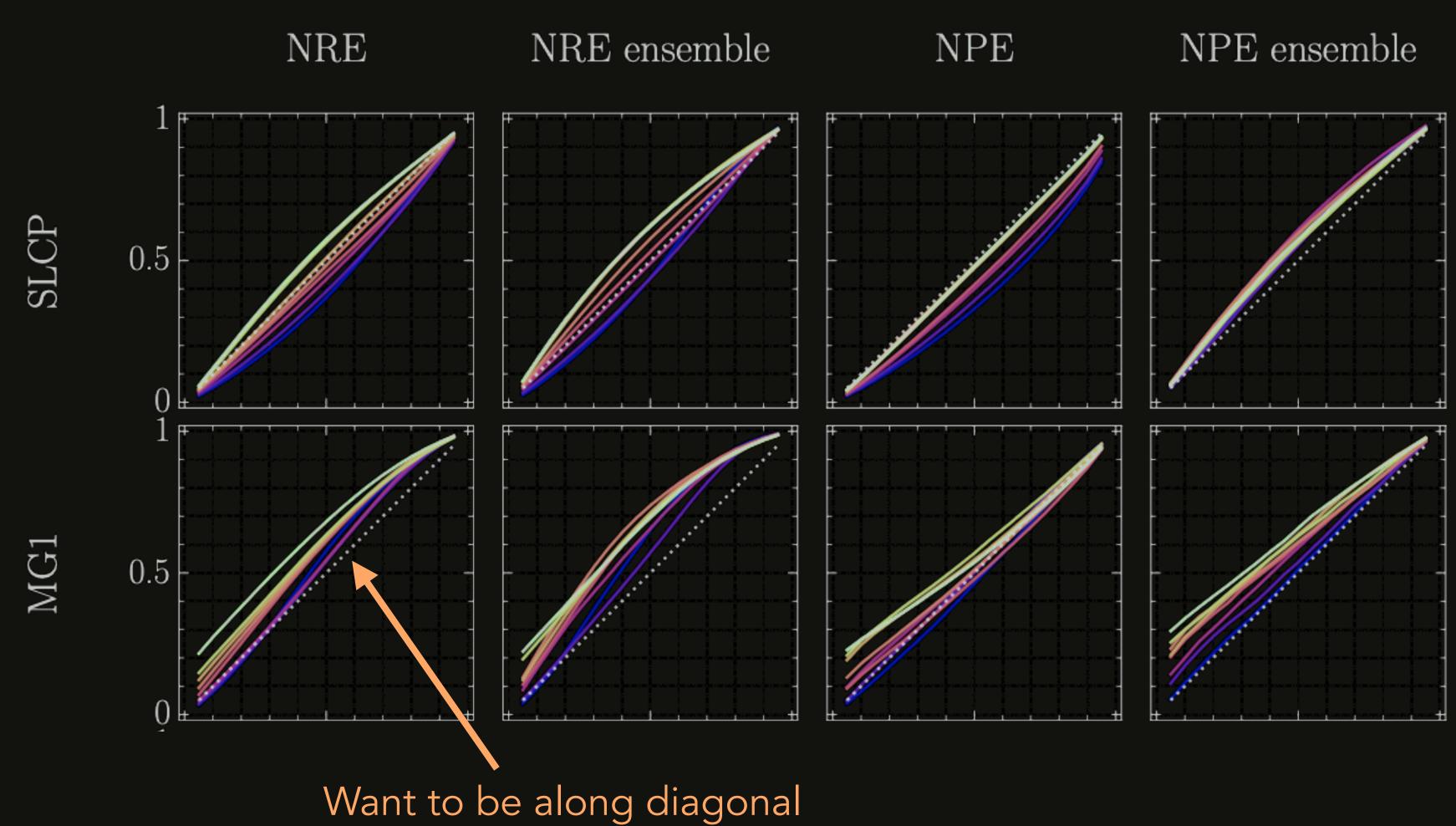
Arnaud Delaunoy* University of Liège

François Rozet
University of Liège

Antoine Wehenkel University of Liège

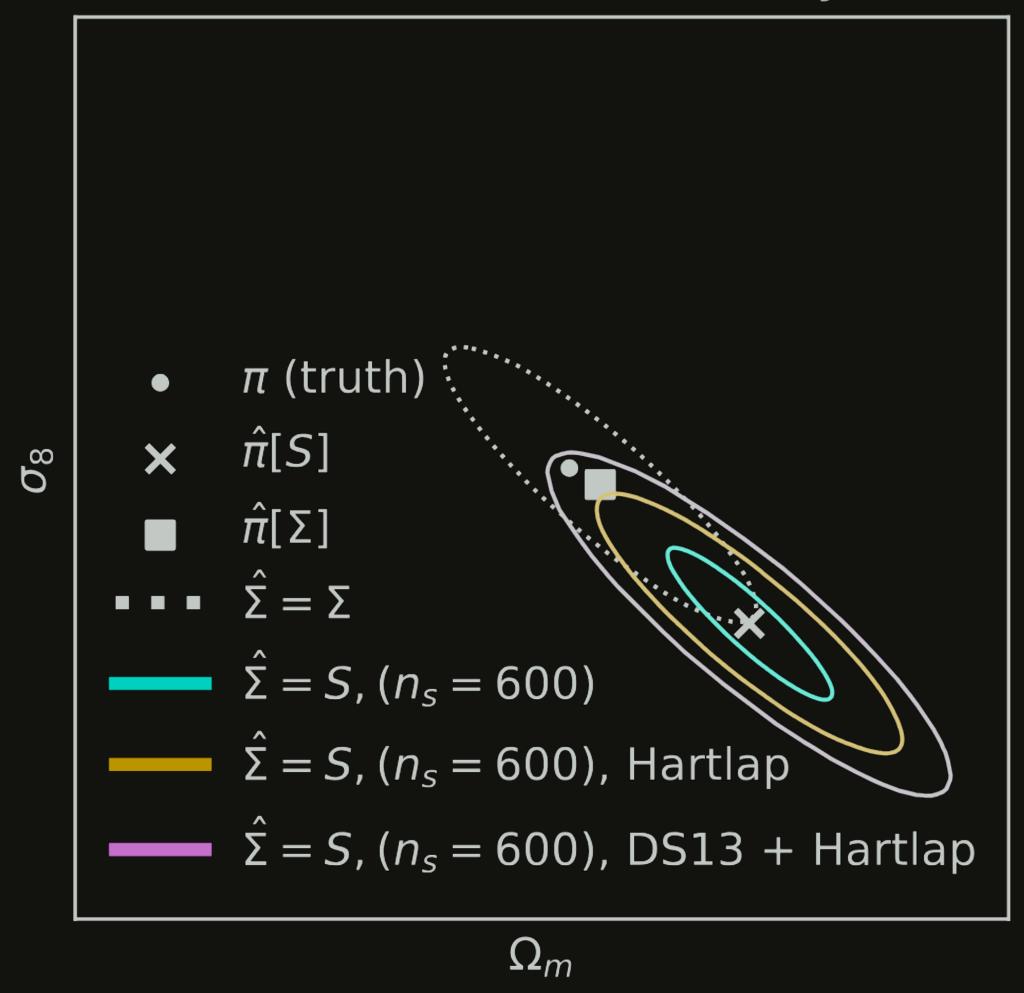
Volodimir Begy University of Vienna

Gilles Louppe University of Liège

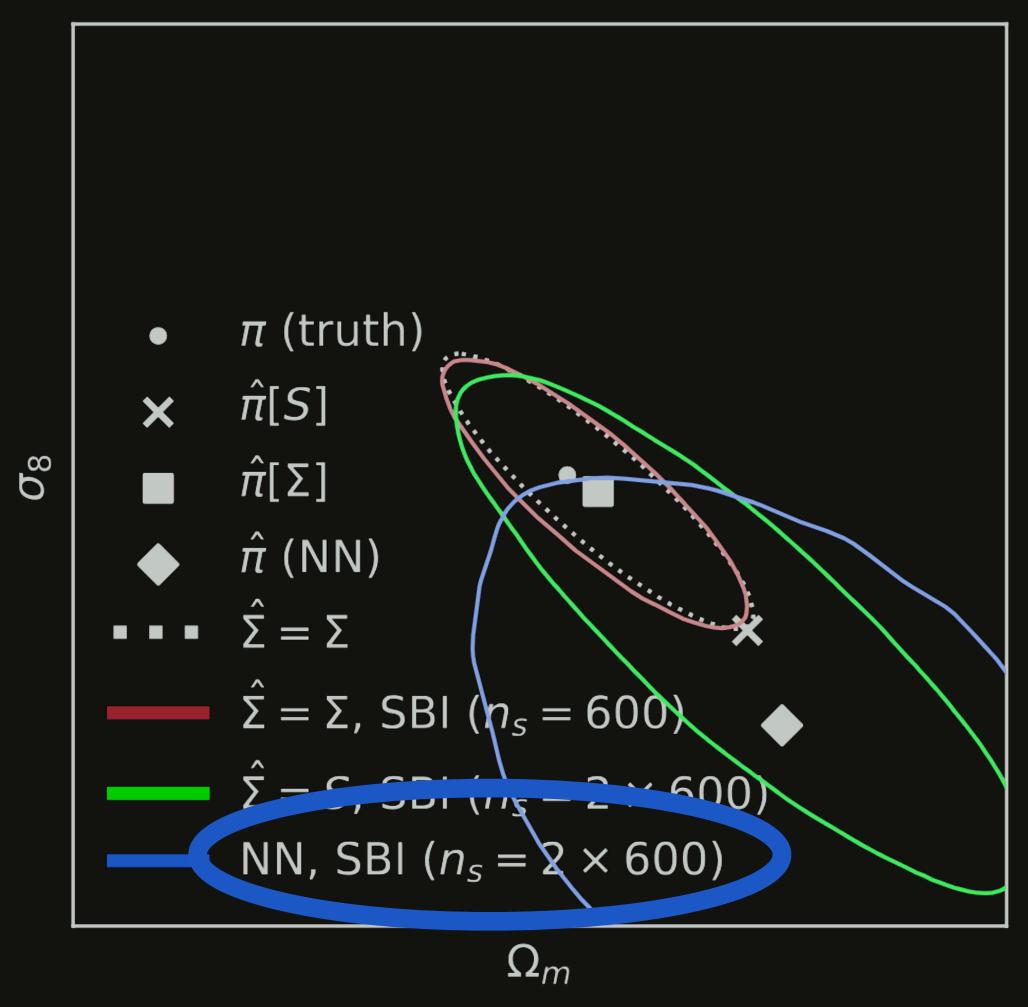


Implicit Likelihood Inference in Crisis?

Gaussian likelihood analysis

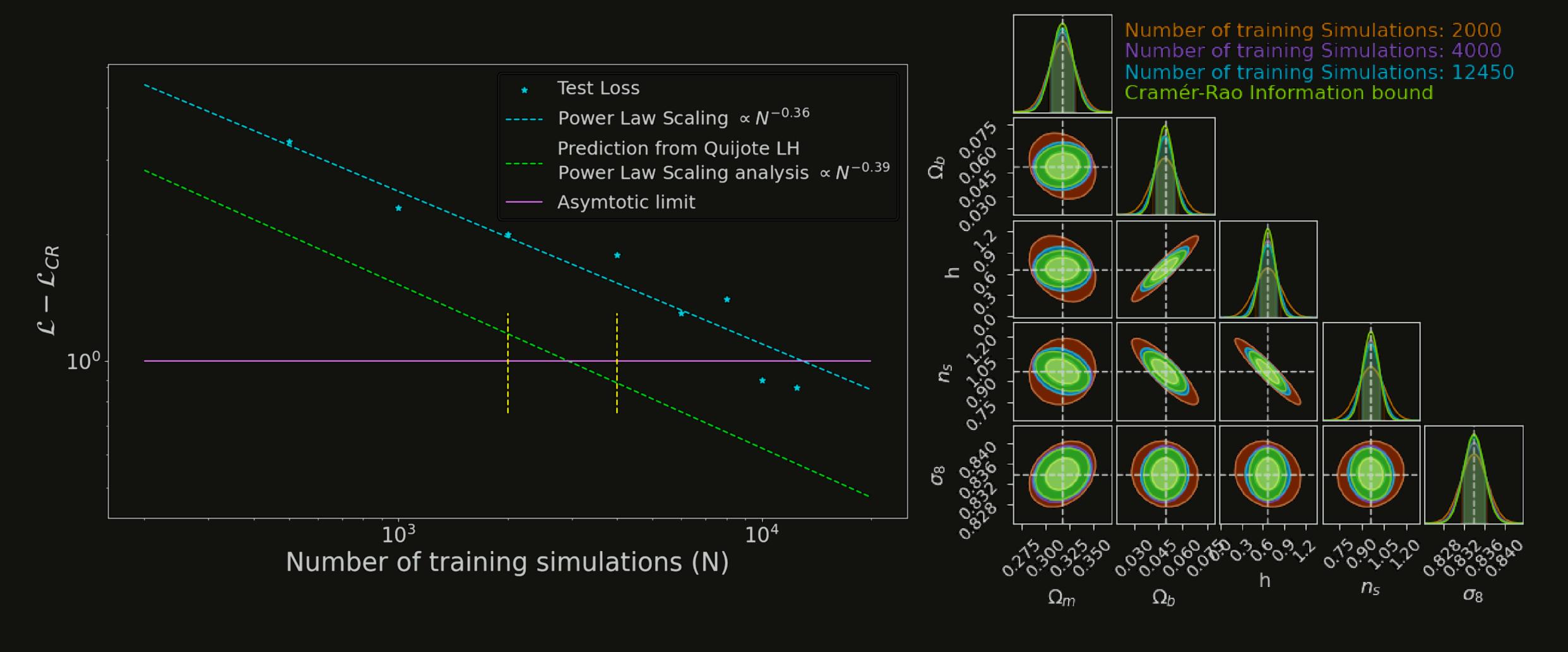


Simulation-based inference



[Homer, Friedrich, Gruen 2024]

Implicit Likelihood Inference in Crisis?



[Bairagi, Wandelt, Villaescusa-Navarro 2025]

So far, more or less "toy examples".

Not the same level of trust as traditional analyses.

So far, more or less "toy examples".

Not the same level of trust as traditional analyses. For good reason!

Stage-IV deluge of data will make the problem much more challenging...

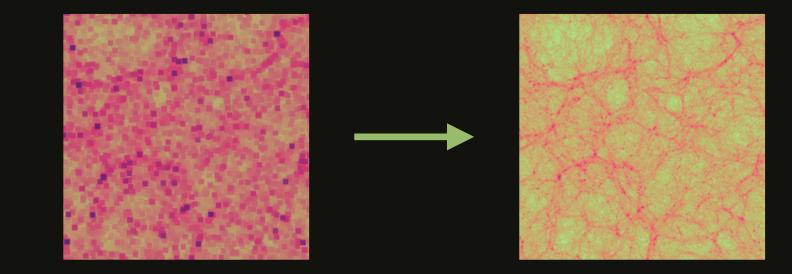
Now is the time to become clever:

- run simulations for cheaper
- run them where it counts
- combine simulations of different qualities

Some promising approaches developed already!

Scaling up

• (ML) accelerated simulations

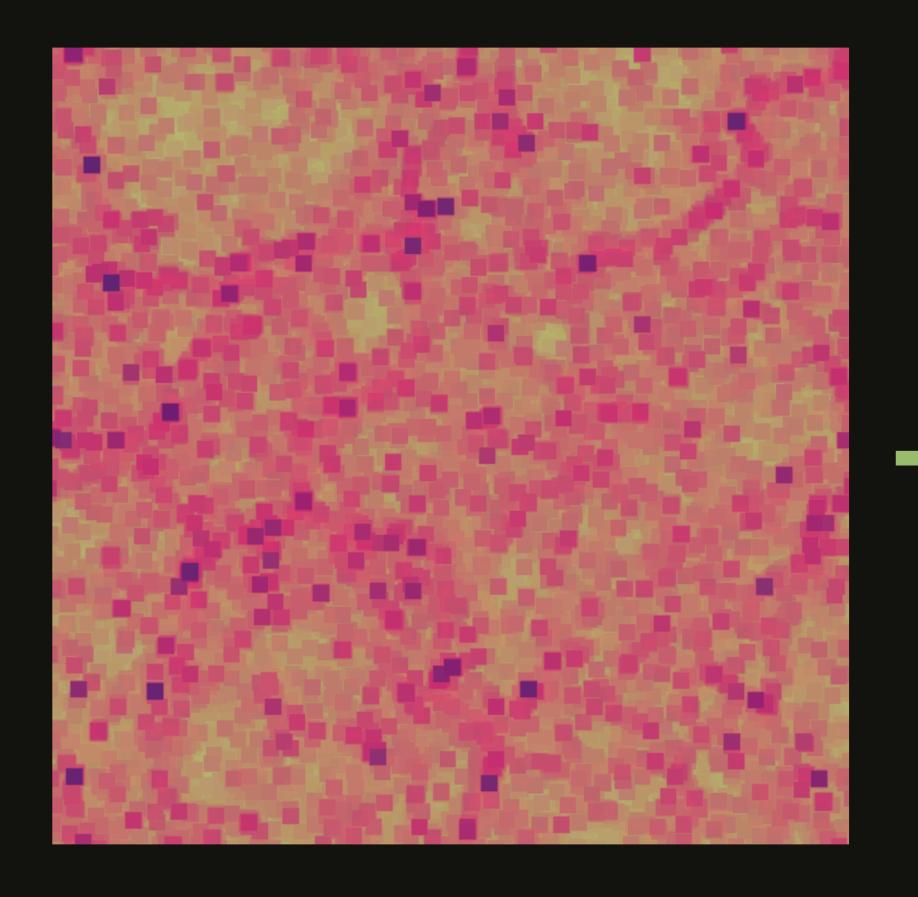


• "painting" into simulations [gas, galaxies, ...]

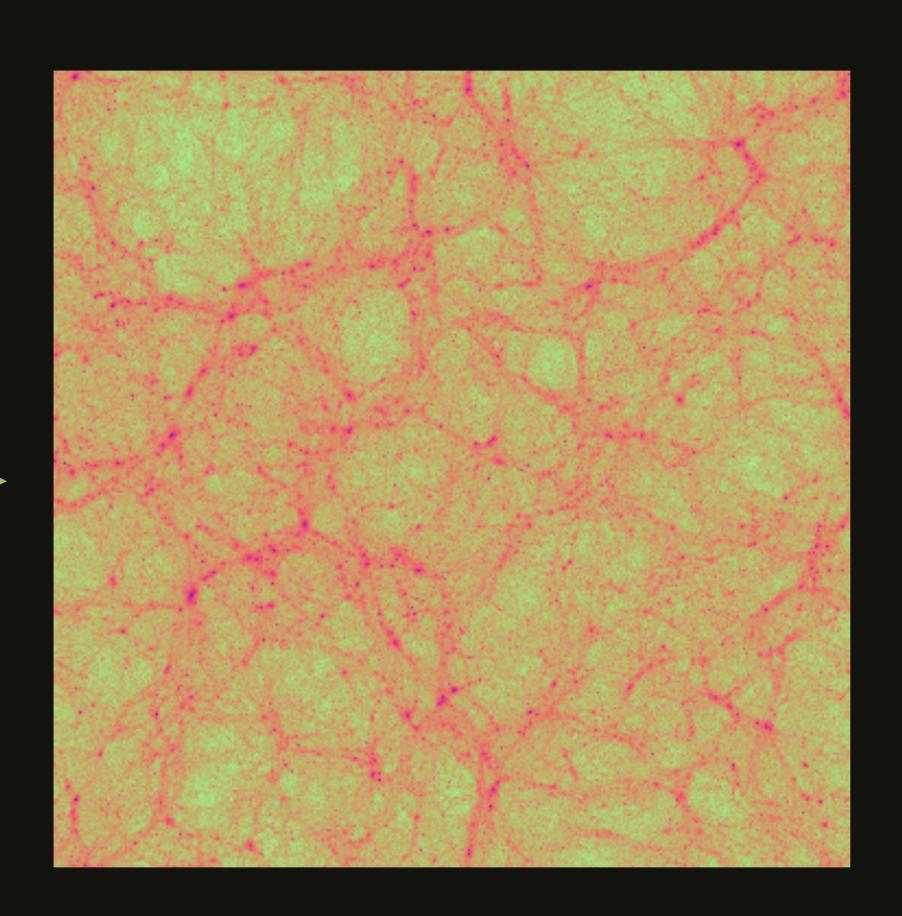
NB: This is most of the other activities in AI/ML for cosmology

I choose to present them in the SBI context, but there are certainly other motivations

Learning corrections

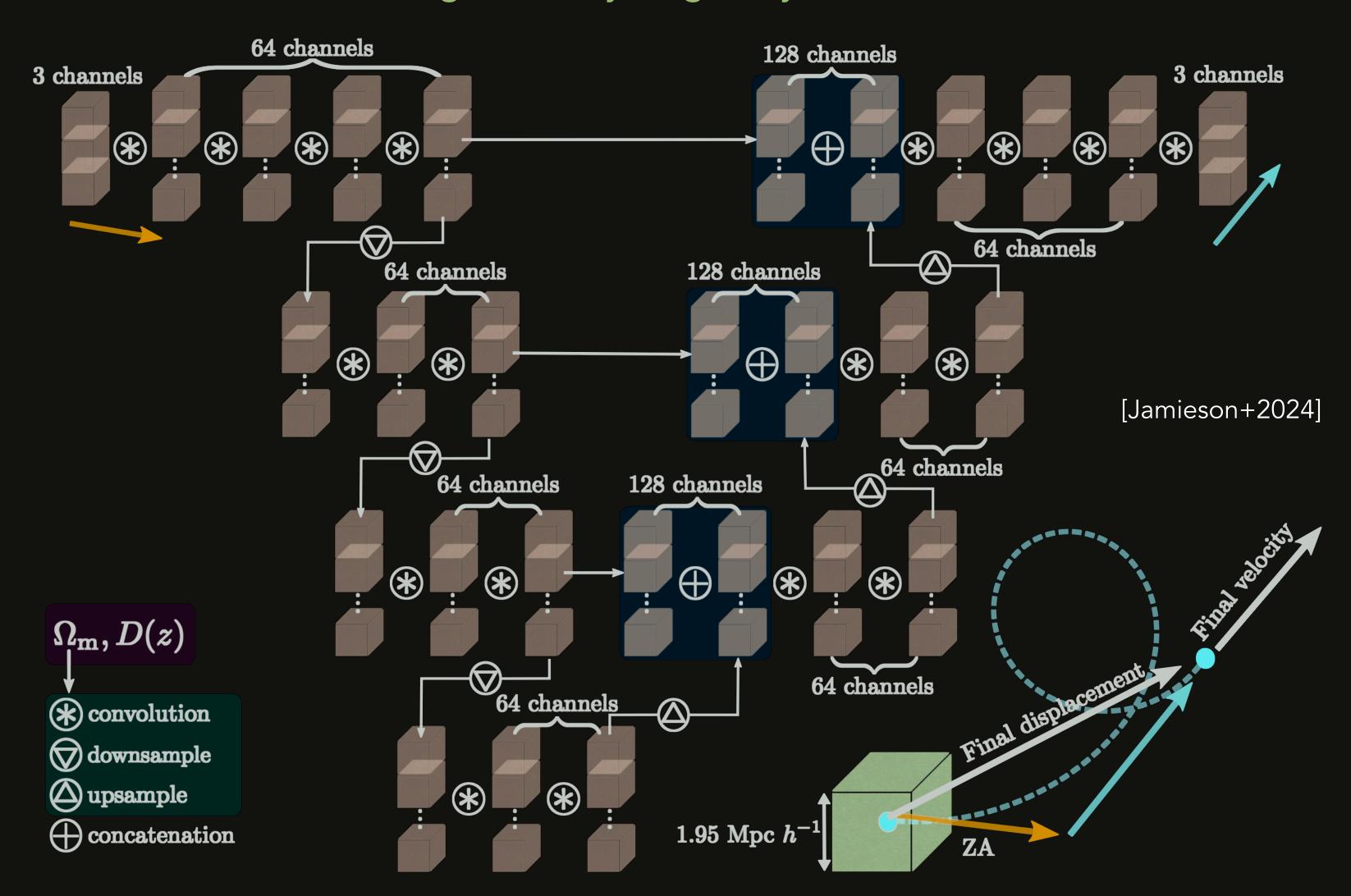


HODs, SAMs, ..., machine learning



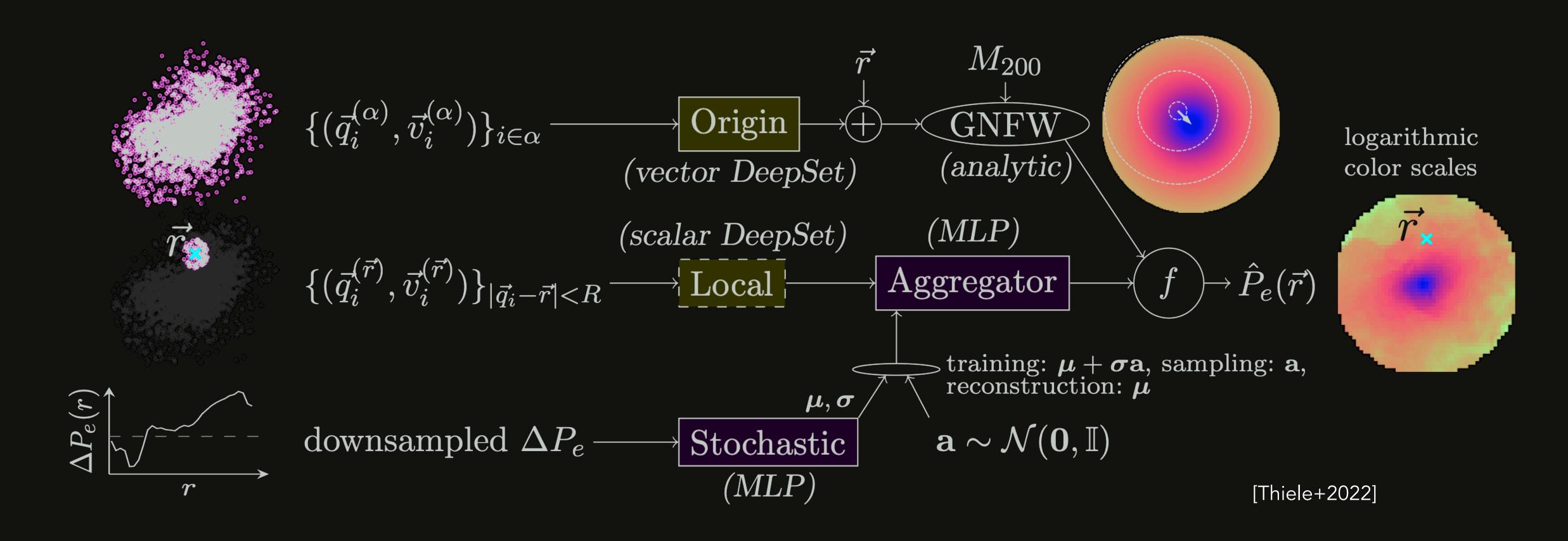
Learning corrections

enhancing accuracy of gravity solvers



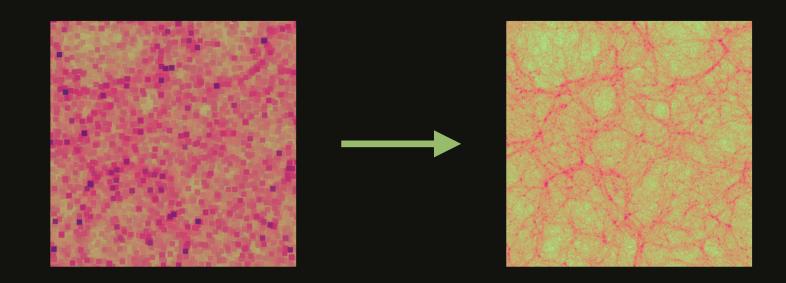
Learning corrections

painting tSZ on gravity-only halos



Scaling up

• (ML) accelerated simulations

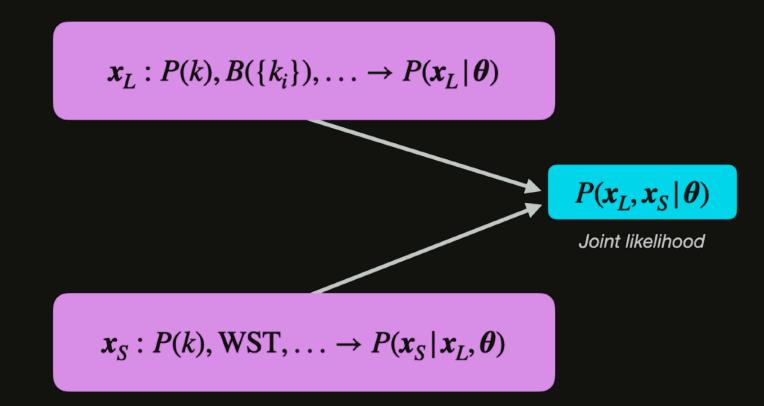


• "painting" into simulations [gas, galaxies, ...]

sequential inference

0.6 - round 1, 2000 sims round 2, 2000 sims round 3, 2000 sims round 4, 2000 sims round 5, 5000 sims round 6, 5000 sims round 7, 5000 sims round 9, 7500 sims round 9, 7500 sims

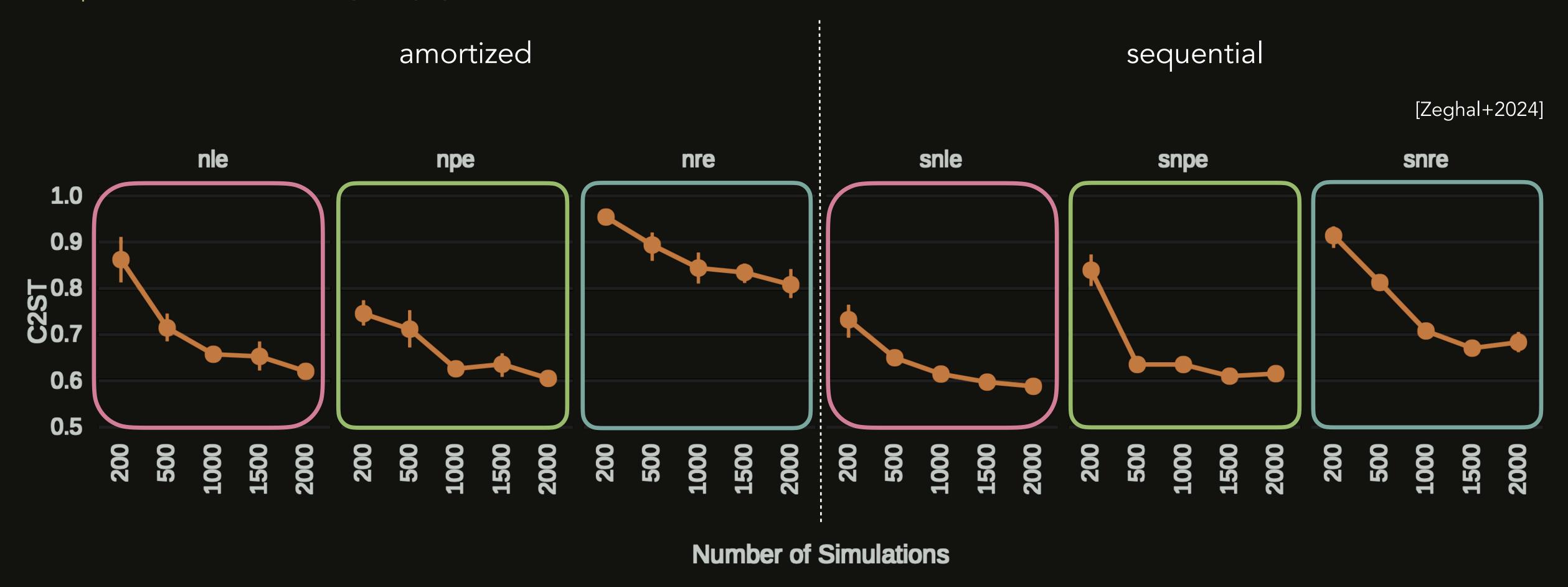
hybrid analytic & SBI



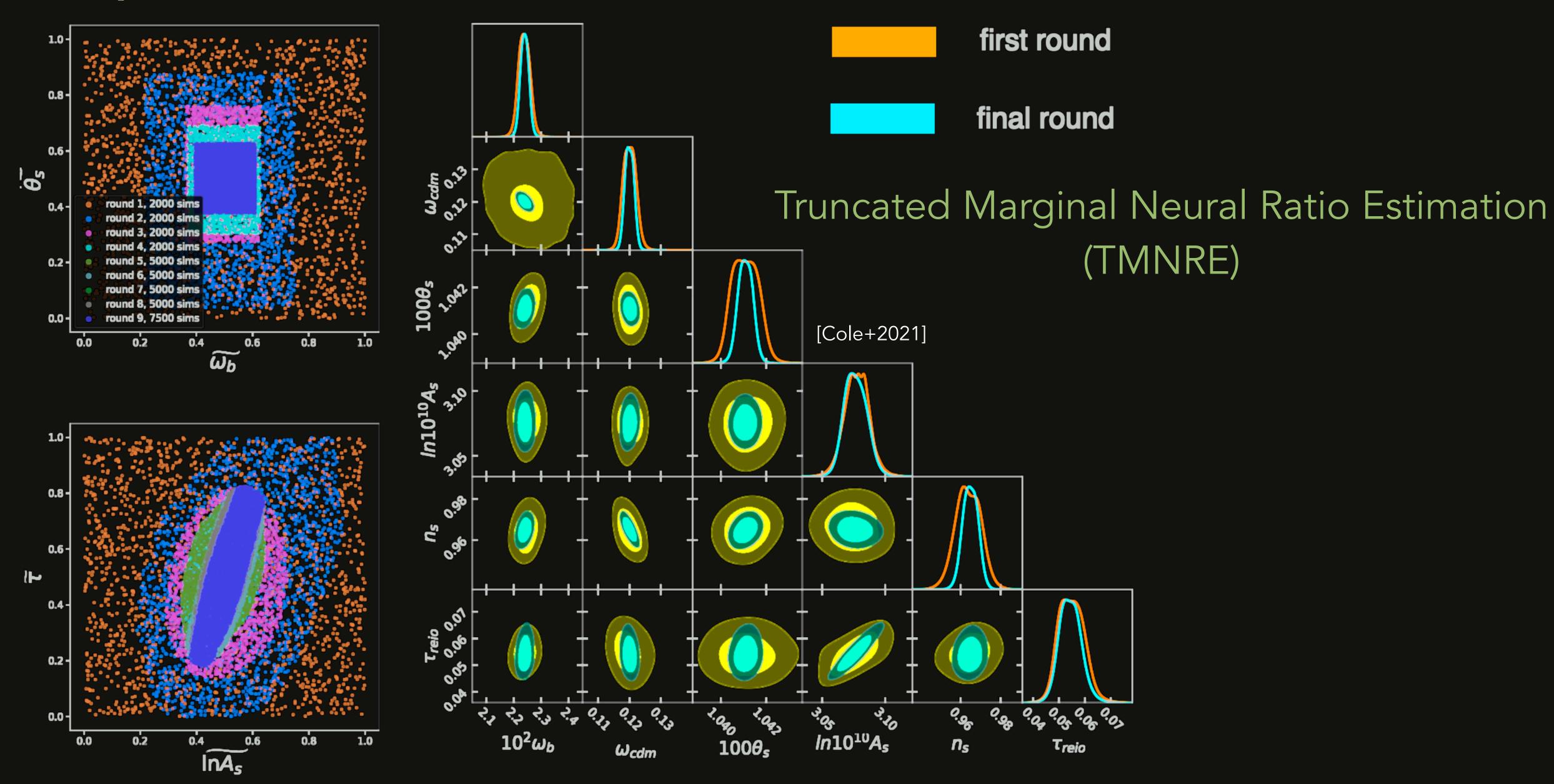
multi-fidelity

Sequential inference

representation learning only gets us so far...



Sequential inference



Hybrid ILI

$$P_{L}(k)$$

$$+$$

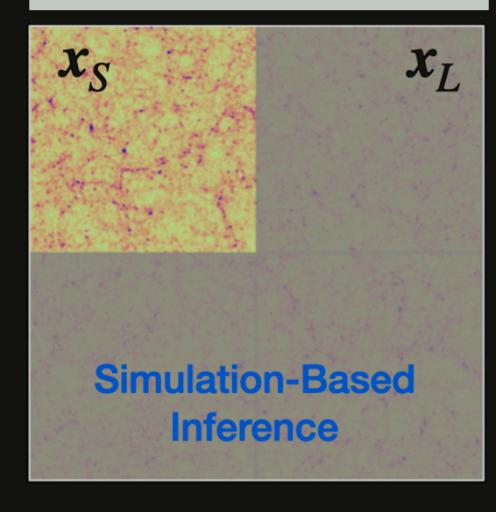
$$2\int \frac{d\mathbf{p}}{(2\pi)^{3}} \left| F_{2}(\mathbf{p}, \mathbf{k} - \mathbf{p}) \right|^{2} P_{L}(p) P_{L}(|\mathbf{k} - \mathbf{p}|)$$

$$+$$

$$6\int \frac{d\mathbf{p}}{(2\pi)^{3}} F_{3}(\mathbf{p}, -\mathbf{p}, \mathbf{k}) P_{L}(p) P_{L}(k)$$

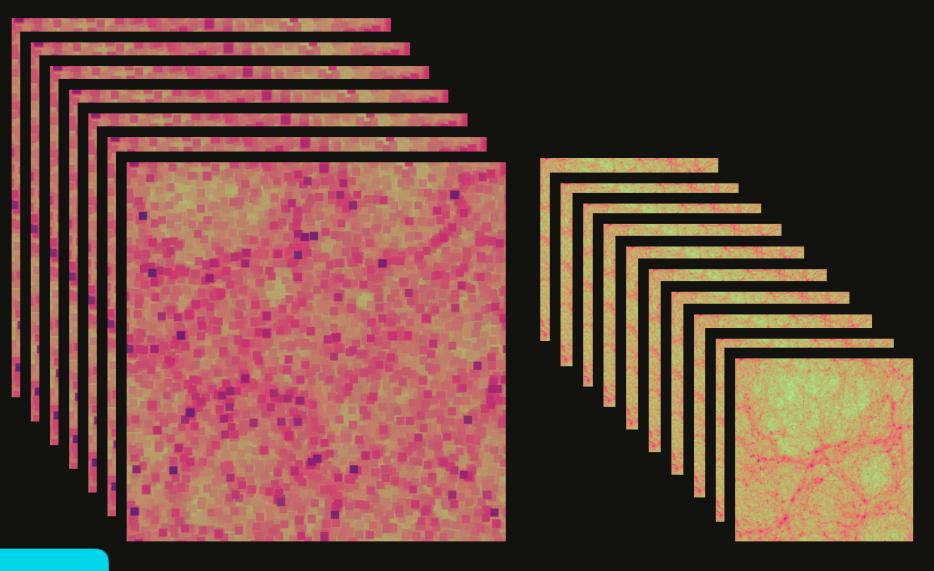
$$-$$

$$2c_{s}^{2}k^{2}P_{L}(k)$$
Perturbation Theory



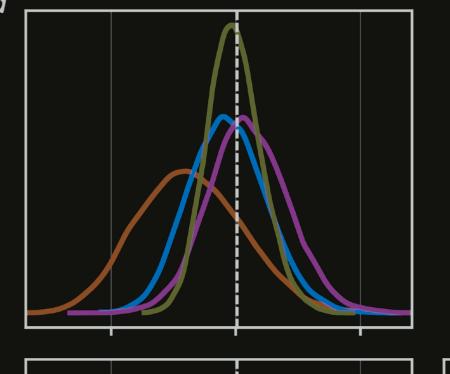
Large scales are modeled analytically

$$\mathbf{x}_L: P(k), B(\{k_i\}), \ldots \rightarrow P(\mathbf{x}_L | \boldsymbol{\theta})$$



 $P(x_L, x_S | \boldsymbol{\theta})$

Joint likelihood



 Ω_m

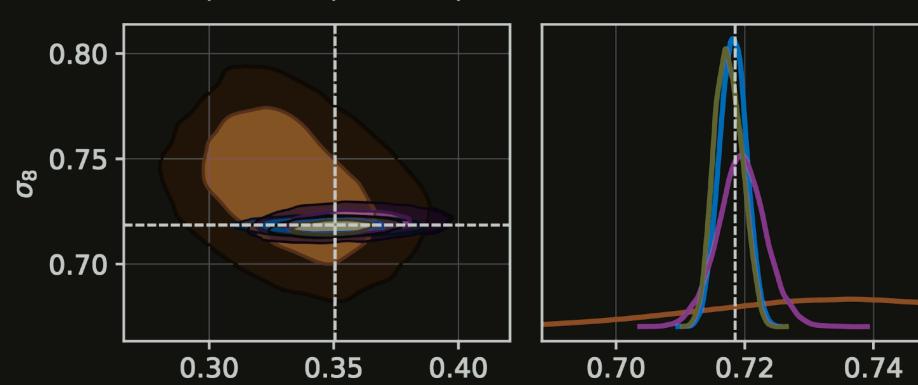
— HySBI Wavelets

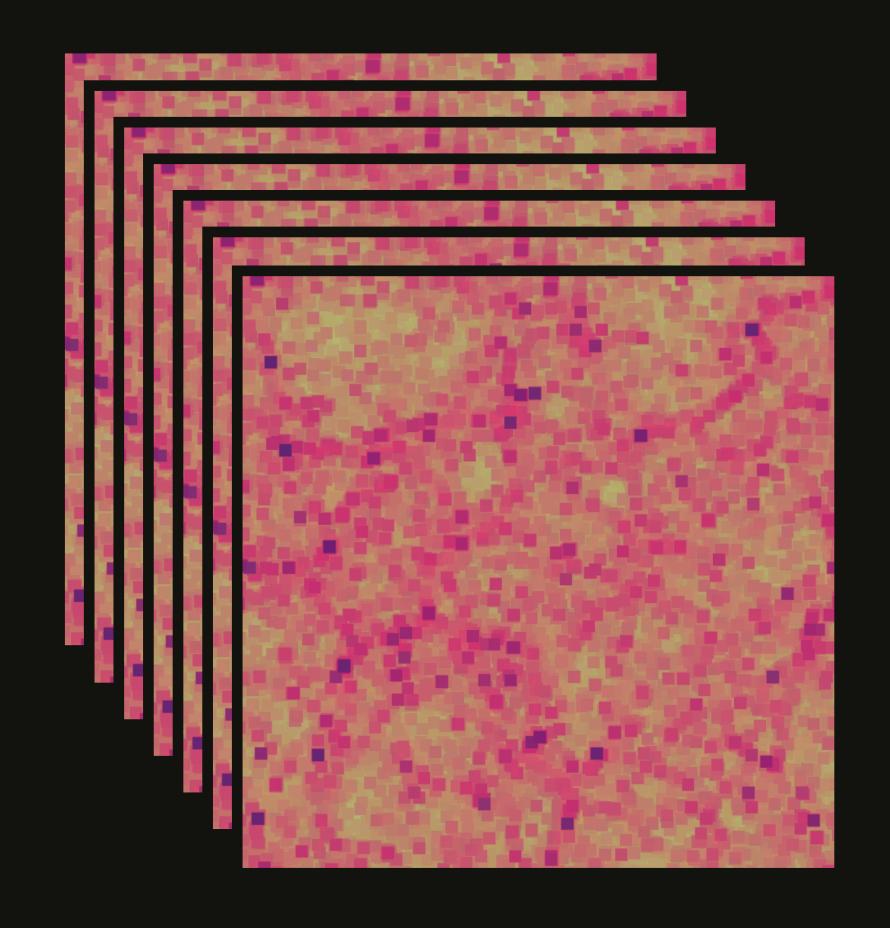
 σ_8

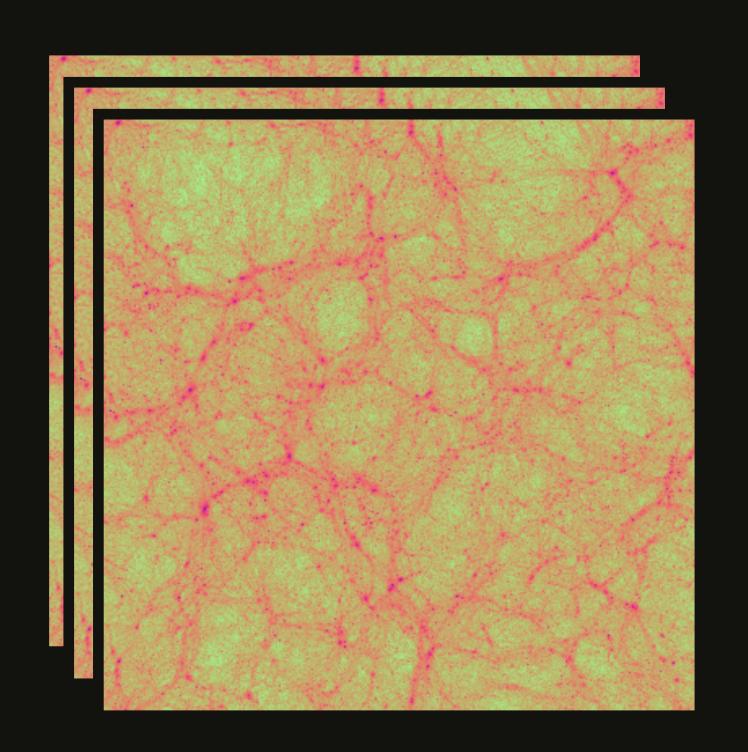
Small scales are modeled numerically

 $x_S: P(k), \text{WST}, \ldots \rightarrow P(x_S | x_L, \theta)$

[Modi & Philcox 2023]





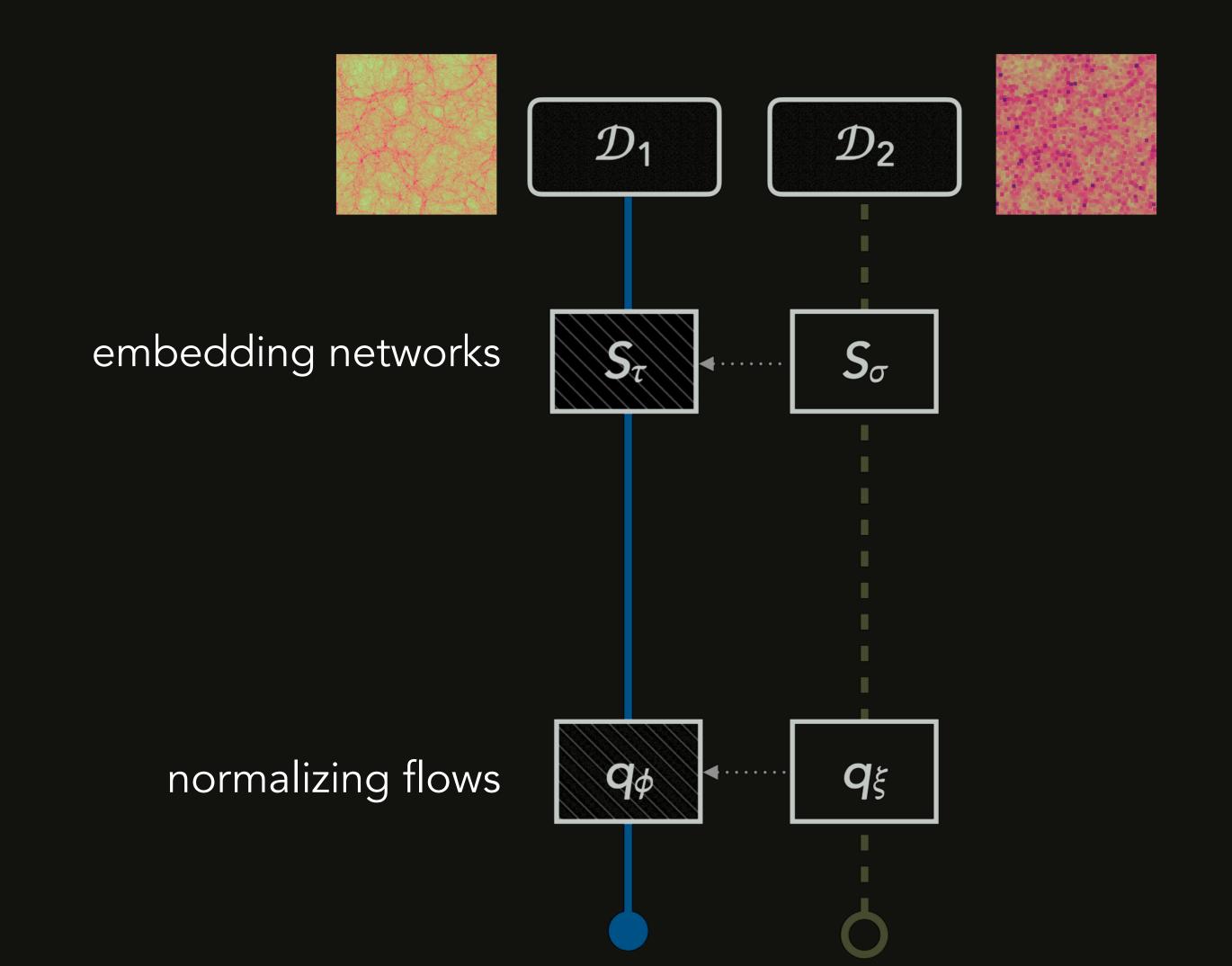


tiny low-fidelity set(s) e.g., hydrodynamic

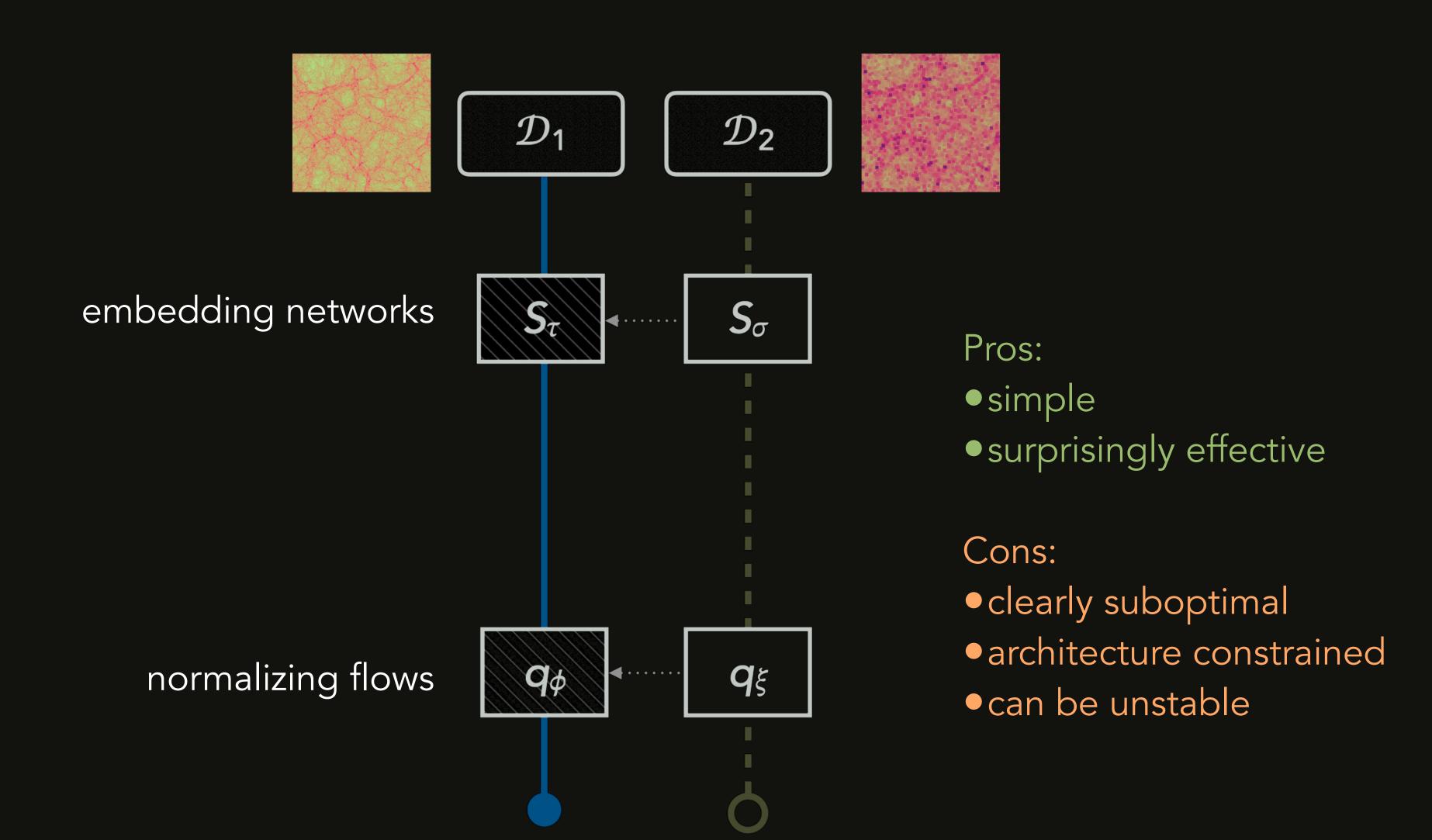
large low-fidelity set(s) e.g., linear theory + 2LPT + particle-mesh + tree + HOD + SAM

[LT, A.Bayer, N.Takeishi 2025]

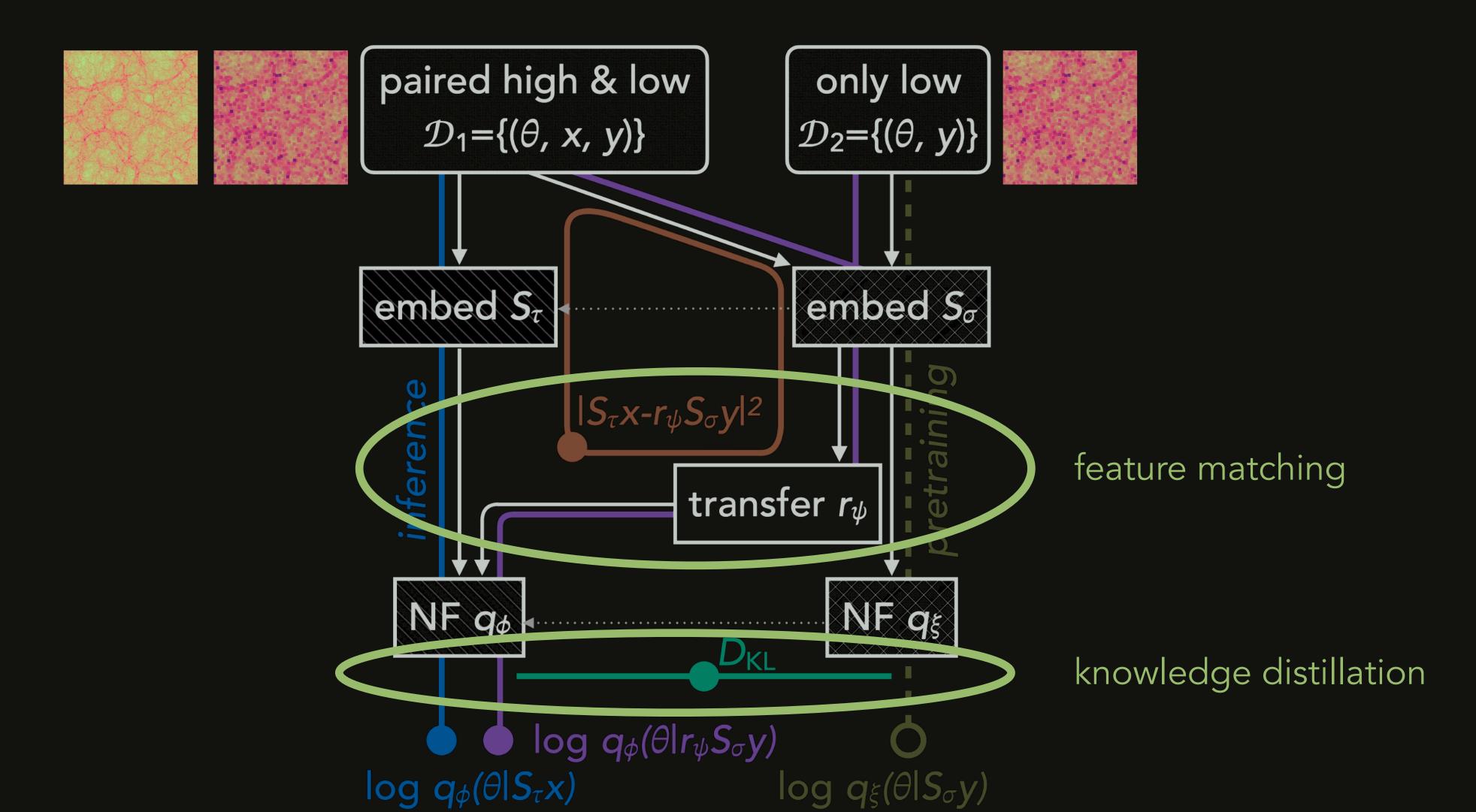
simplest idea: transfer learning via weight initialization



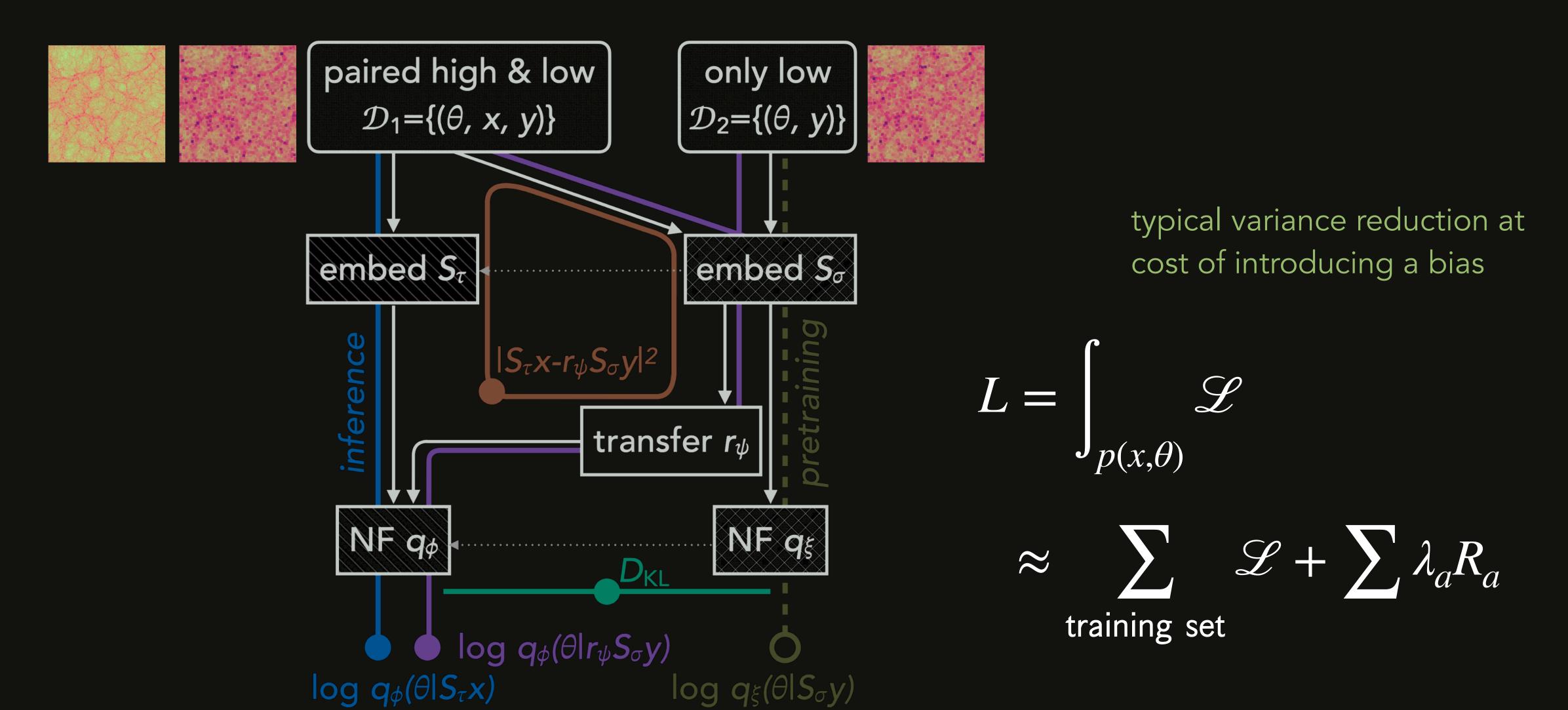
simplest idea: transfer learning via weight initialization



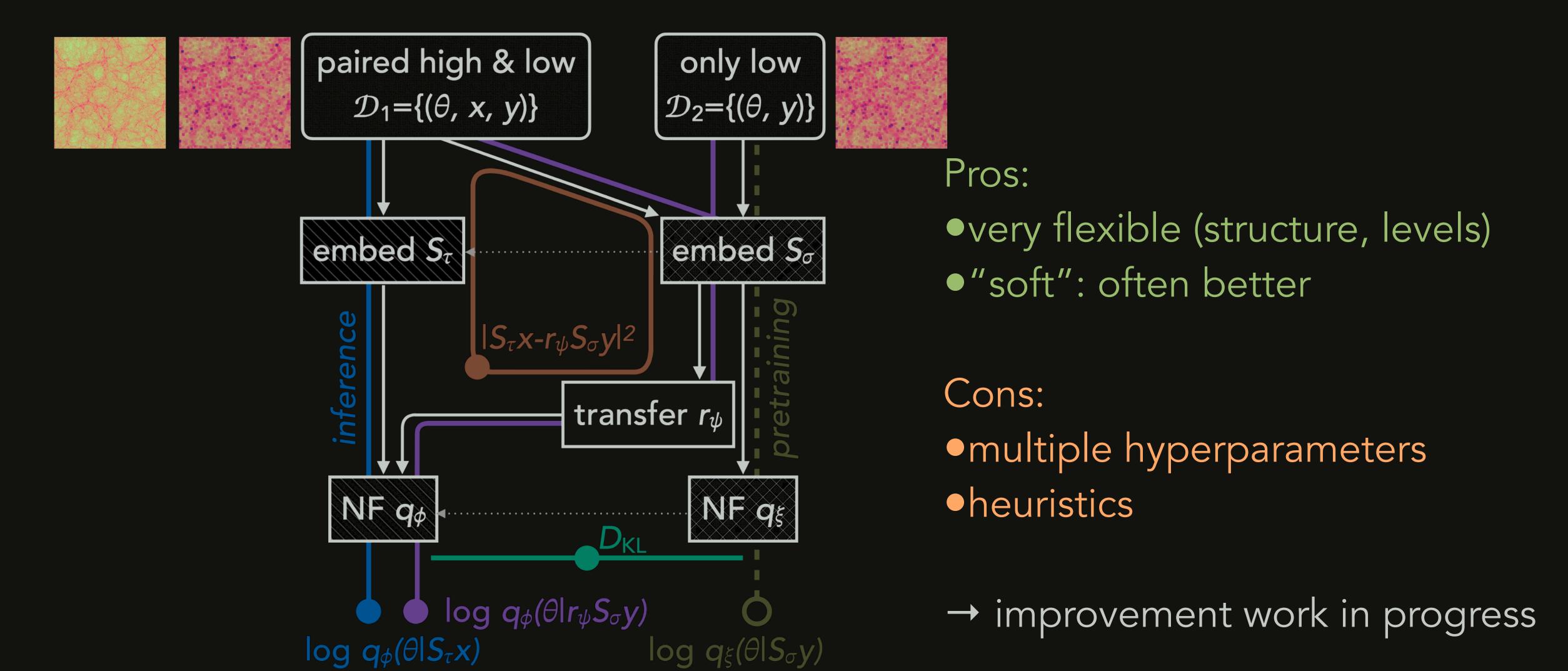
improvement: feature matching & knowledge distillation



improvement: feature matching & knowledge distillation

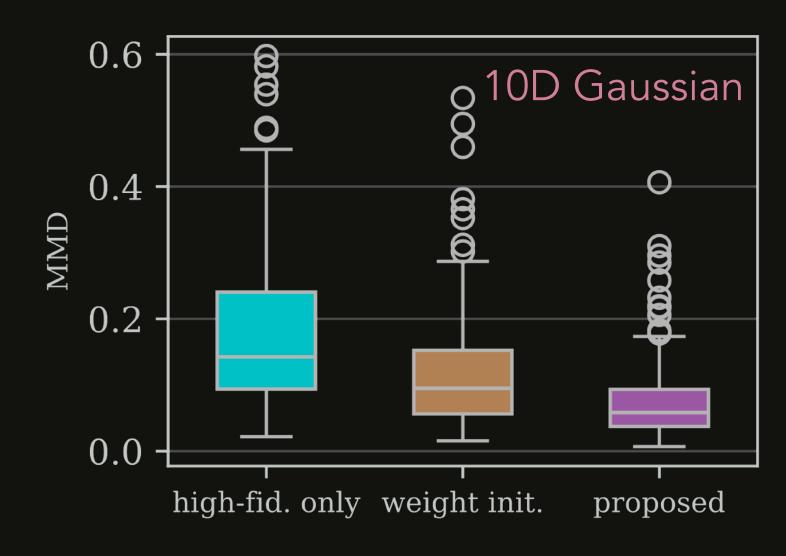


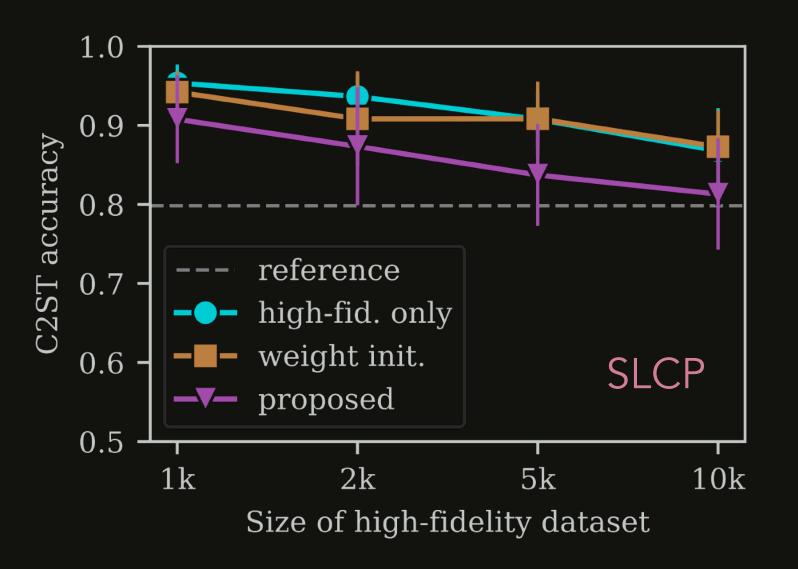
improvement: feature matching & knowledge distillation



Multi-fidelity: results

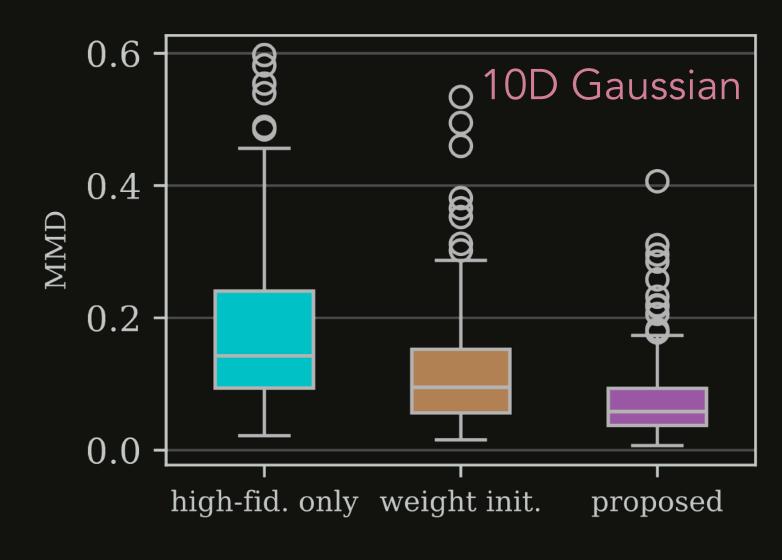
synthetic examples (lower is better for all)

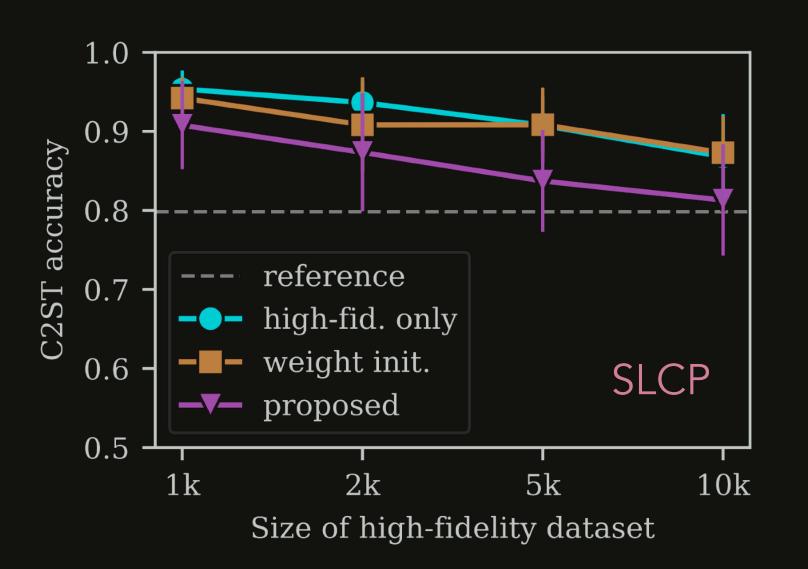




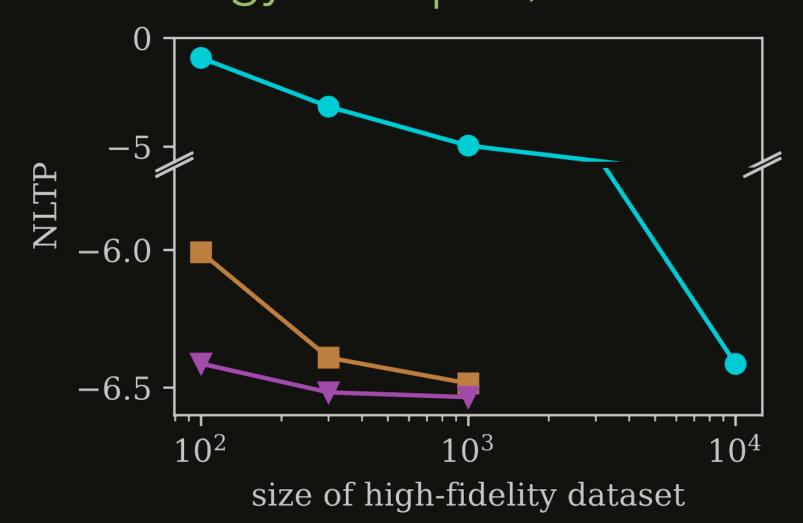
Multi-fidelity: results

synthetic examples (lower is better for all)

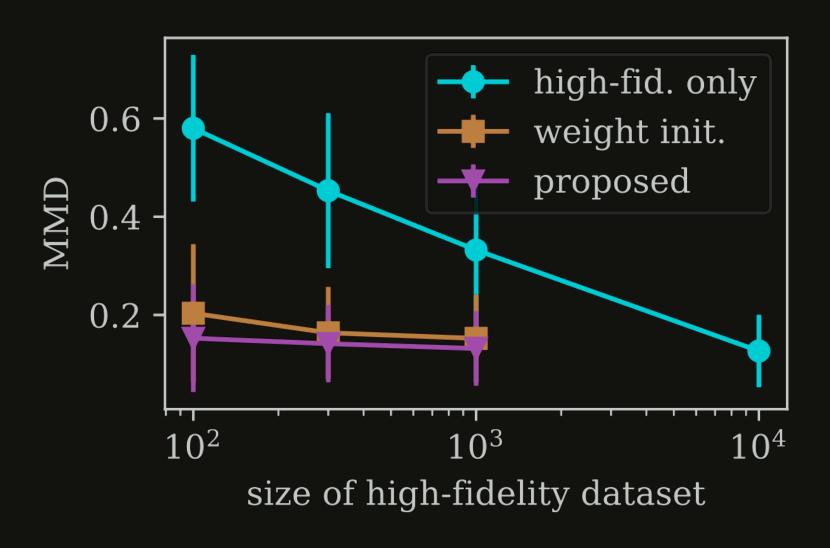




cosmology example (lower is better for all)



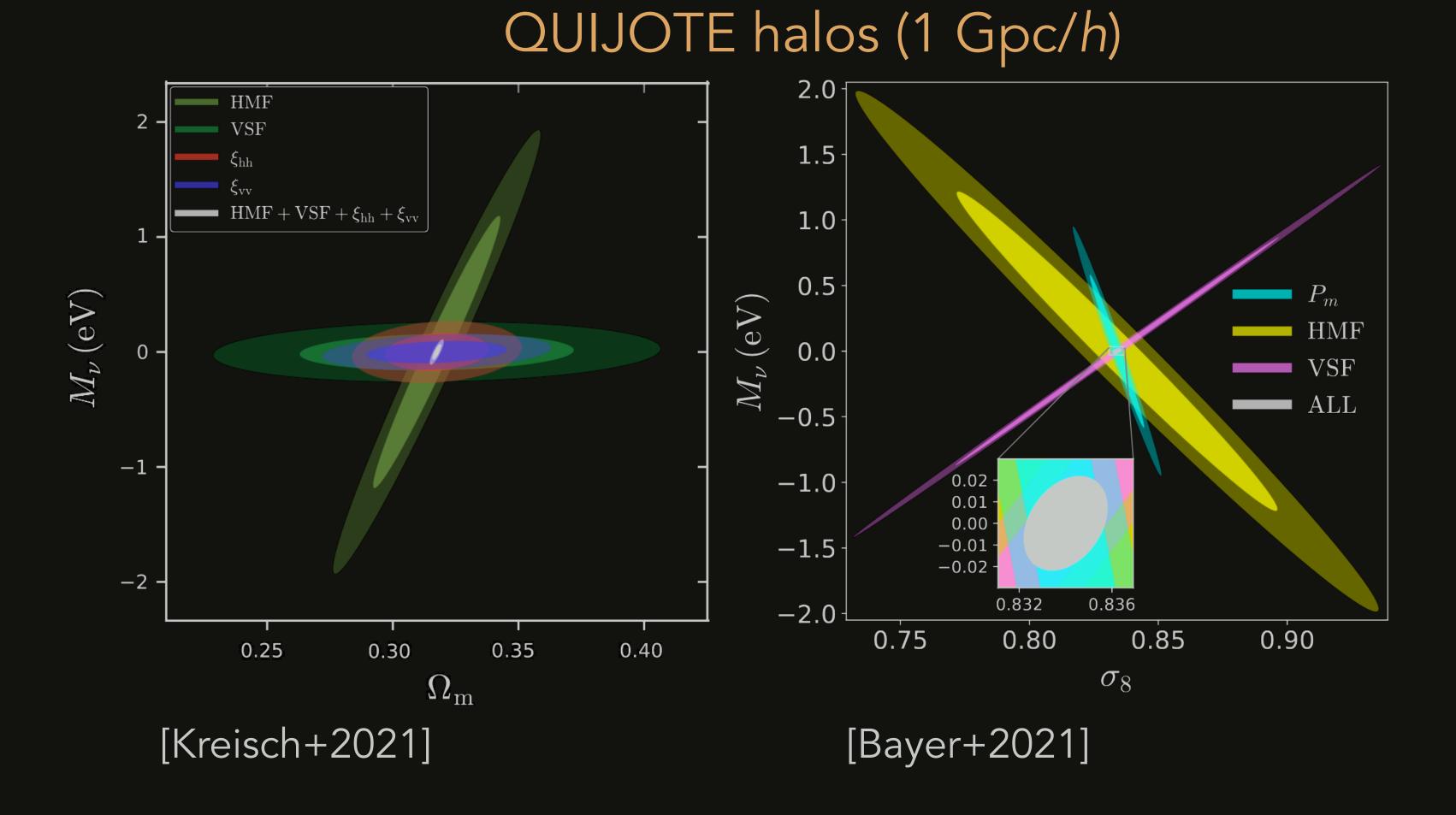




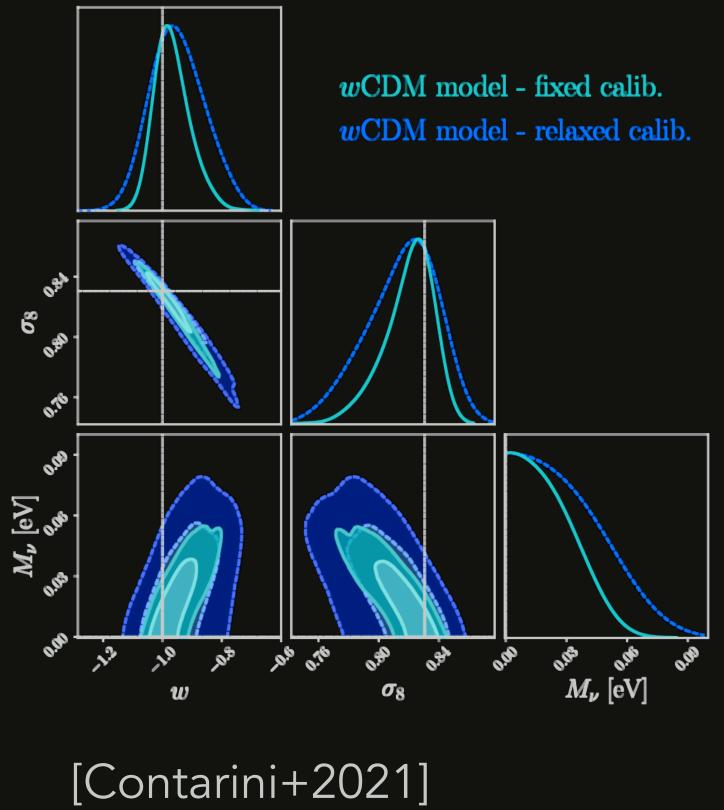
Summary

- Simulation-based inference = machine learning method to solve inverse problems defined implicitly through a simulator
- Simulation-based inference has proven viability in simple examples:
 - weak lensing (e.g., HSC Y1)
 - galaxy clustering (e.g., SDSS CMASS)
- In order to make it a standard tool, need to increase simulation quality while reducing training cost
 - sequential methods
 - learning corrections
 - combine with traditional approaches for large scales
 - multi-fidelity training
- Have demonstrated a regularization method towards multi-fidelity training

Voids & Neutrino Mass: Forecasts



"Euclid" spec-z galaxies



→ take this to real data from BOSS, including complications from galaxy formation & survey systematics

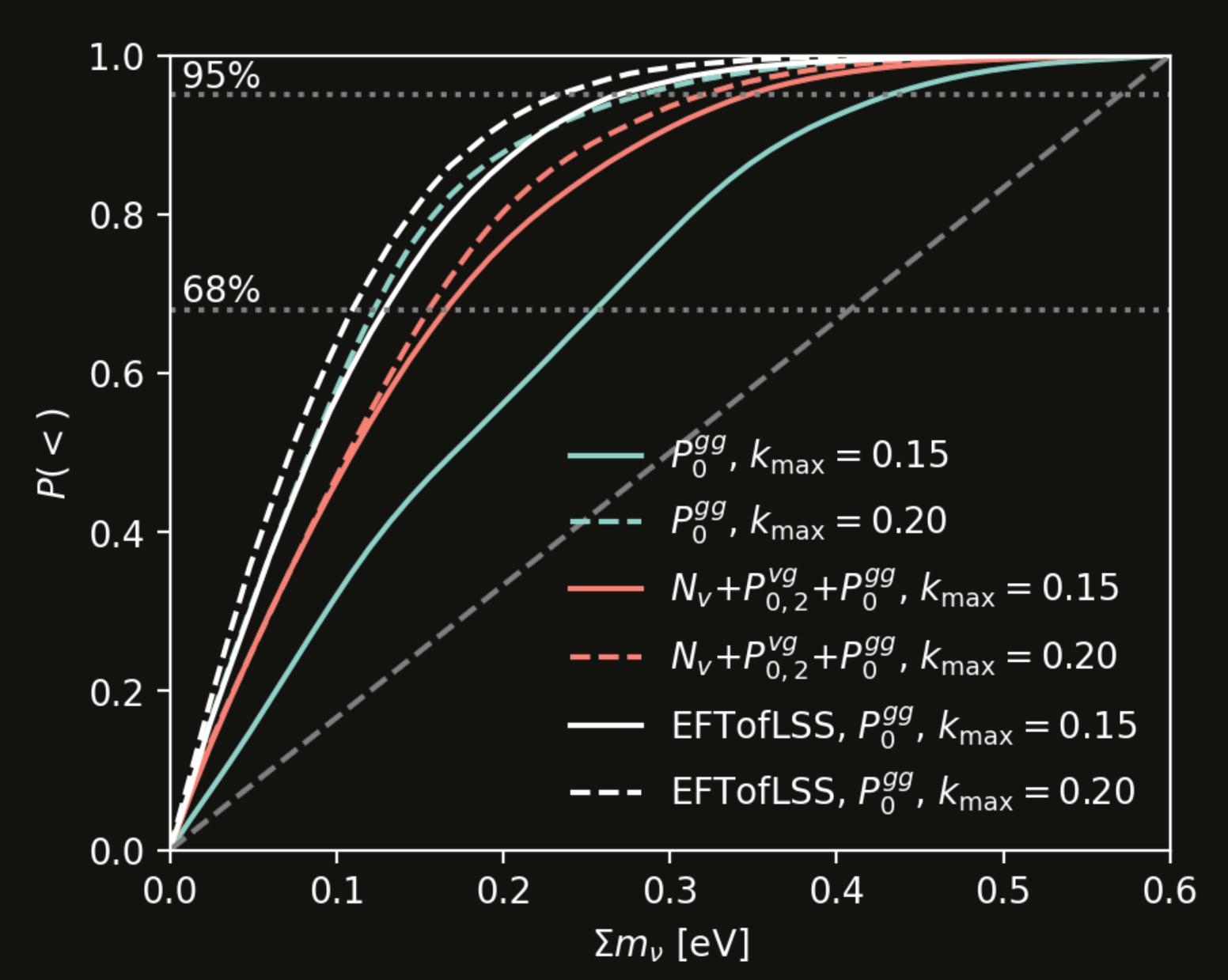
Comparison to EFTofLSS

• EFT possible issues:

- prior dependence, volume effects
- small scales
- redshift evolution?

• our possible issues:

- prior dependence, volume effects
- approximate simulations
- "augmentations"



Neural ratio estimation

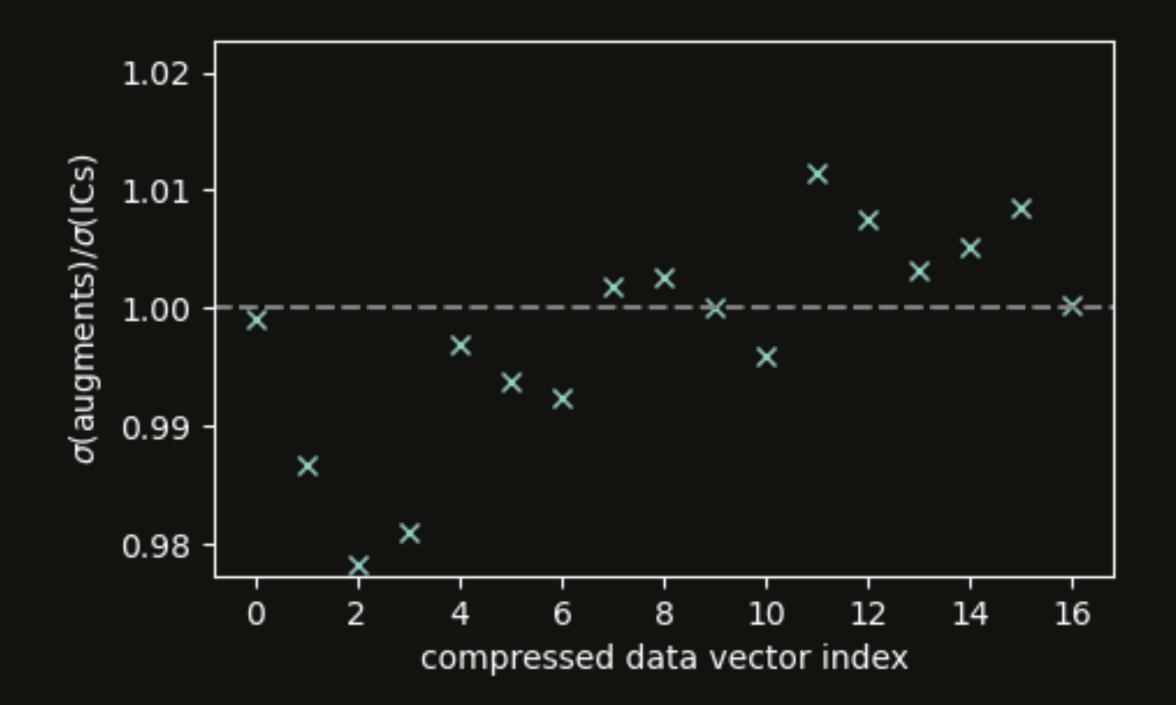
$$P(\text{parameters} \mid \text{data}) = \frac{P(\text{data} \mid \text{parameters}) \quad P(\text{parameters})}{P(\text{data})}$$

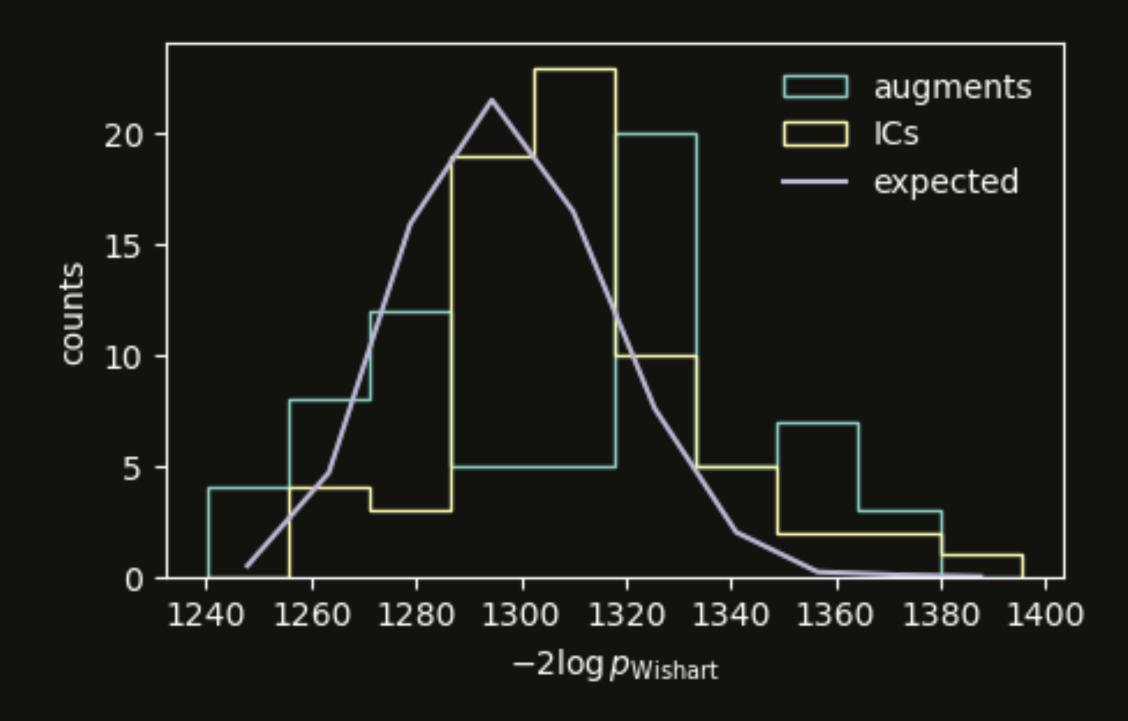
- draw θ , θ' ~ P(parameters)
- simulate $x_{sim} \sim P(data \mid \theta)$ [drawing η, ζ]
- evaluate neural net: $y=f(x_{sim}, \theta)$, $y'=f(x_{sim}, \theta')$
- classification loss, e.g. $\mathcal{L} = -\log(y) \log(1-y')$
- train $f^* = \operatorname{argmin} \int D\theta D\theta' Dx_{\text{sim}} \mathcal{L}$
- $\rightarrow P(x \mid \theta) / P(x) = f^*(x, \theta) / [1 f^*(x, \theta)]$

- any simulatable effect can be incorporated
- rephrase as classification
 problem → sophisticated
 machinery exists
- no formal difference between nuisance parameters and initial conditions

Augmentations

- cosmo-varied simulations have same random seed
- can generate quasi-independent realizations from single simulation
- how independent? Check with fiducial simulations





Putting galaxies in the simulations

Using halo occupation distribution, tuned on preliminary tests with QUIJOTE sims and data.

Standard 5-dim HOD plus

- velocity biases
- linear redshift evolution
- secondary/assembly bias based on T/U
- = 11-dim in total

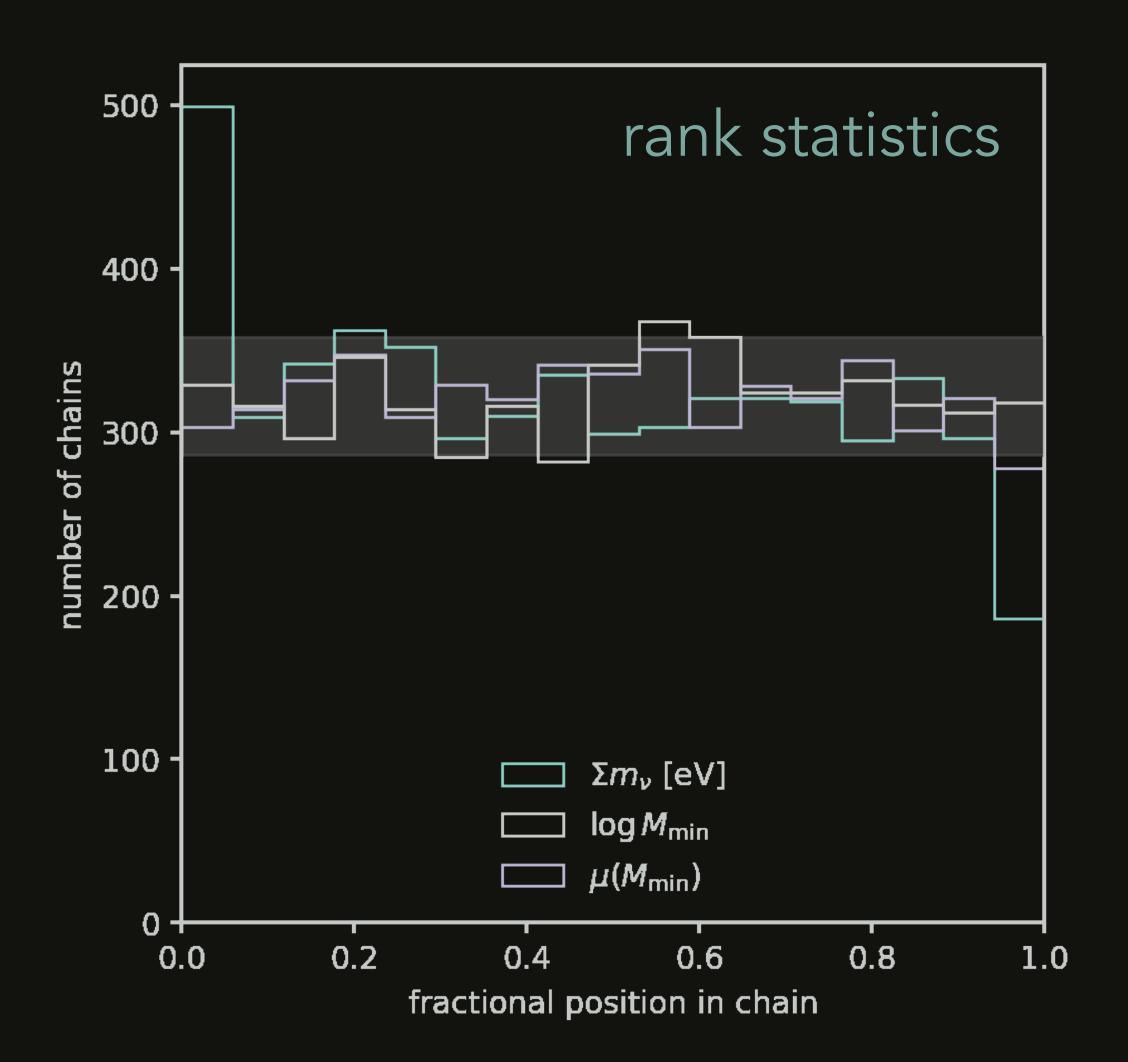
Likely not ideal!

Project on lightcone and implement survey realism

- mask
- fiber collisions
- n(z)

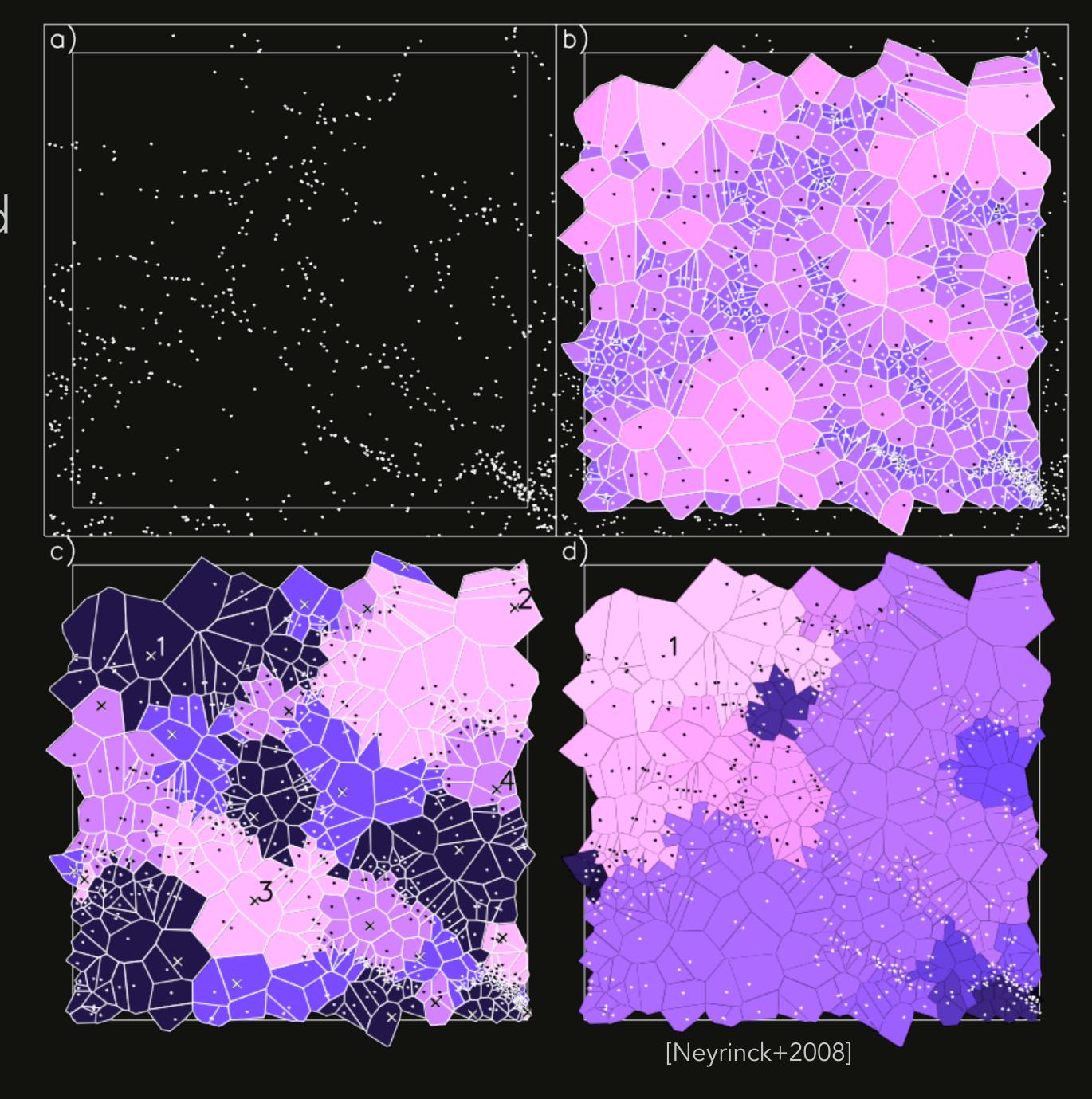
Check internal consistency

test posterior calibration by running inference on mocks from prior

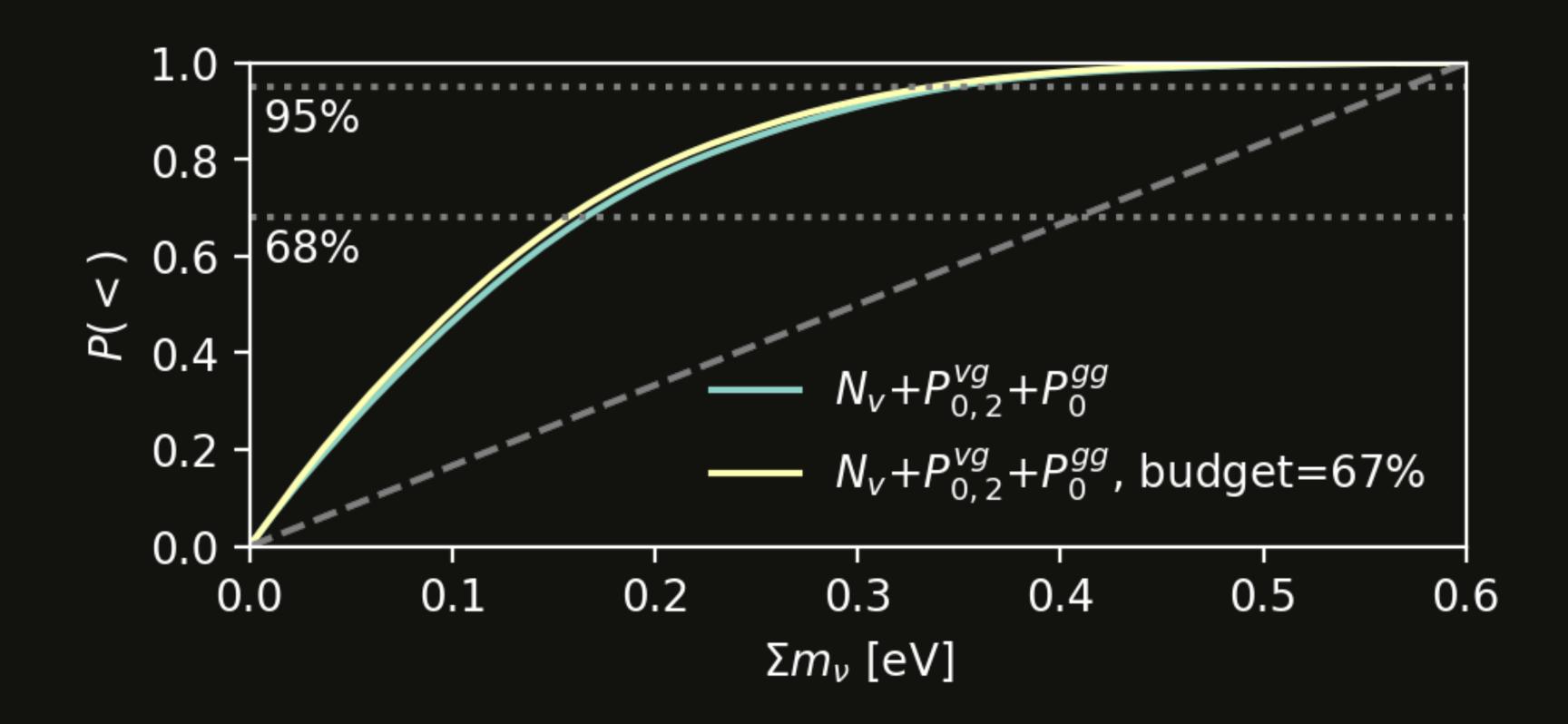


Void finding

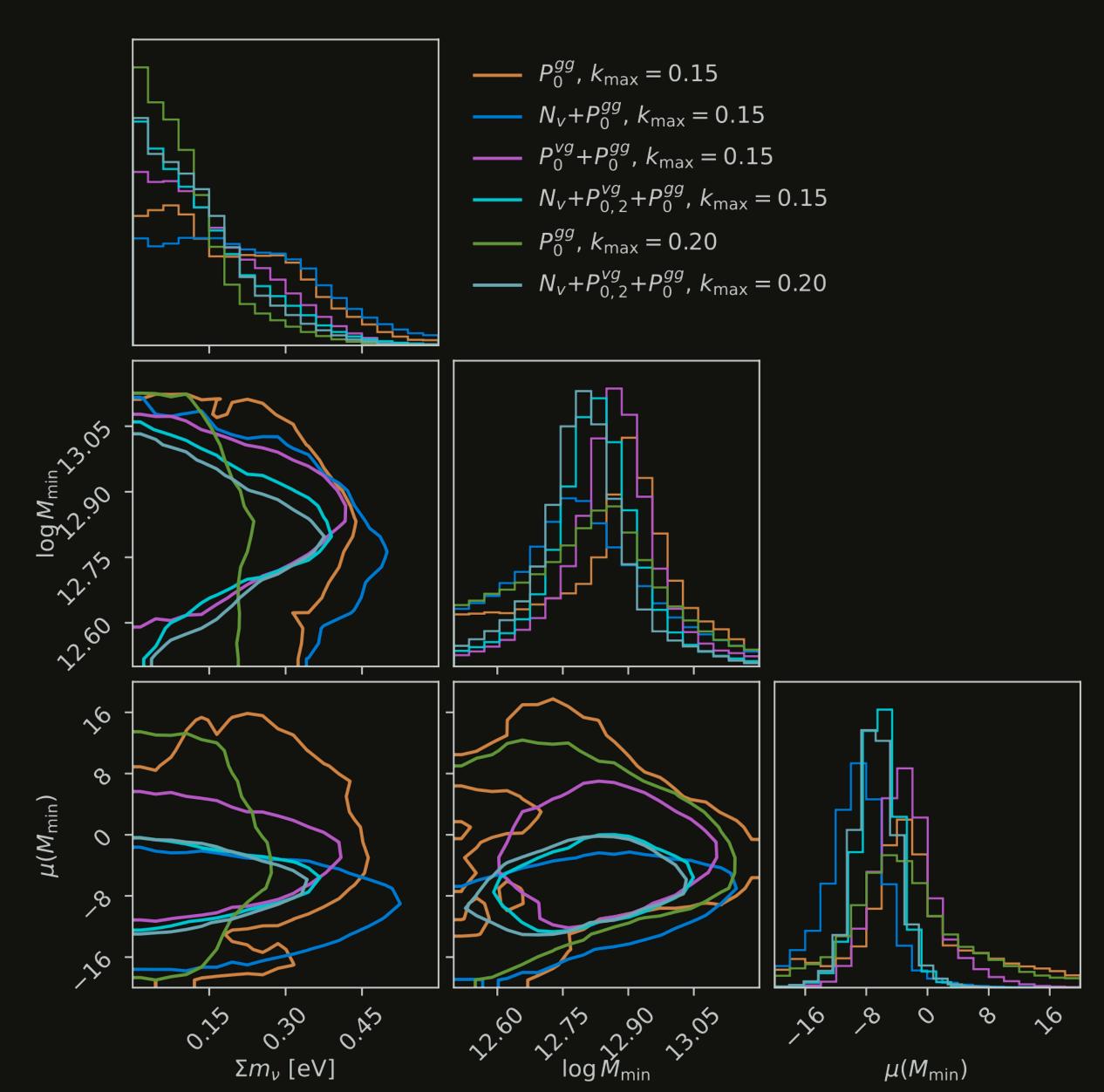
- currently no universally accepted void definition
- simulation based analysis → can choose without biasing
- ZOBOV/VIDE → Voronoi tesselation



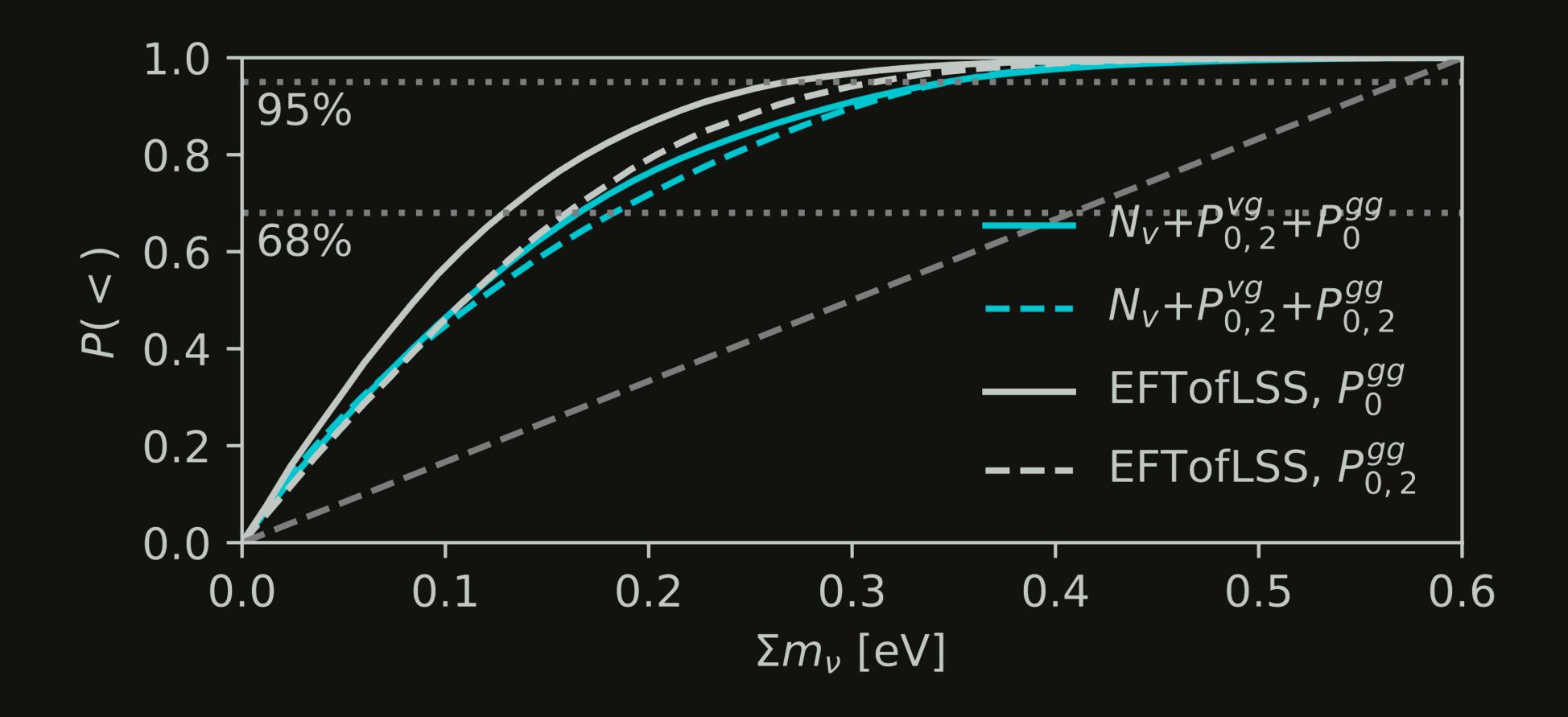
Simulation budget



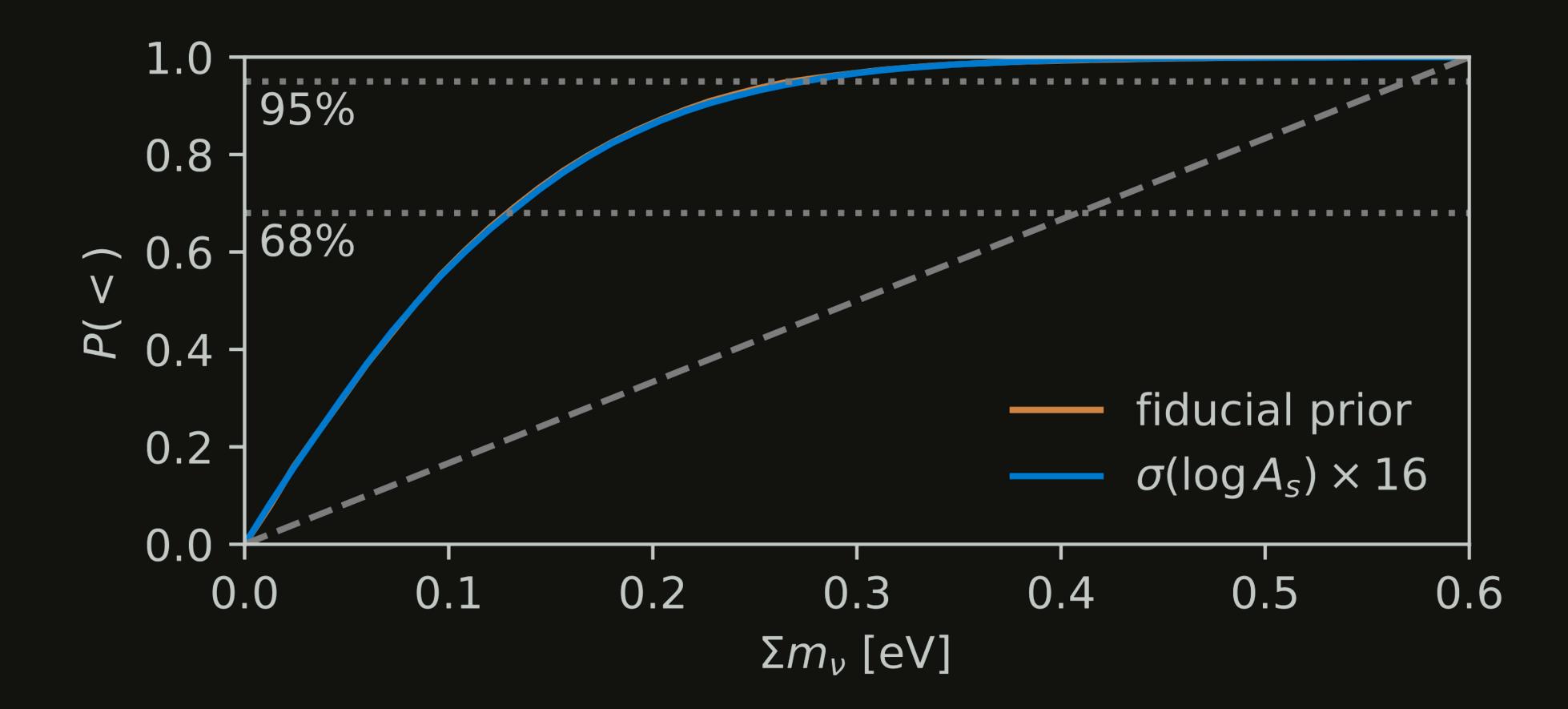
Full posterior



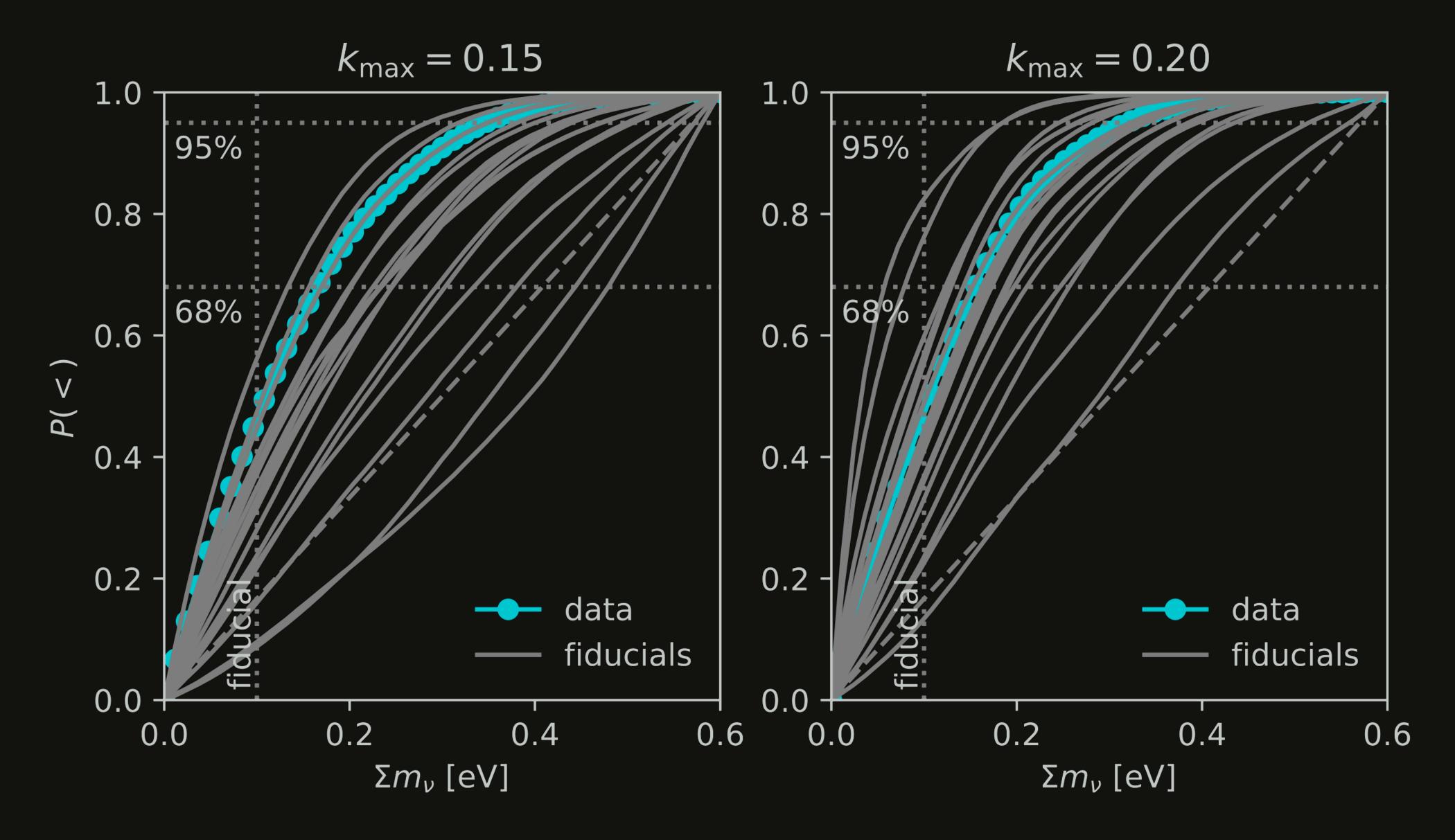
Adding quadrupole



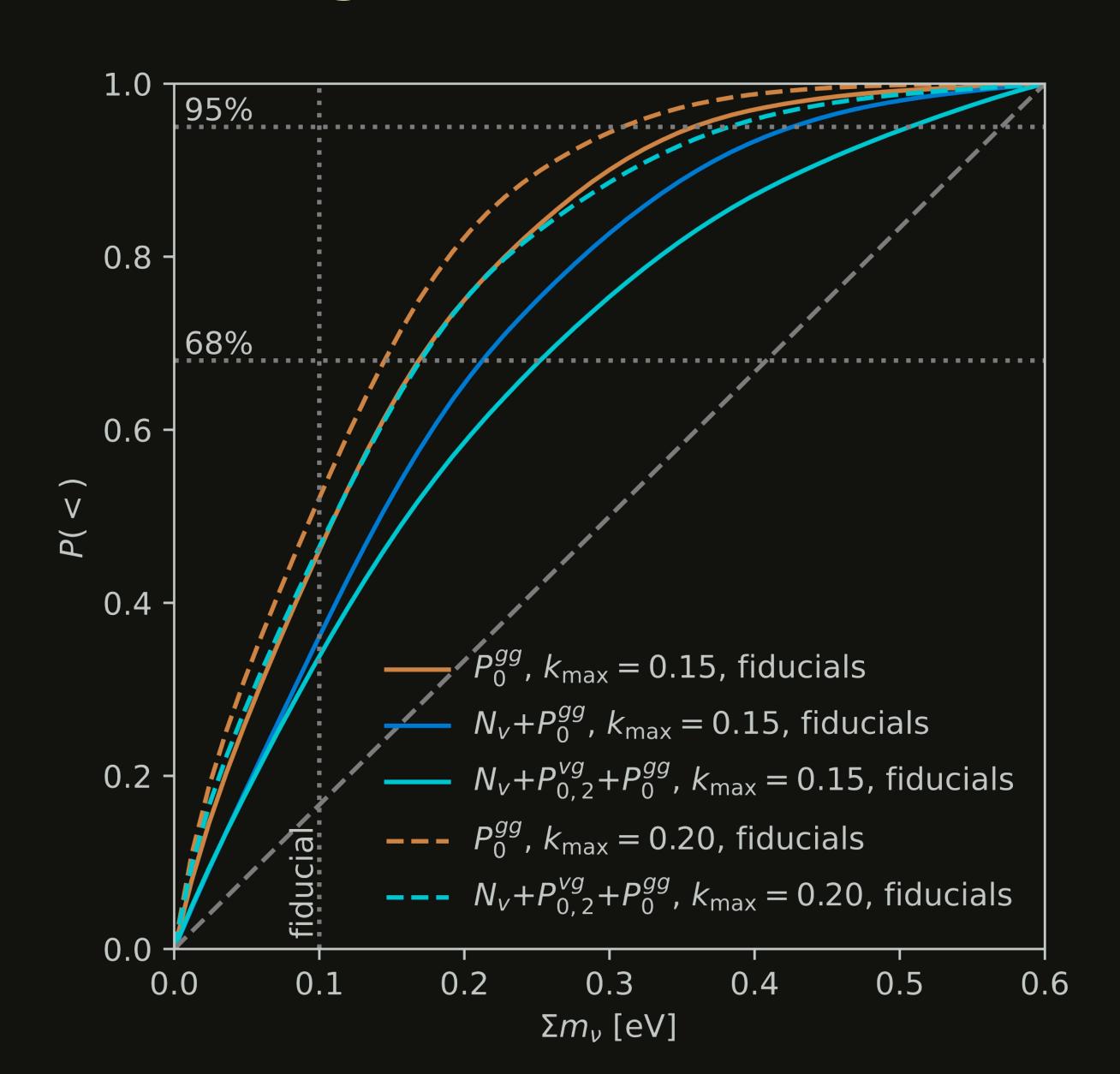
A_s prior



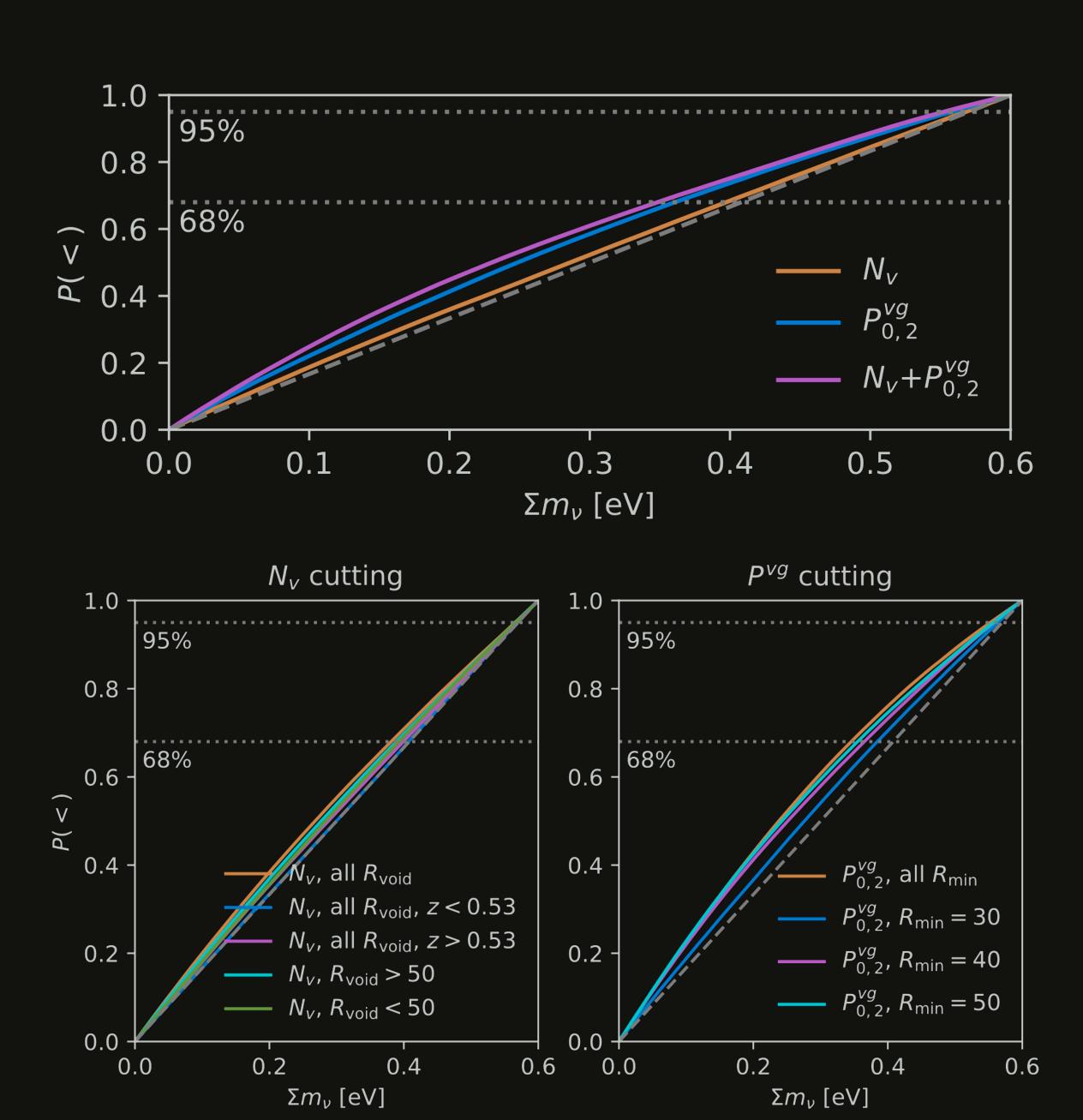
Compare to posteriors on fiducial mocks



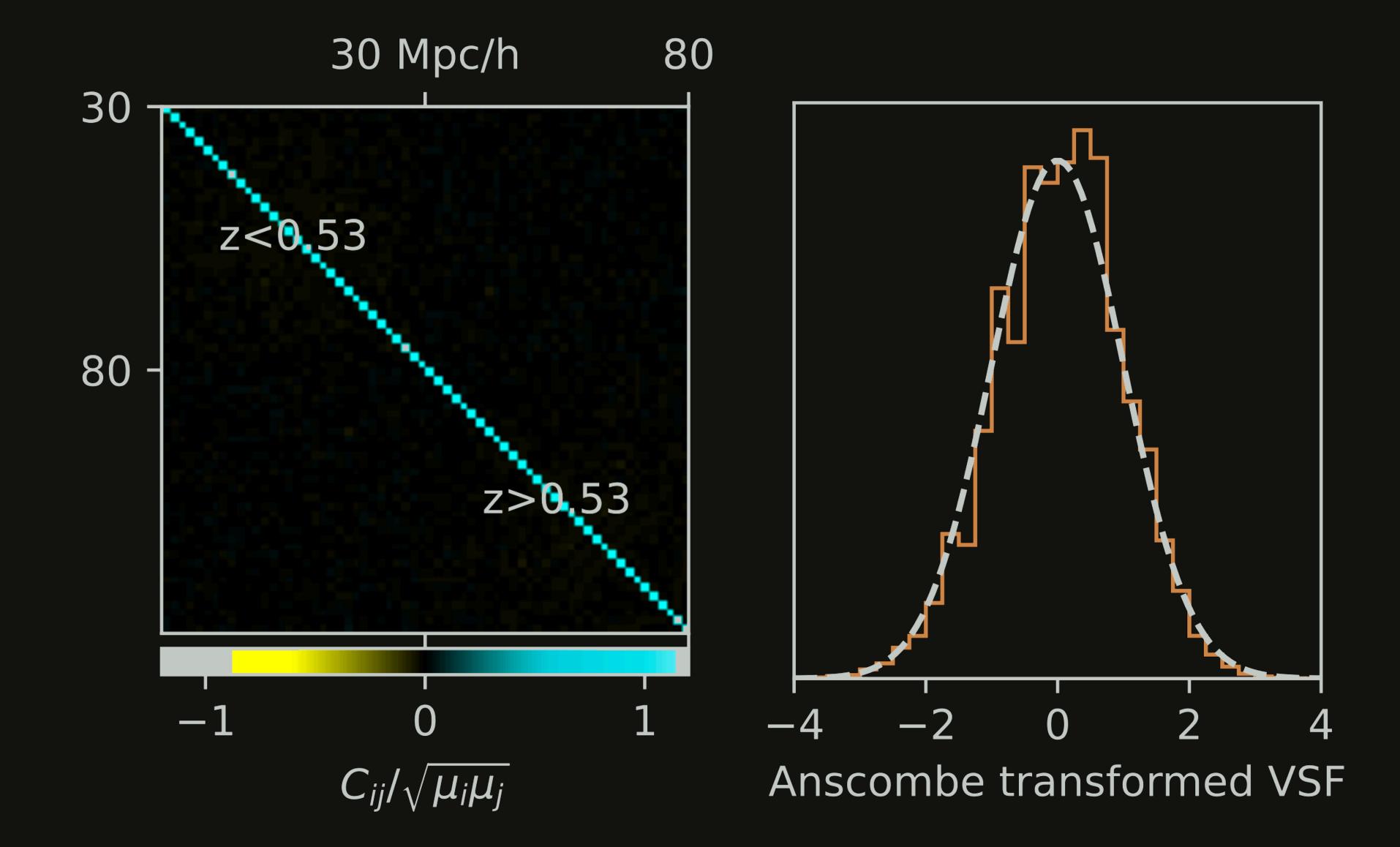
Posterior broadening



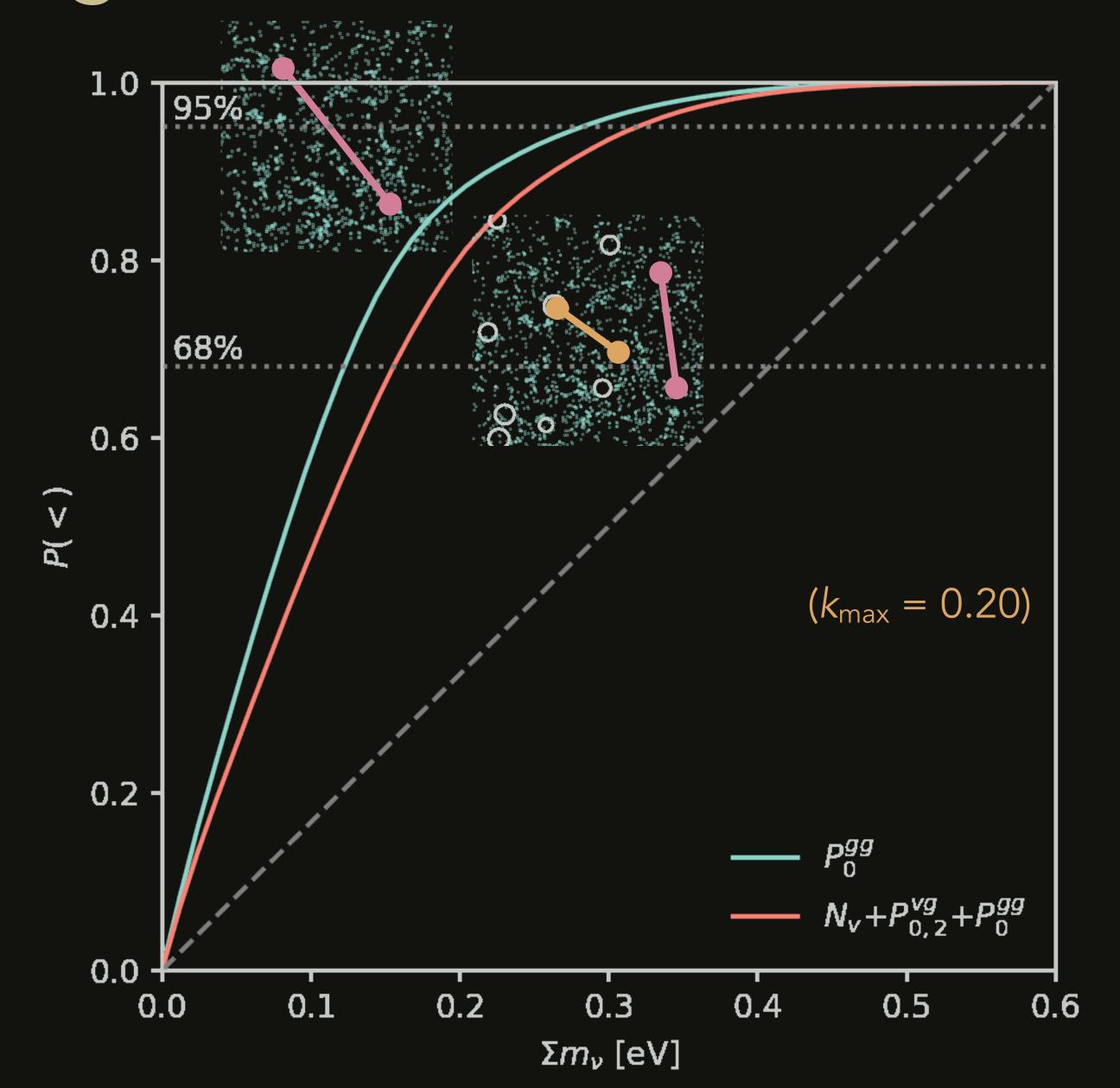
Voids only



Poisson void size function



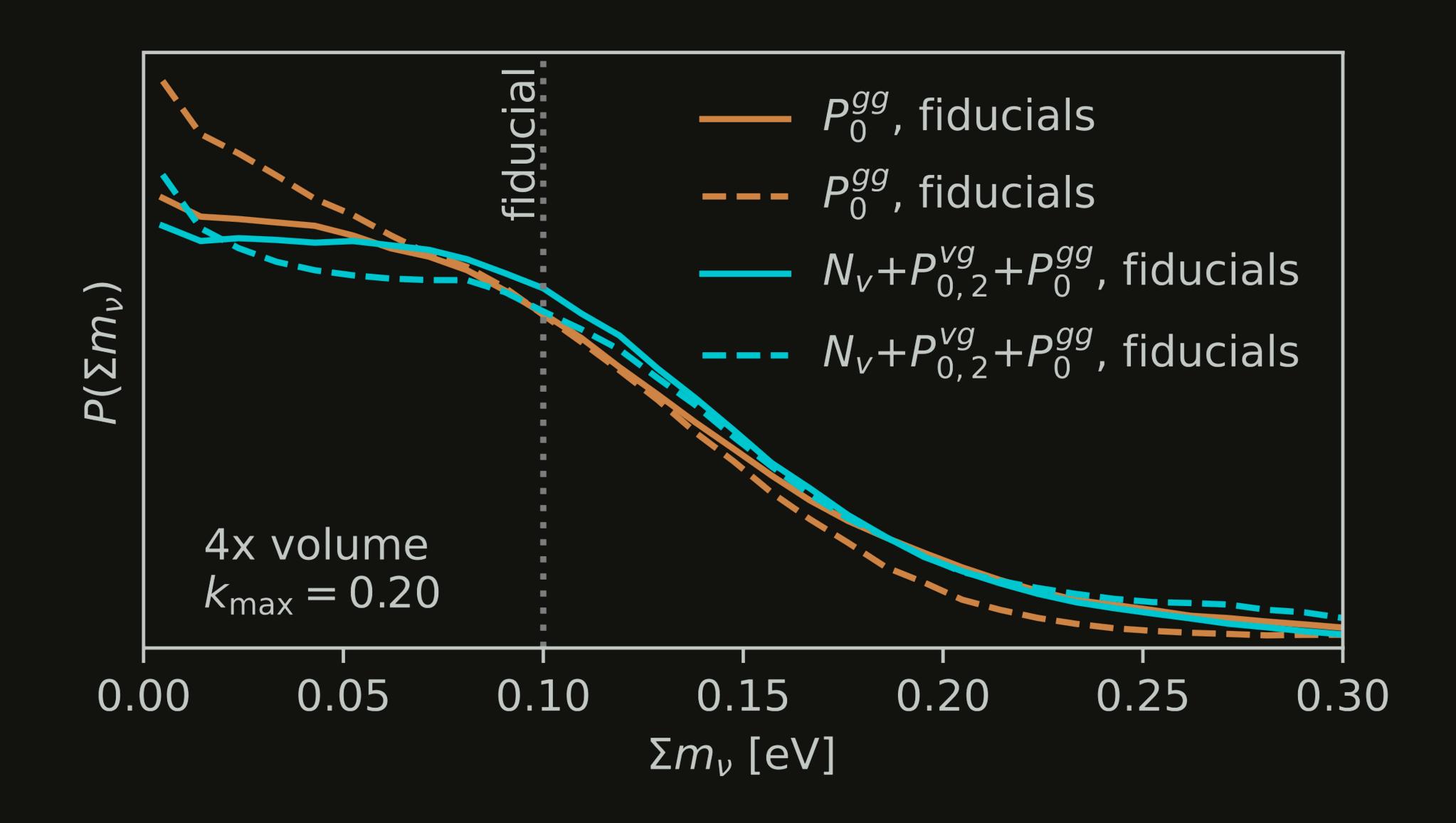
Including smaller scales



Situation reversed at $k_{\text{max}} = 0.2 \ h\text{Mpc}^{-1}$.

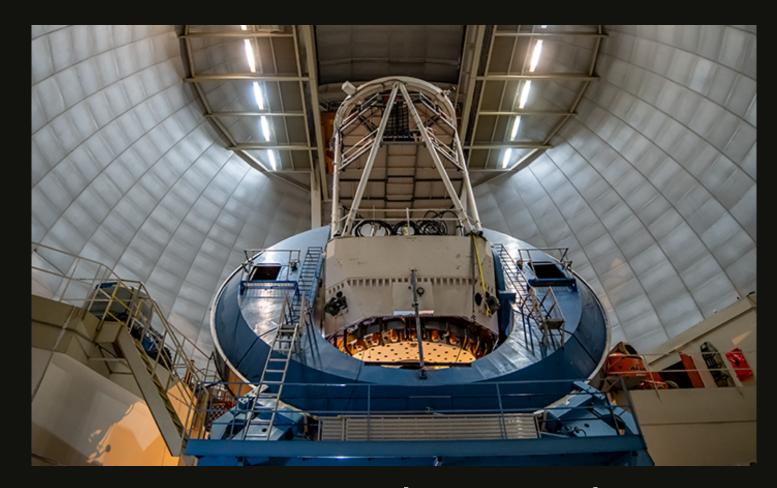
→ One-sided posteriors are different from Gaussian ones.

Larger volume, on mocks

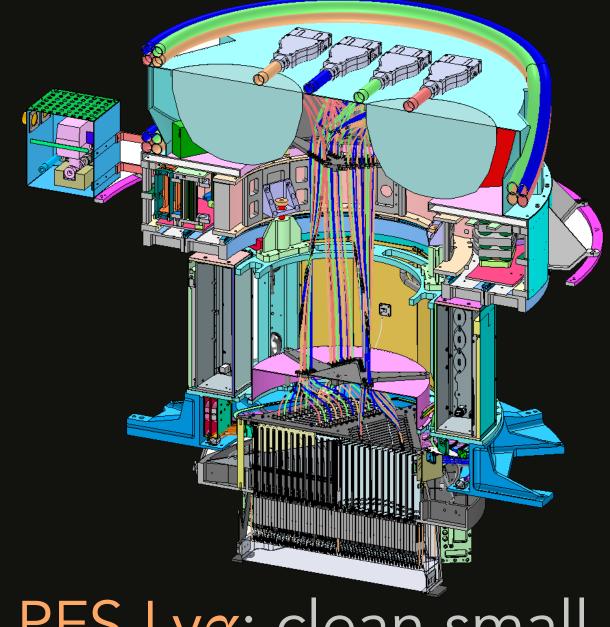


The future for voids

interplay between density contrast and number



DESI: supercharged BOSS

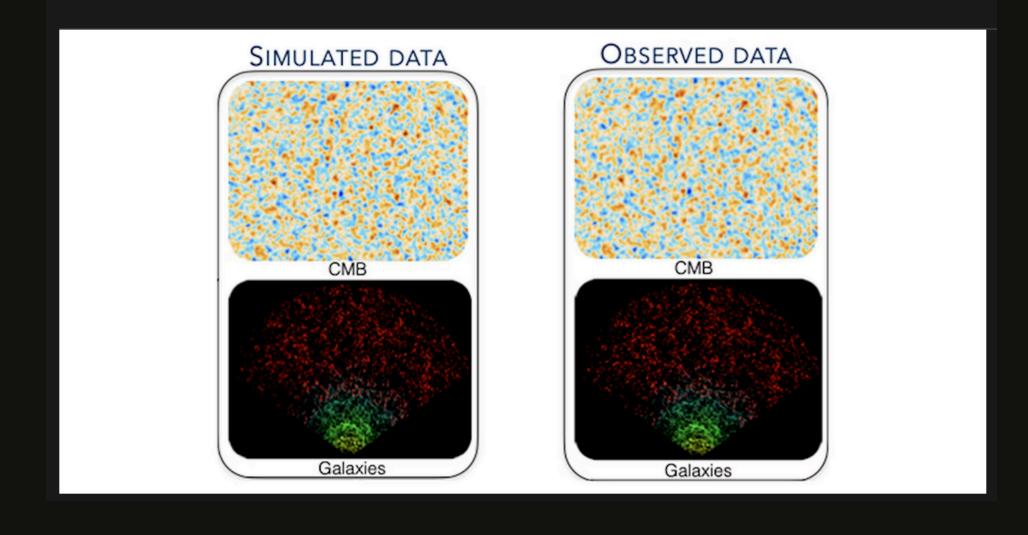


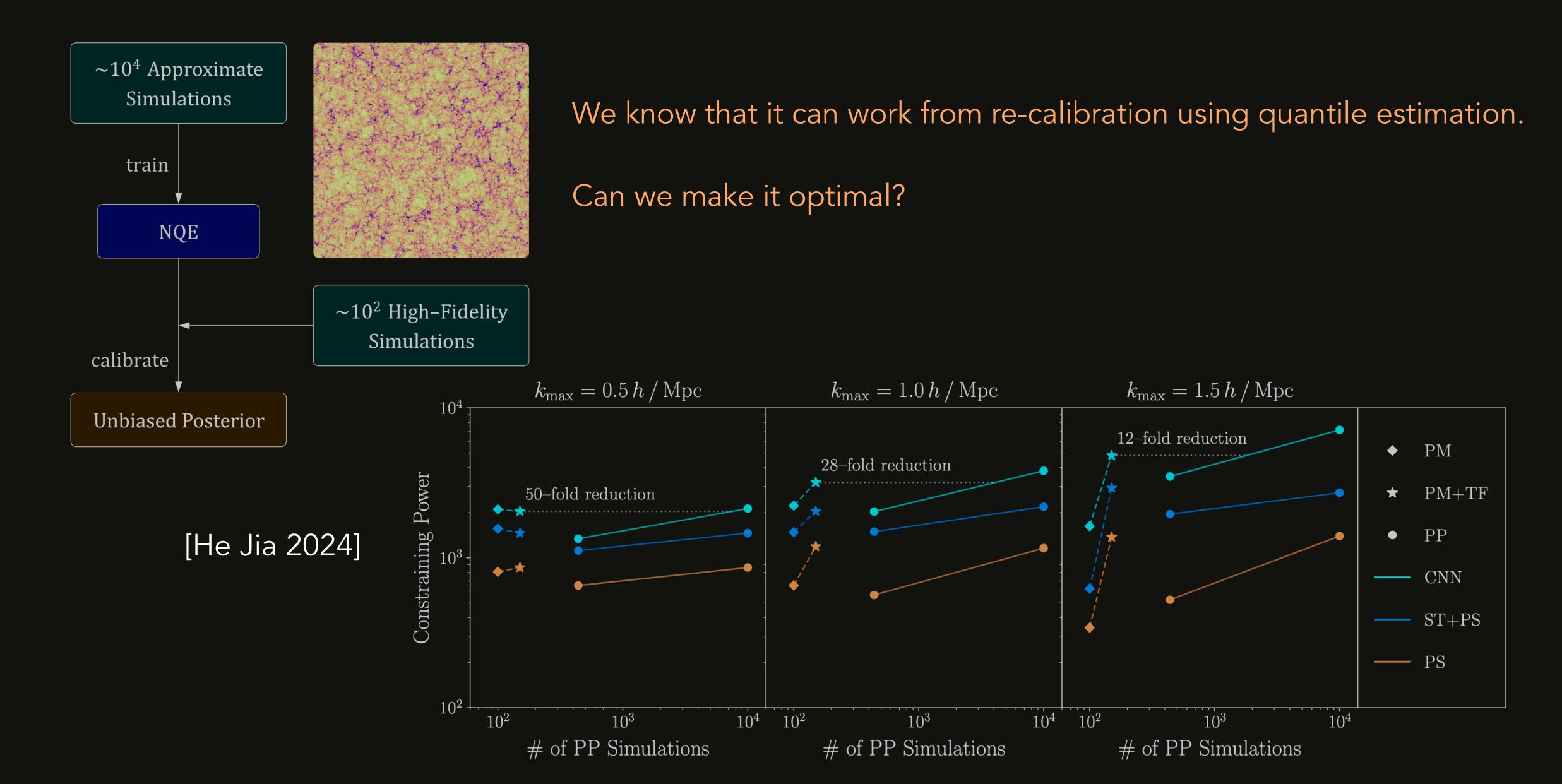
PFS Lyα: clean small high-z voids



Euclid: lots of volume

Learning the Universe





Neural ratio estimation

$$P(\text{parameters} \mid \text{data}) = \frac{P(\text{data} \mid \text{parameters}) \quad P(\text{parameters})}{P(\text{data})}$$

- draw θ , θ' ~ P(parameters)
- simulate $x_{sim} \sim P(data \mid \theta)$ [drawing η, ζ]
- evaluate neural net: $y=f(x_{sim}, \theta)$, $y'=f(x_{sim}, \theta')$
- classification loss, e.g. $\mathcal{L} = -\log(y) \log(1-y')$
- train $f^* = \operatorname{argmin} \int D\theta D\theta' Dx_{\text{sim}} \mathcal{L}$
- $\rightarrow P(x \mid \theta) / P(x) = f^*(x, \theta) / [1 f^*(x, \theta)]$

- any simulatable effect can be incorporated
- rephrase as classification
 problem → sophisticated
 machinery exists
- no formal difference between nuisance parameters and initial conditions