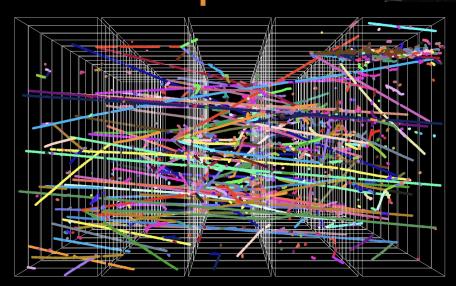
Deep Neural Network Cascade for the Deep Underground Neutrino Experiment

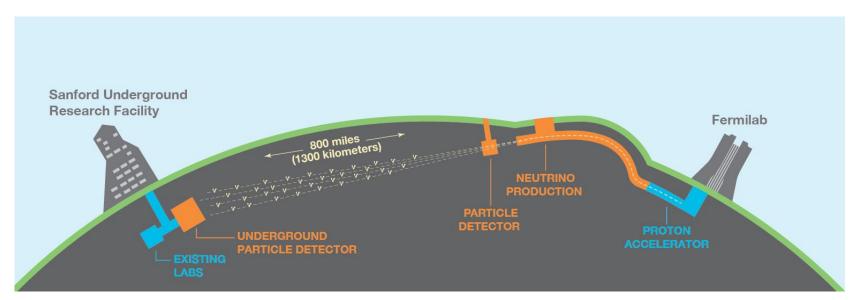
NPML 2025

François Drielsma (SLAC) on behalf of the DUNE collaboration

October 29th, 2025



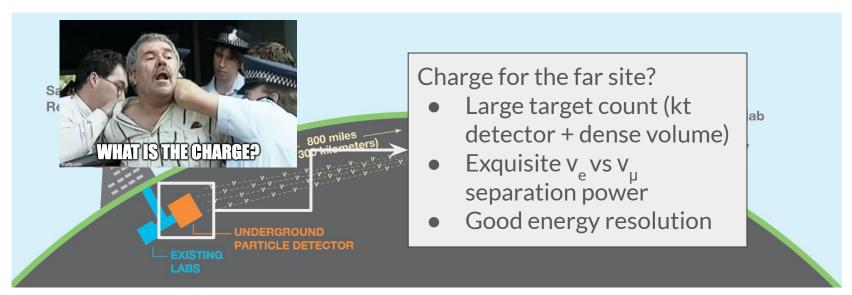
The Deep Underground Neutrino Experiment



DUNE is a long-baseline **neutrino oscillation experiment**. Ingredients:

- One near detector (flux constraint), one far detector (oscillated flux)
- Need to know: **neutrino species** $(v_e vs v_u)$ and **energy** (L/E)

The Deep Underground Neutrino Experiment

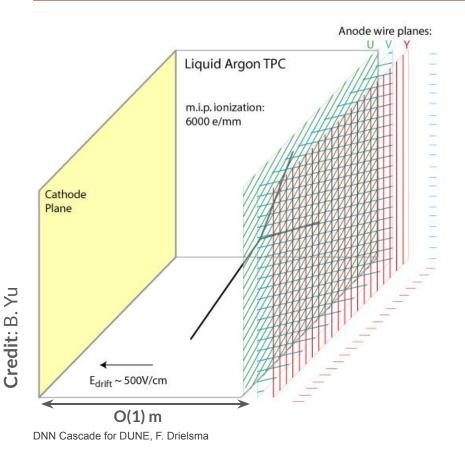


DUNE is a long-baseline **neutrino oscillation experiment**. Ingredients:

- One near detector (flux constraint), one far detector (oscillated flux)
- Need to know: **neutrino species** $(v_e vs v_u)$ and **energy** (L/E)

DNN Cascade for DUNE, F. Drielsma

Liquid Argon Time Projection Chamber



LArTPC: modern bubble chamber for neutrino physics (DUNE / SBN)

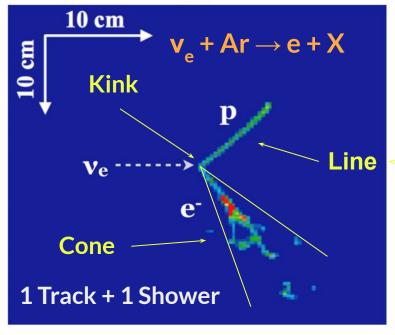
- Dense (1.4 g/cm³) +
 Cheap (~ 1\$/kg),
 a.k.a. scalable to
 40 kt (DUNE-FD)
- Precise particle tracking
- Detailed calorimetry

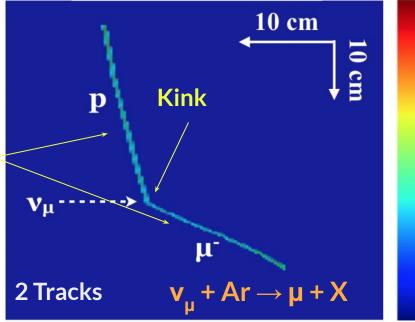
time

Neutrino Identification

What does **precision tracking** give you?

Visually, clear distinction between neutrino species

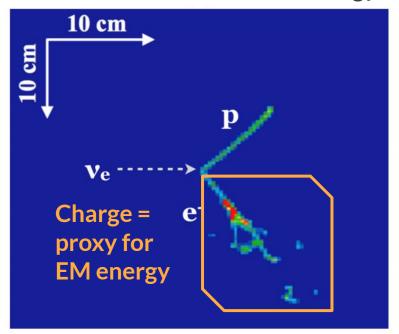


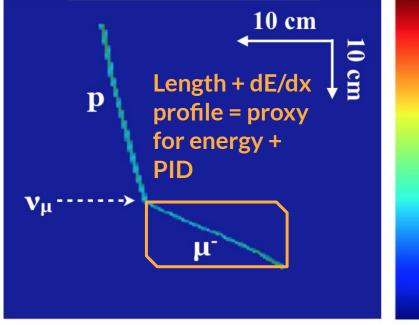


Neutrino Identification

What does **detailed calorimetry** give you?

Particle identification + energy reconstruction

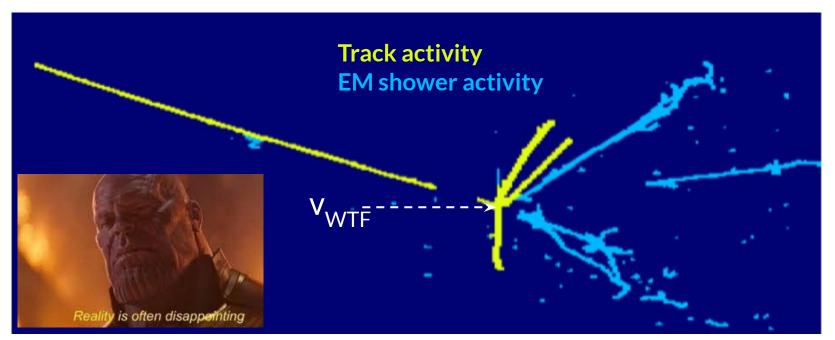


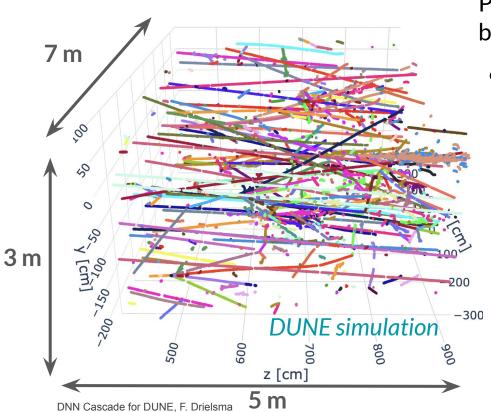


Reality at the DUNE Beam Energies

In practice, the **problem is much, much harder**

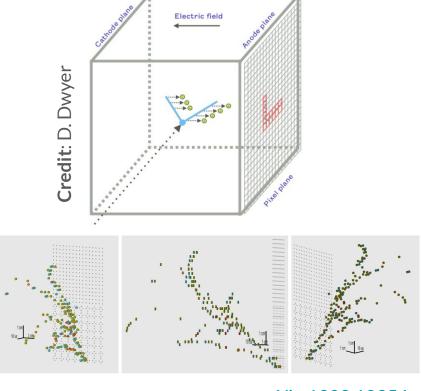
At multi-GeV: v on Ar messy + hadron re-interaction likely





Placing a LArTPC close to the neutrino beam source is a difficult proposition...

• Brutal pile-up: O(100) tons of LAr sees O(100) beam-related interactions per spill (10 us!!)

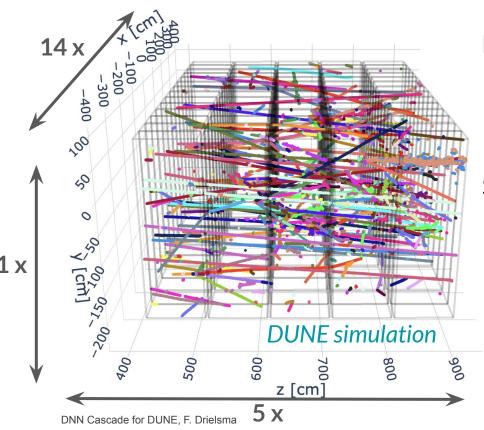


Placing a LArTPC close to the neutrino beam source is a difficult proposition...

 Brutal pile-up: O(100) tons of LAr sees O(100) beam-related interactions per spill (10 us!!)

Subsequent design choices:

Drop wires, use pixels: natively
 3D images, help with pile-up

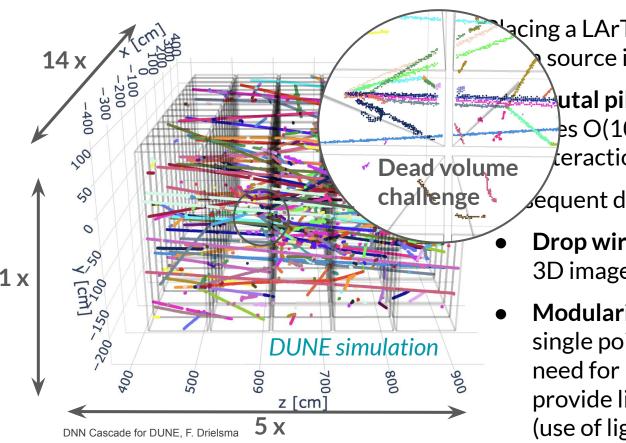


Placing a LArTPC close to the neutrino beam source is a difficult proposition...

 Brutal pile-up: O(100) tons of LAr sees O(100) beam-related interactions per spill (10 us!!)

Subsequent design choices:

- Drop wires, use pixels: natively
 3D images, help with pile-up
- Modularize detector: mitigate single points of failure, remove need for long drift volumes, provide light segmentation (use of light not yet explored)



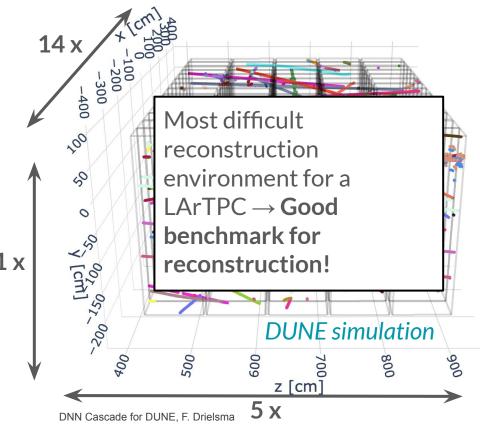
source is a difficult proposition...

utal pile-up: O(100) tons of LAres O(100) beam-related teractions per spill (10 us!!)

∡equent design choices:

Drop wires, use pixels: natively 3D images, help with pile-up

Modularize detector: mitigate single points of failure, remove need for long drift volumes, provide light segmentation (use of light not yet explored)



Placing a LArTPC close to the neutrino beam source is a difficult proposition...

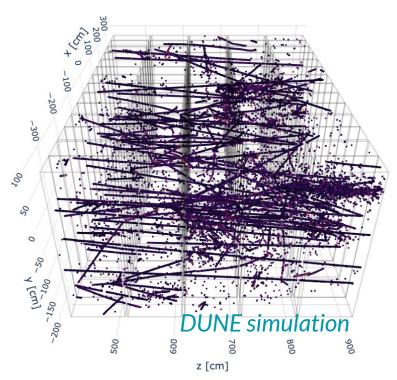
 Brutal pile-up: O(100) tons of LAr sees O(100) beam-related interactions per spill (10 us!!)

Subsequent design choices:

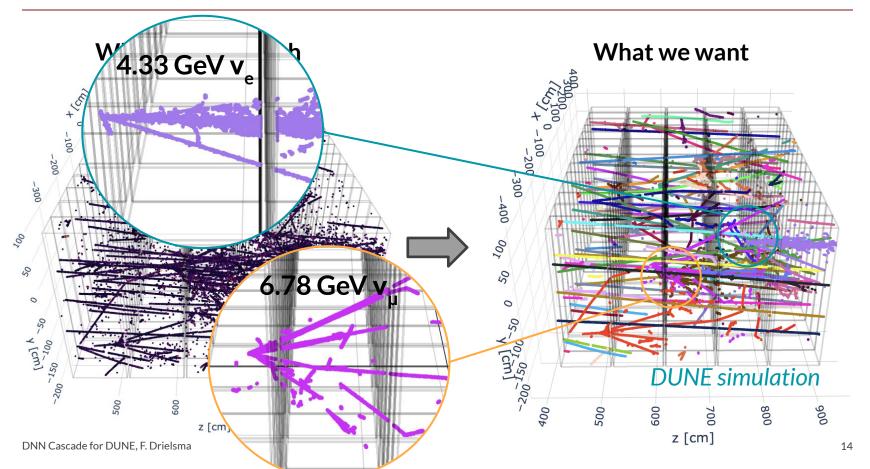
- Drop wires, use pixels: natively
 3D images, help with pile-up
- Modularize detector: mitigate single points of failure, remove need for long drift volumes, provide light segmentation (use of light not yet explored)

Reconstruction Goal

What we start with



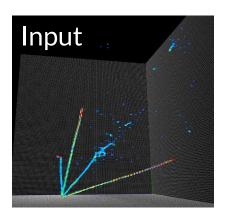
Reconstruction Goal



Physics-Informed ML Reconstruction

15

What is relevant to pattern recognition in a detailed interaction image?

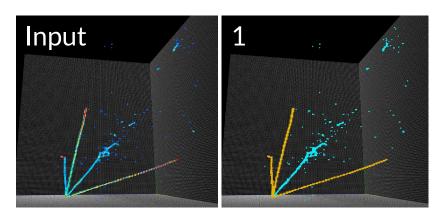


DNN Cascade for DUNE, F. Drielsma

Physics-Informed ML Reconstruction

What is relevant to pattern recognition in a detailed interaction image?

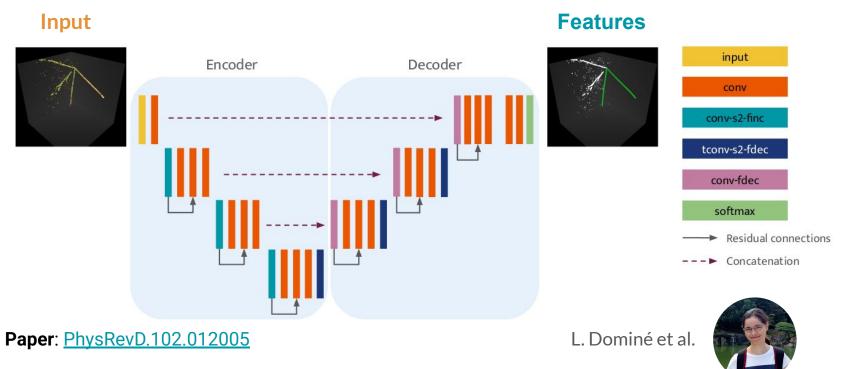
1. Separate topologically distinguishable types of activity



DNN Cascade for DUNE, F. Drielsma

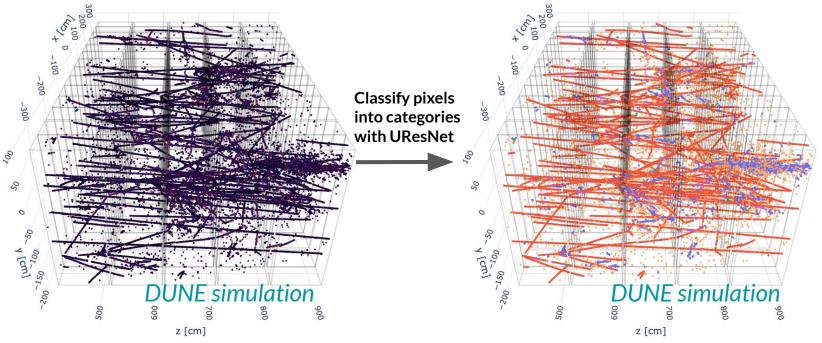
Pixel-Level Feature Extraction

UResNet (<u>UNet</u> + <u>ResNet</u> + <u>Sparse Conv.</u>) as the **backbone feature extractor**



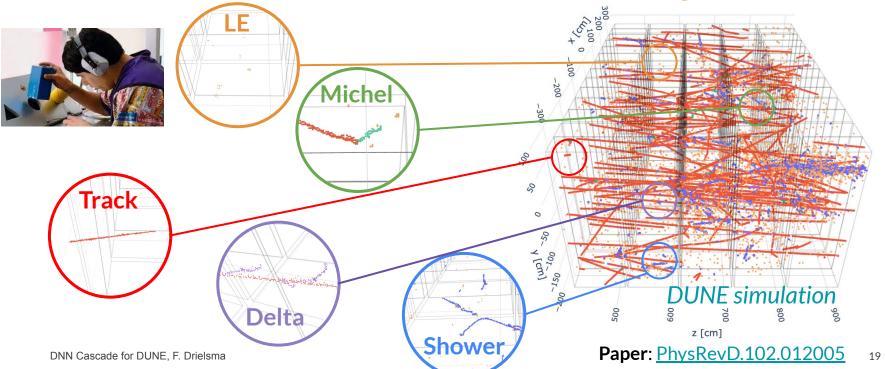
Semantic Segmentation

Separate topologically different types of activity



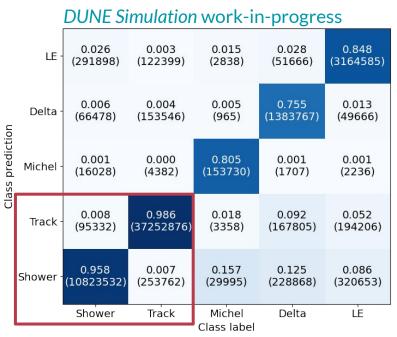
Semantic Segmentation

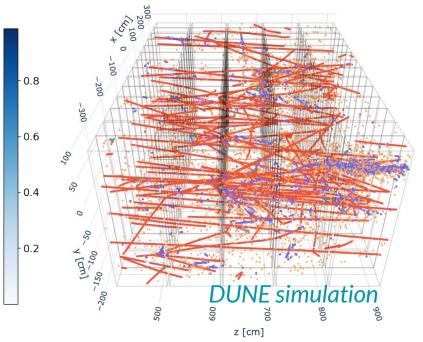
Separate topologically different types of activity



Semantic Segmentation

Separate topologically different types of activity

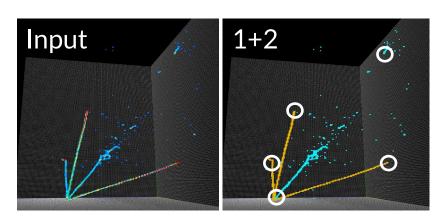




Physics-Informed ML Reconstruction

What is relevant to pattern recognition in a detailed interaction image?

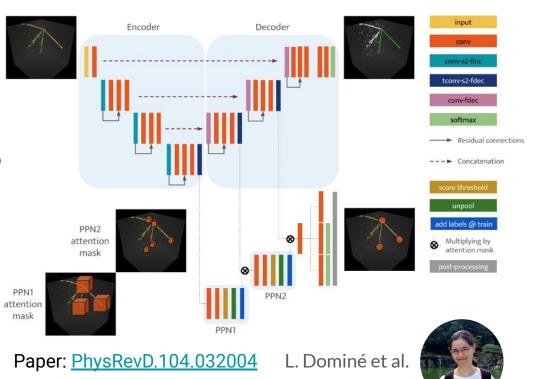
- 1. Separate topologically distinguishable types of activity
- 2. Identify important points (vertex, start points, end points)



DNN Cascade for DUNE, F. Drielsma

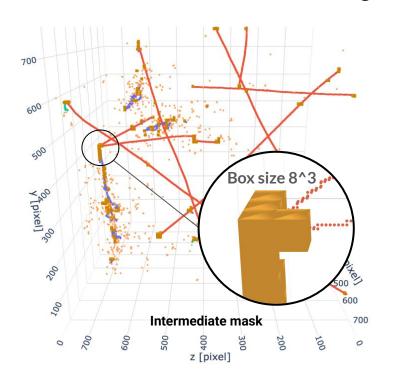
The Point Proposal Network (PPN) uses decoder features

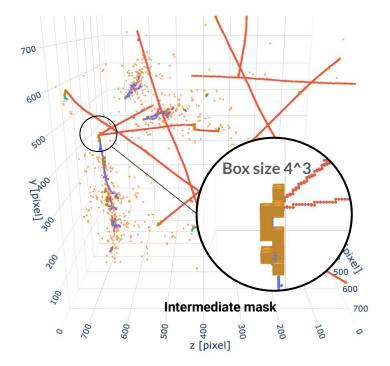
- CCN layers to narrow
 ROI at decoder layers
- Last layer reconstructs:
 - Relative position to pixel center of active pixel
 - Point type
- Post-processing aggregates nearby points



Intermediate masks

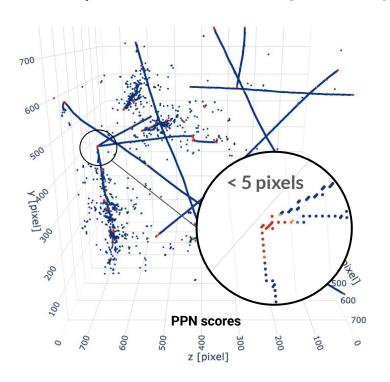
Mask out non-active voxels throughout the decoder

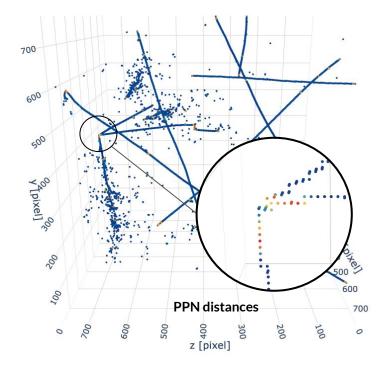




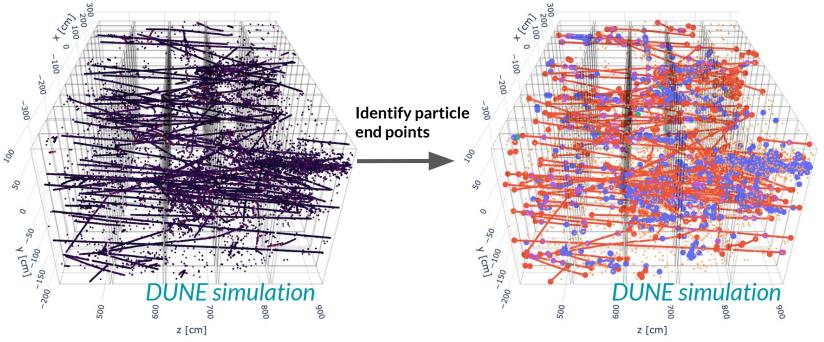
Last PPN layer

Predict positive scores and proximity to closest label

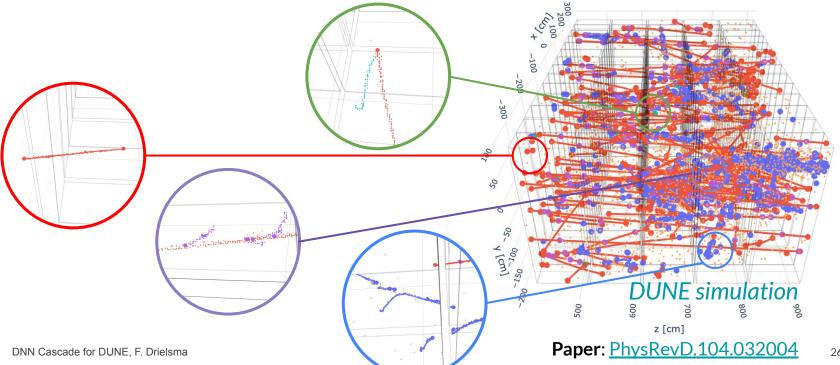




Identify start points of showers and end points of tracks

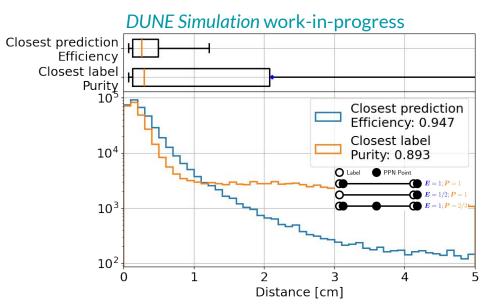


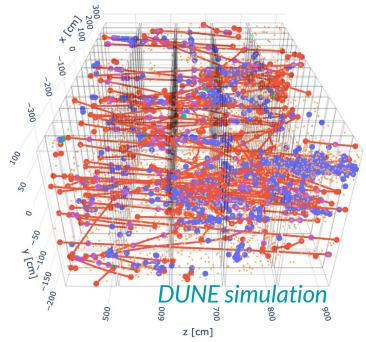
Identify start points of showers and end points of tracks



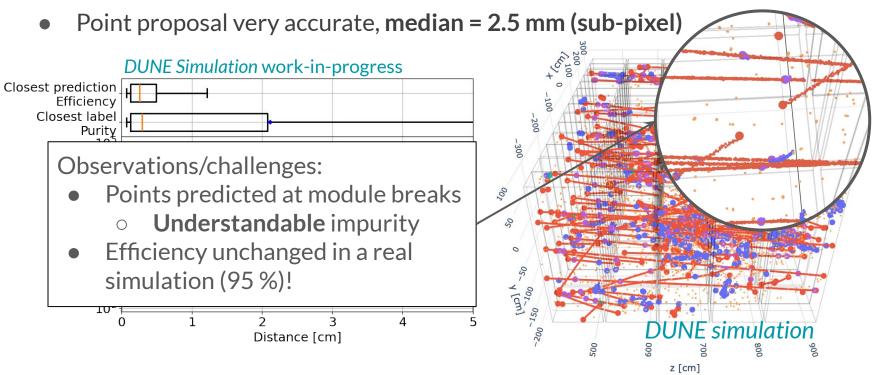
Identify start points of showers and end points of tracks

Point proposal very accurate, median = 2.5 mm (pixel size = 3.7 mm)





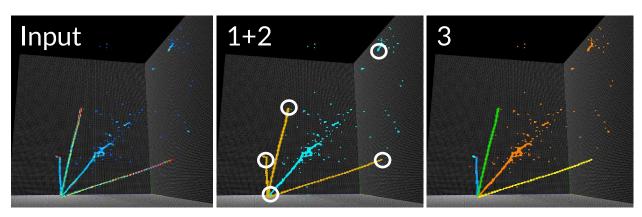
Identify start points of showers and end points of tracks



Physics-Informed ML Reconstruction

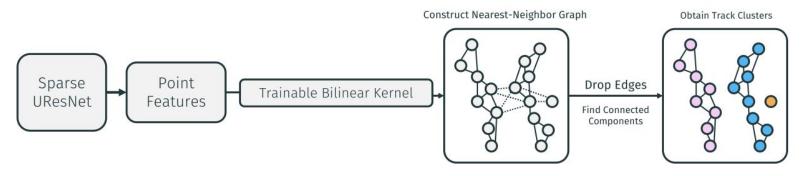
What is relevant to pattern recognition in a detailed interaction image?

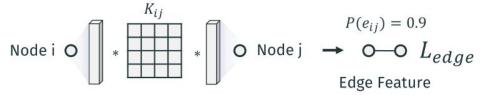
- 1. Separate topologically distinguishable types of activity
- 2. Identify important points (vertex, start points, end points)
- 3. Cluster individual particles (tracks and full showers)



Supervised Connected Component Clustering

Learn a **smart** version of **DBSCAN** (connected components)

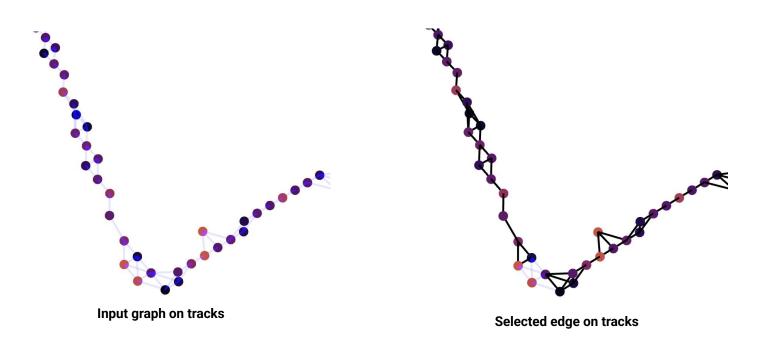




D. Koh et al.

Graph-SPICE

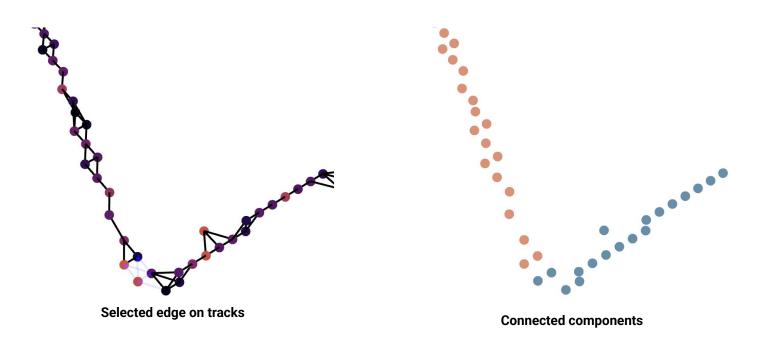
Let's take a look at what the edge selection process look like



Paper: <u>arXiv:2007.03083</u>

Graph-SPICE

Let's take a look at what the edge selection process look like

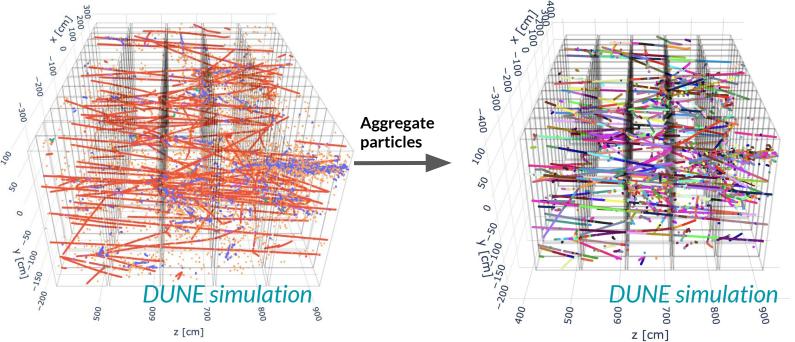


Paper: <u>arXiv:2007.03083</u>

Dense Fragment Formation

Break track/shower fragment instances where constituent pixels touch

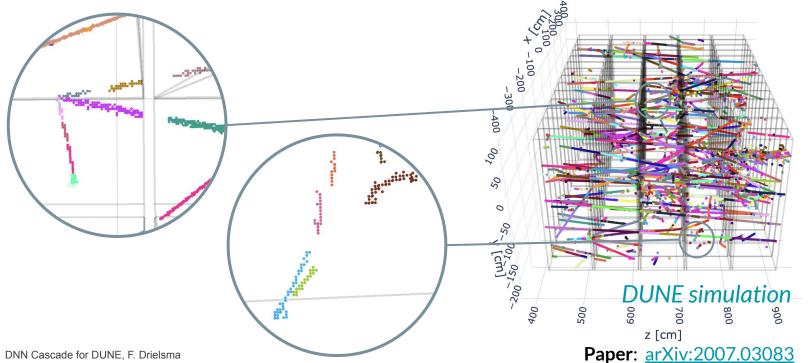
Cluster track/shower fragments at this stage



Dense Fragment Formation

Break track/shower fragment instances where constituent pixels touch

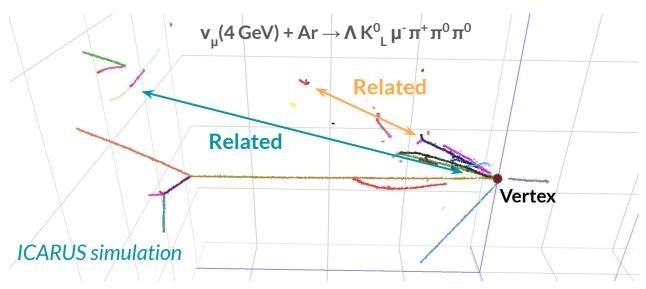
Cluster track/shower fragments at this stage



Cluster-level feature extraction

CNN: mostly sensitive to **local neighborhood** of pixel, but...

- EM showers: photon mean free path in LAr = 18 cm (50 pixels in DUNE-ND)
- Interactions: π^0 , K^0 , Λ , neutrons



Cluster-level feature extraction

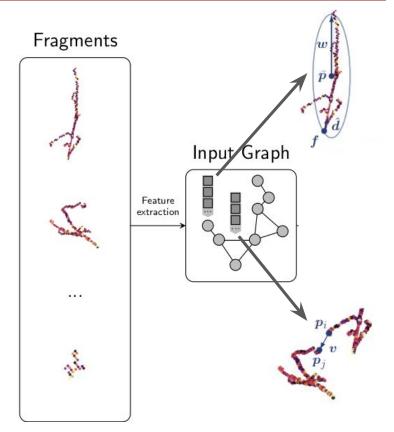
We now represent the set of fragments as a **set of nodes in a graph** where **edges represent correlations**

Node features:

- Centroid
- Covariance matrix
- Start point/direction
- ...

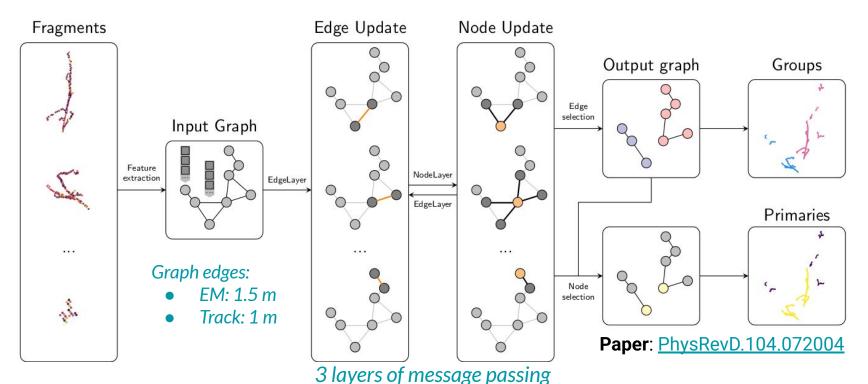
Edge features:

- Displacement vector
- ...



Graph Particle Aggregator (GrapPA)

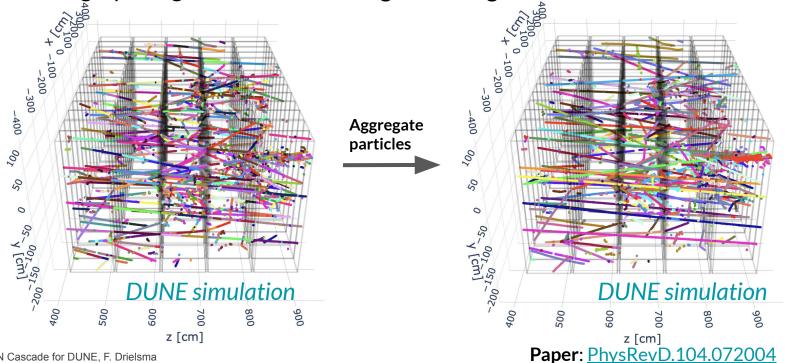
Graph Neural Network: develop features useful to node/edge classification



(MetaLayer with MLP)

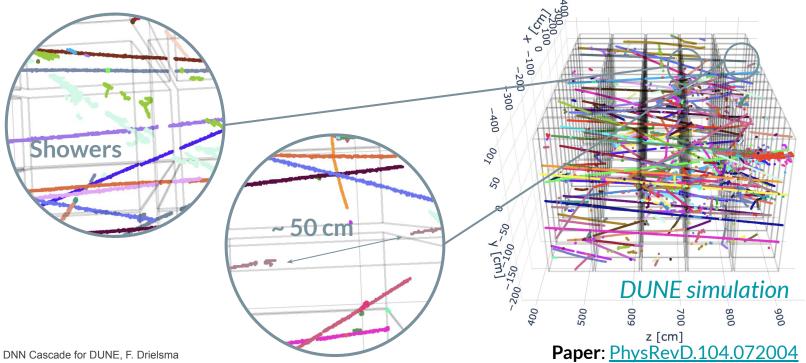
Aggregate track/shower space points into particles

Find graph edges that connect fragments together



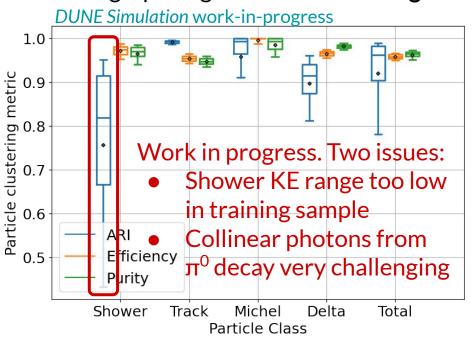
Aggregate track/shower space points into particles

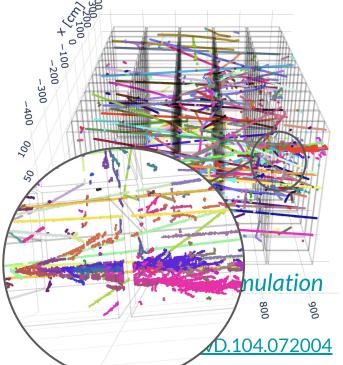
Find graph edges that connect fragments together



Aggregate track/shower space points into particles

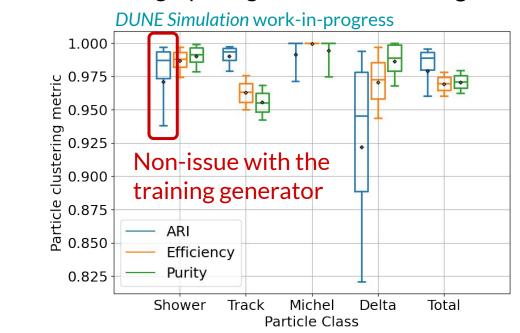
Find graph edges that connect fragments together

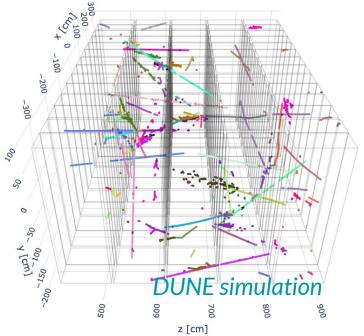




Aggregate track/shower space points into particles

• Find graph edges that connect fragments together



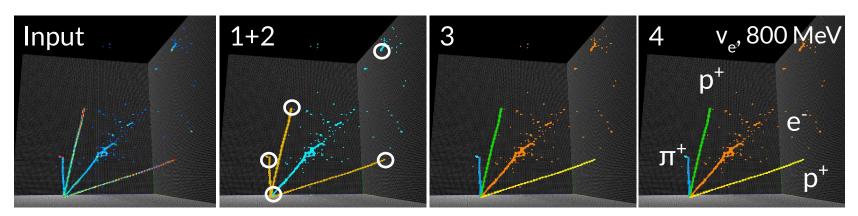


Paper: PhysRevD.104.072004

Physics-Informed ML Reconstruction

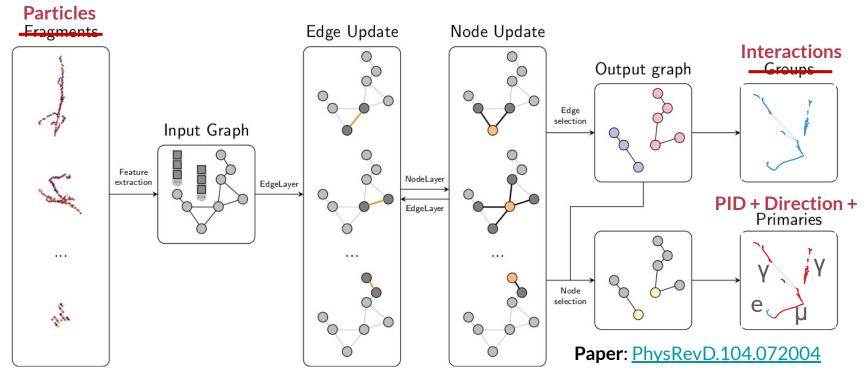
What is relevant to pattern recognition in a detailed interaction image?

- 1. Separate topologically distinguishable types of activity
- 2. Identify **important points** (vertex, start points, end points)
- 3. Cluster individual **particles** (tracks and full showers)
- 4. Cluster interactions, identify particle properties in context



Cluster-level feature extraction

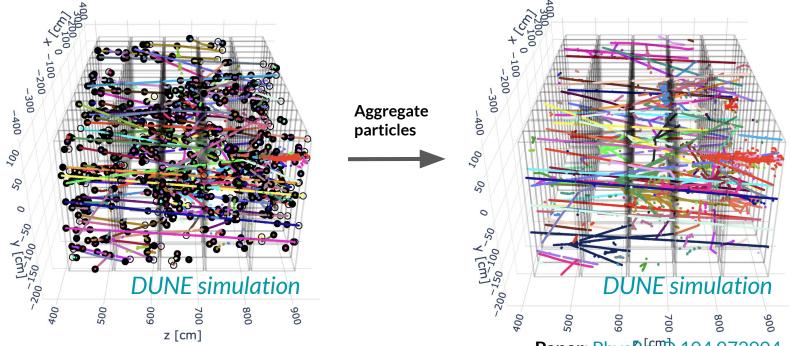
Graph Neural Network: develop features useful to node/edge classification



Interaction Aggregation

Aggregate track/shower instances into interactions

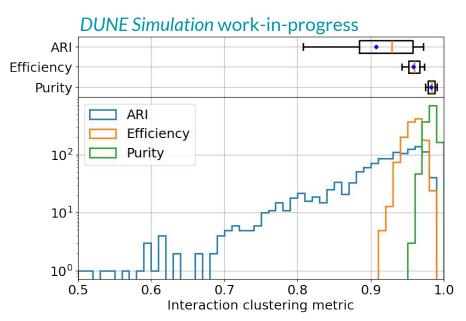
Find graph edges that connect particles that belong together

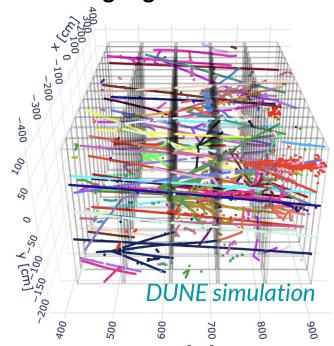


Interaction Aggregation

Aggregate track/shower instances into interactions

Find graph edges that connect particles that belong together

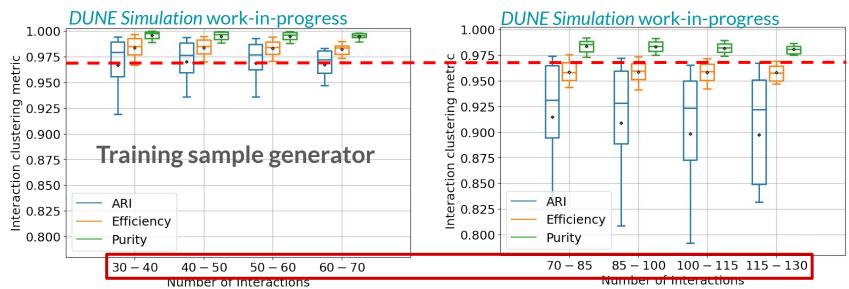




Interaction Aggregation

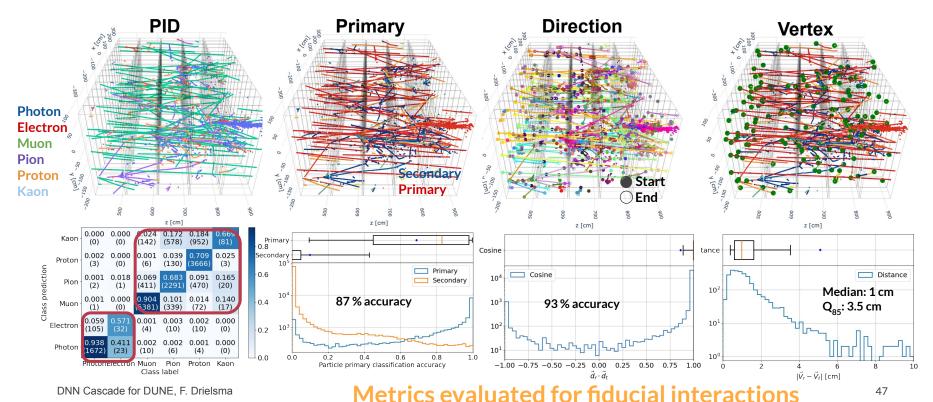
Aggregate track/shower instances into interactions

- Find graph edges that connect particles that belong together
- Close to meeting 97 % DUNE efficiency requirements out of the box!



Interaction Node Tasks Overview

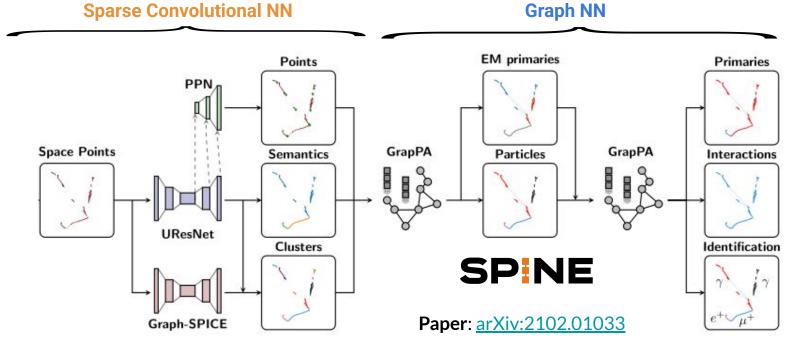
No time for detail, but GrapPA provides a slew of node-level predictions



Reconstruction in LArTPCs

Scalable Particle Imaging with Neural Embeddings (SPINE)

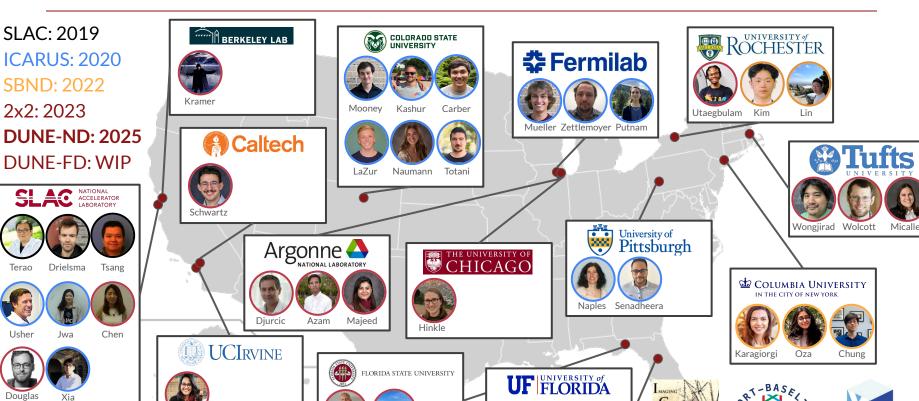
• Sparse CNN for pixel-level features, GrapPA for superstructure formation



DNN Cascade for DUNE, F. Drielsma

SPINE "Network"

SBND

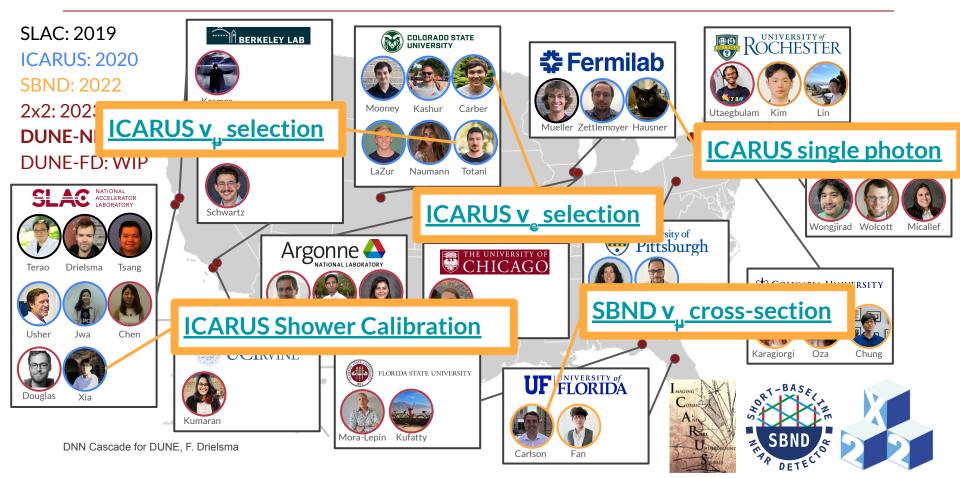


Carlson

Mora-Lepin Kufatty

DNN Cascade for DUNE, F. Drielsma

SPINE Talks at This Conference!



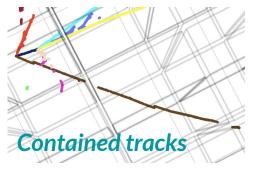
ND-LAr Energy Reconstruction

Three particle-level reconstruction strategies on offer

Range-based (CSDA)

Continuously slowing down approximation:

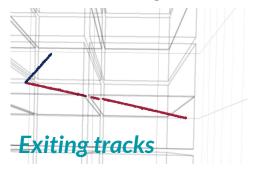
- Measure range
- Assume <dE/dx>, given PID hypothesis



Scattering-based (MCS)

Multiple Coulomb Scattering approach:

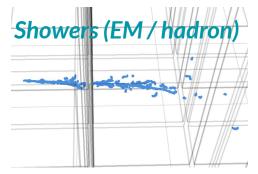
- Measure angles
- Optimize KE based on observed angles



Calorimetry

Calorimetry:

- Apply corrections (recomb, lifetime, ...)
- Estimate KE by summing all visible Q



ND-LAr Specific Challenges

At DUNE energies in a 5 m deep detector, multiple difficulties:

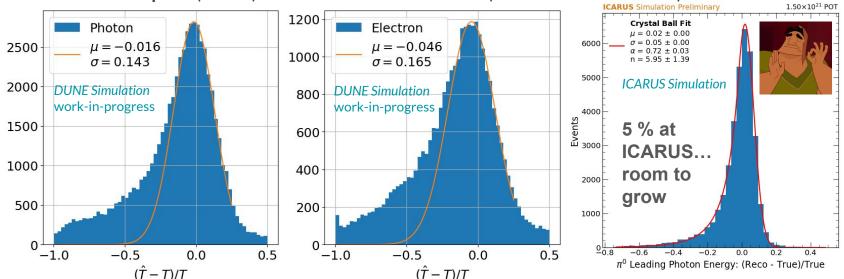
- Muons are very rarely contained and MCS breaks down at high energies
 - Downstream spectrometer used to estimate it, see <u>Jessie's talk</u> right after!
- EM showers are not always fully contained + go through dead volume



EM Shower Energy Reconstruction

EM Shower reconstructions strategy:

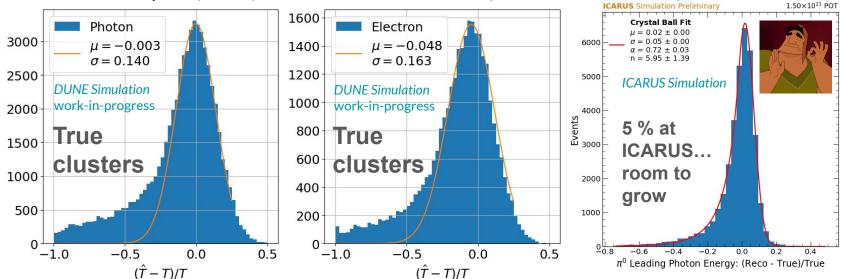
- Calorimetry (pixel charge sum)
 - In roughly the right place, modulo issues with containment/overclustering
 - o Broad peak (~15 %) + bias due to dead material (~5 % electron showers)



EM Shower Energy Reconstruction

EM Shower reconstructions strategy:

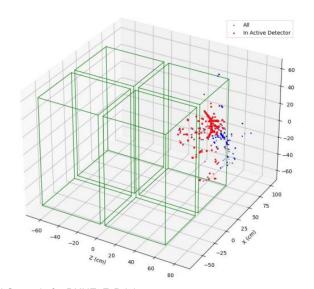
- Calorimetry (pixel charge sum)
 - o In roughly the right place, modulo issues with containment/overclustering
 - o Broad peak (~15 %) + bias due to dead material (~5 % electron showers)

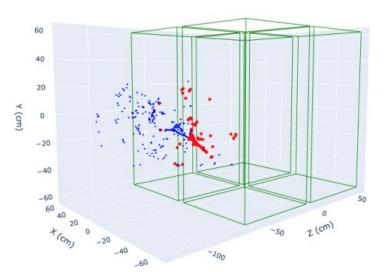


ML-based shower energy regression (E. Hinkle) SLAC ACTIONAL ACTION

Simplified **test case at 2x2 (harder)** described <u>here</u>:

- Generate single e^{+/-} in an "infinite" volume of LAr with edep-sim
- Loop over e^{+/-}, randomize start point/direction in 2x2 geometry



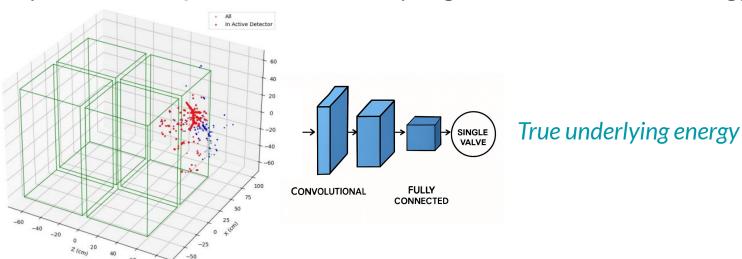


DNN Cascade for DUNE, F. Drielsma 55

ML-based shower energy regression (E. Hinkle) SLAC NACIONAL ACCELERATOR LABORATORY

Simplified test case at 2x2 (harder) described here:

- Generate single e^{+/-} in an "infinite" volume of LAr with edep-sim
- Loop over e^{+/-}, randomize start point/direction in 2x2 geometry
- Input the **visible points** into a **CNN**, try to guess the true shower energy

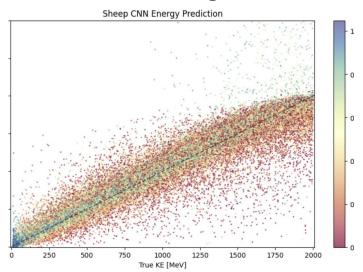


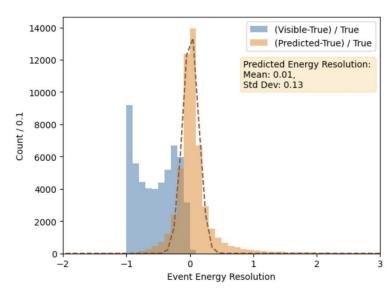
56 DNN Cascade for DUNE, F. Drielsma

ML-based shower energy regression (E. Hinkle) SLAC ACTIONAL ACTION

Very promising:

- Making steady progress since the summer
- Does show ability to recover/guess energy of partial showers
- Shortish training, idealistic simulation for now... more soon!

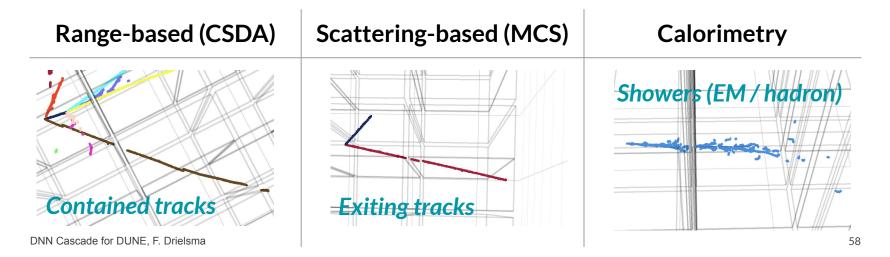




ND-LAr Specific Challenges

At DUNE energies in a 5 m deep detector, multiple difficulties:

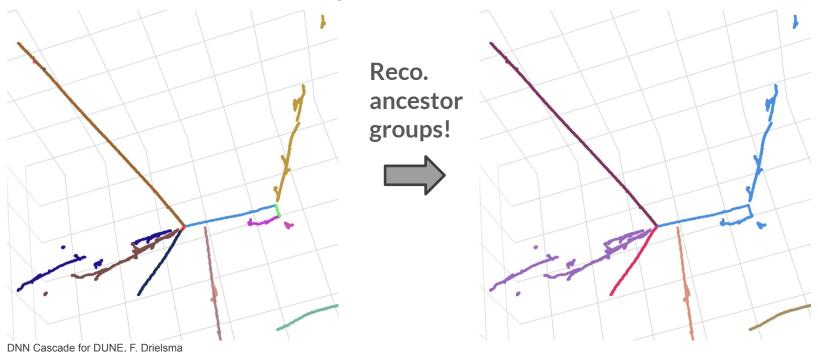
- Muons are very rarely contained and MCS breaks down at high energies
 - Downstream spectrometer used to estimate it, see <u>Jessie's talk</u> right after!
- EM showers are not always fully contained + go through dead volume
- Range is very poor energy proxy for hard-scattering hadrons



Hadron Shower Reconstruction

We need to treat hadron showers as a whole

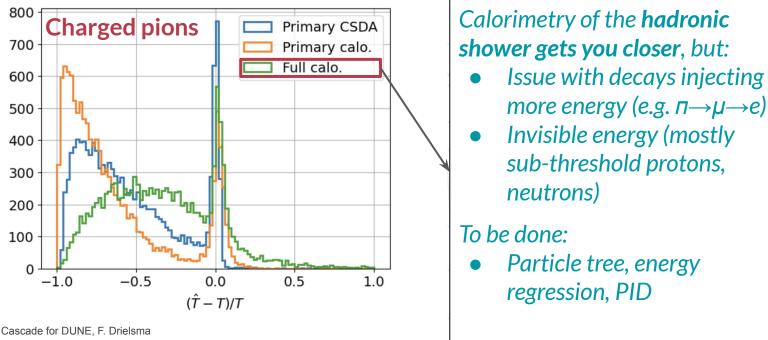
Introduced a new clustering head which builds hadron showers



Hadron Shower Reconstruction

We need to treat hadron showers as a whole

Introduced a new clustering head which builds hadron showers

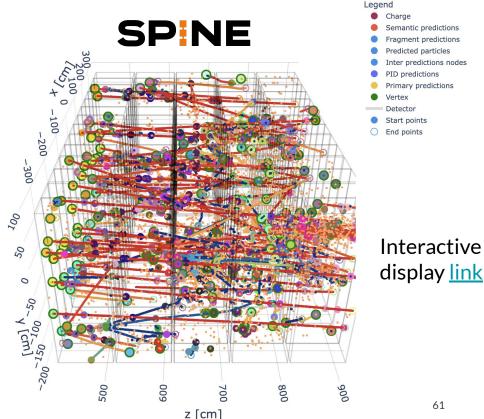


Conclusions

First full ND-LAr simulation:

- SPINE is the only working reconstruction on a LArTPC with ND-LAr's pile-up!
- It is resilient at pile-ups beyond the current design
- Unique energy reco. challenge being addressed with extensions to SPINE

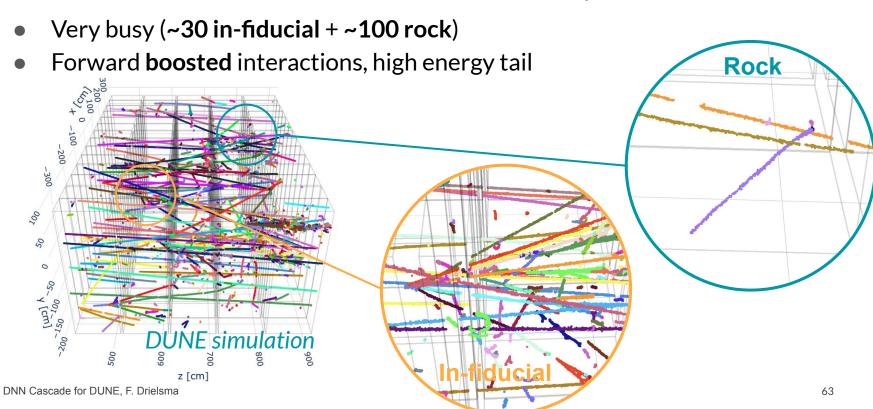
 \rightarrow FD + osc. physics next!



Backup Slides

Full ND-LAr FHC Spills

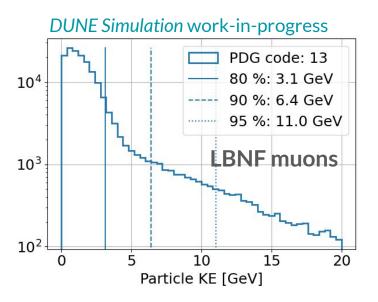
Thanks to **Alex Booth** (++), we now have **full FHC spills** (µP4.1)! **1.2 k events**

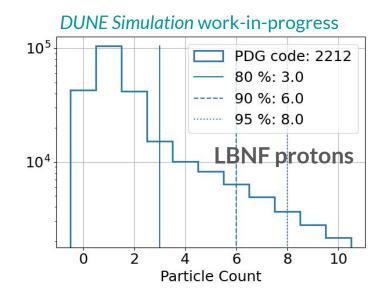


Training/Validation/Test Samples

We use an **generic dataset** designed for **unbiased phase space coverage**

- To study both KE and multiplicity coverage, we use LBNF flux files
- Uniformly sample KE, multiplicity and angle to cover up to 90th percentile





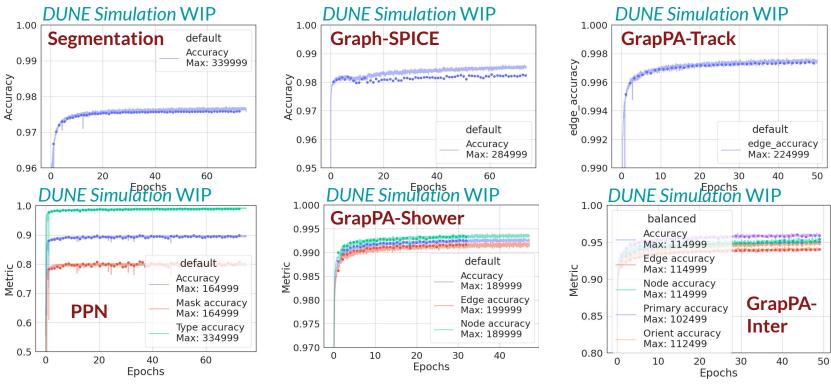
Training/Validation/Test Samples

The MPV/MPR dataset includes 300k to train, 12.5k to validate, 25k to test

8-22 MPV (multi-particle vertex) in-fiducial nu-like interactions 30-50 MPR (multi-particle rain) rock-like interactions MPR -50 NE simulation z [cm] DNN Cascade for DUNE, F. Drielsma 65

Training/Validation

Trained the **full chain** from scratch (**04/23 – 05/02**), no issue!

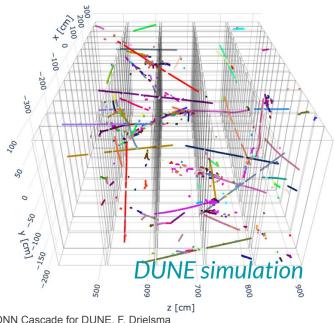


DNN Cascade for DUNE, F. Drielsma

ND-LAr Pile-up

SPINE handles the ND-LAr pile-up well out of the box but...

The training sample underestimates the number of interactions



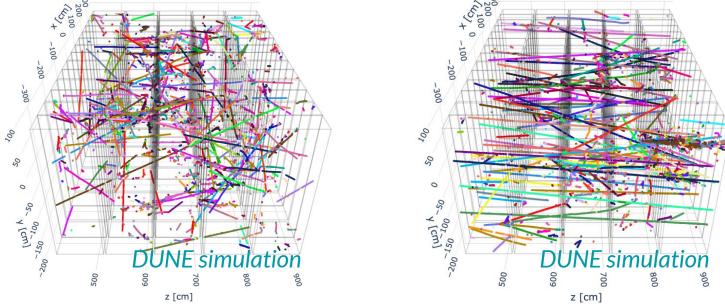


ND-LAr Overlays

SPINE handles the ND-LAr pile-up out of the box but...

The training sample underestimates the number of interactions

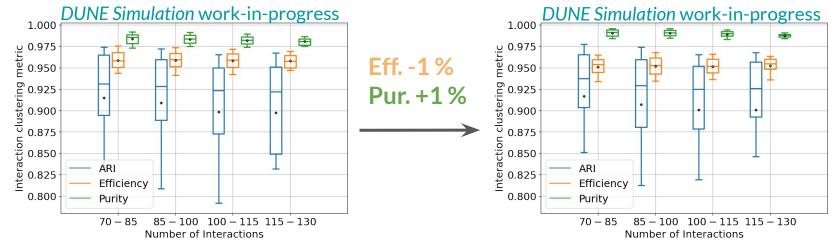
Wrote overlay code to enable training on higher pile-up images



ND-LAr Overlay Training

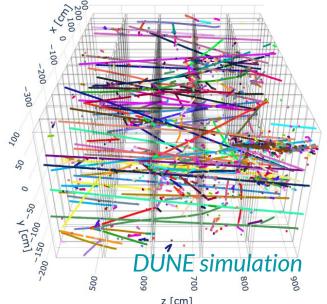
Lessons learned in the training process

- Segmentation, point proposal, fragmentation do not need to be retrained
- Shower/Track clustering does seem to benefit from transfer training
 - Shower clustering cannot be trained with overlay > 2 (memory issue)
- → Minor impact at the interaction level (network slightly more conservative)



What if we crank the pile-up even further?

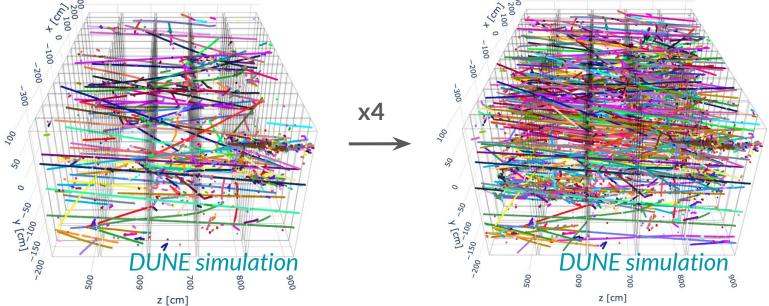
- 4x in the interaction count w.r.t. nominal translates 400+ interactions
- Could use overlays to see what that does to clustering



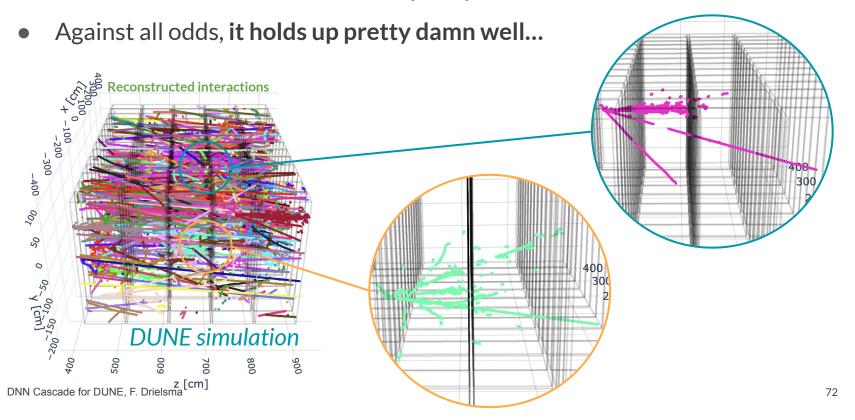
What if we crank the pile-up even further?

4x in the interaction count w.r.t. nominal translates 400+ interactions

Could use overlays to see what that does to clustering



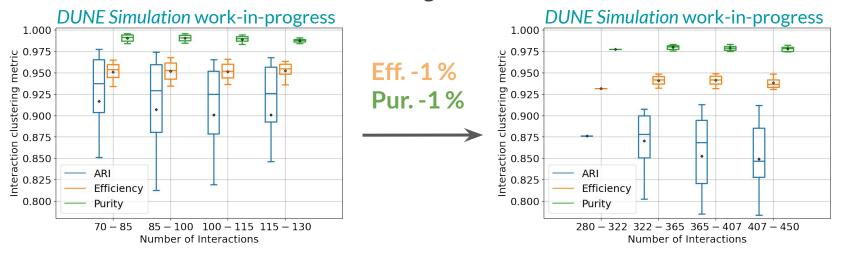
What does it do to the reconstruction quality out-of-the-box?



What does it do to the reconstruction quality out-of-the-box?

- Against all odds, it holds up pretty damn well...
- Percent-level loss for both purity in completeness, 4 % loss in ARI

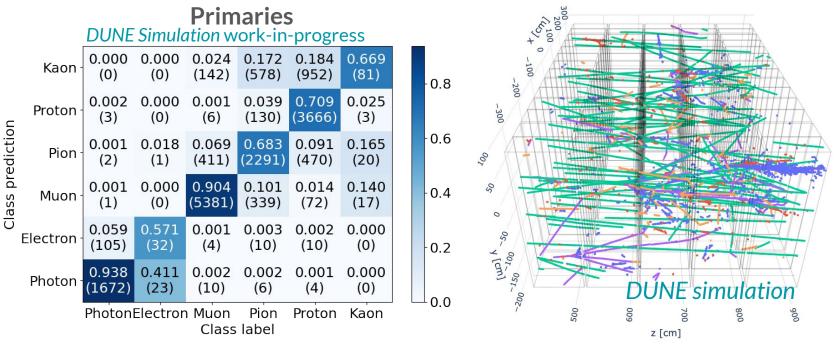
→ This is all without a dedicated training at all!



Particle Identification

Classify **particles** within interactions into different species

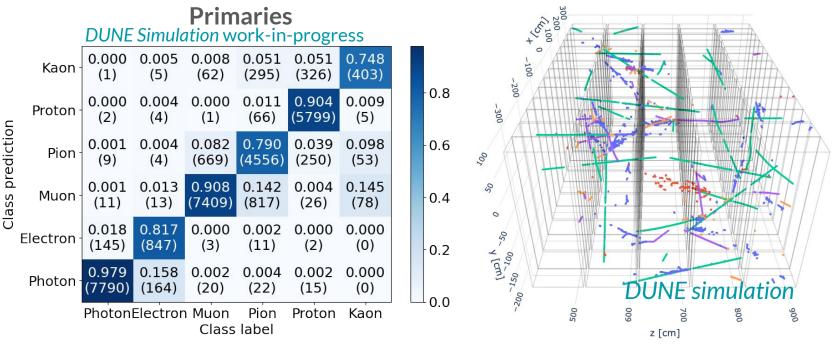
Photons (0), Electron (1), Muons (2), Pions (3), Protons (4), Kaons (5)



Particle Identification

Classify particles within interactions into different species

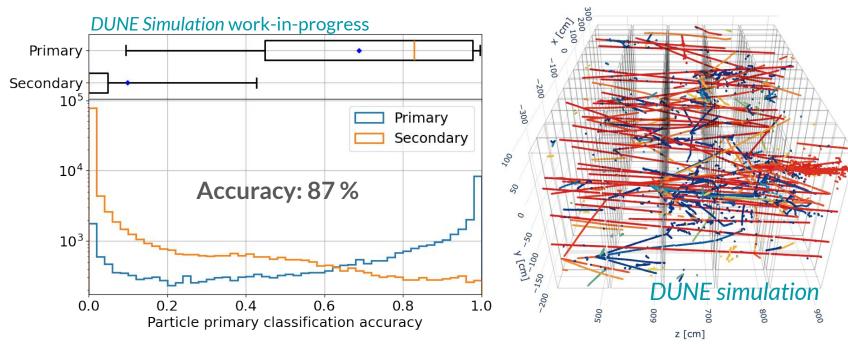
Photons (0), Electron (1), Muons (2), Pions (3), Protons (4), Kaons (5)



Primary Identification

Identify particle originating from the **primary vertex**

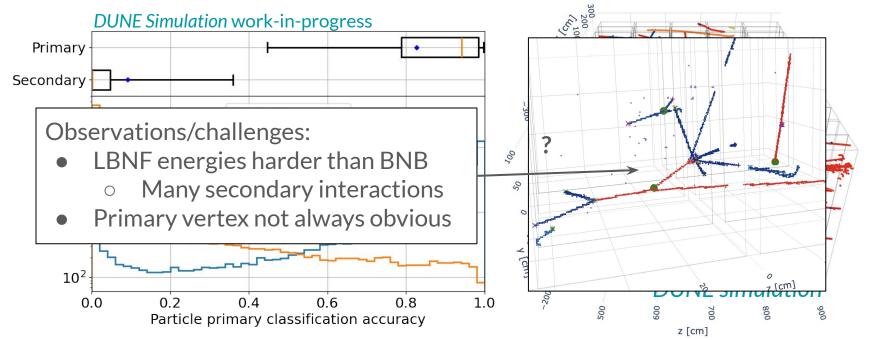
Secondaries — Primaries



Primary Identification

Identify particle originating from the **primary vertex**

Secondaries — Primaries

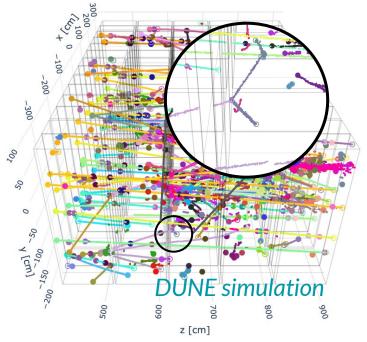


Particle orientation

Orient **tracks** within interactions

Start points () and end points ()

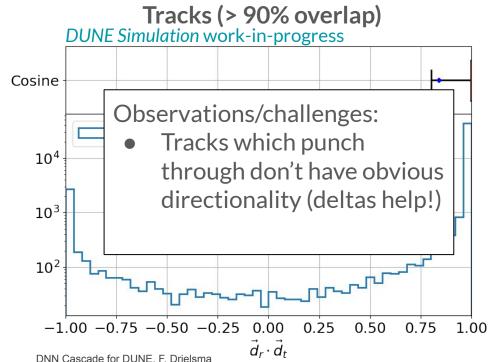
Tracks (> 90% overlap) **DUNE Simulation work-in-progress** Cosine Cosine 10^{4} Accuracy: 92 % 10^{3} 10^{2} -1.00 -0.75 -0.50 -0.250.00 0.25 0.50 0.75 1.00 $\vec{d}_r \cdot \vec{d}_t$

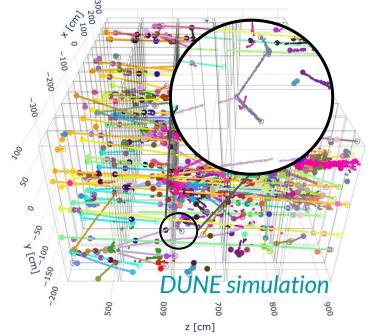


Particle orientation

Orient tracks within interactions

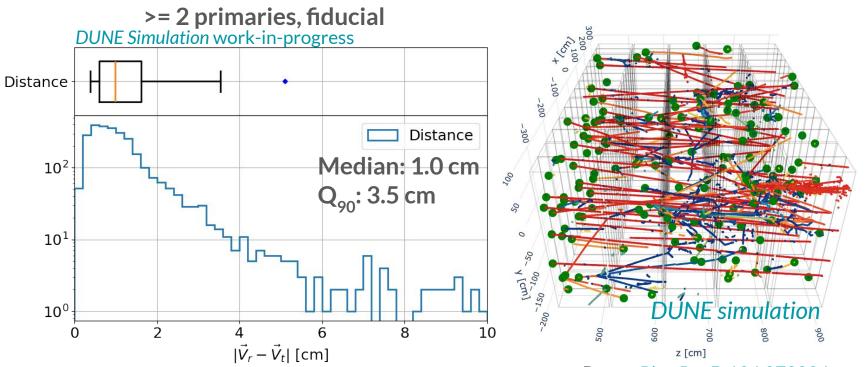
Start points () and end points ()





Vertex reconstruction

Using the primary and orientation prediction, one can infer vertex positions

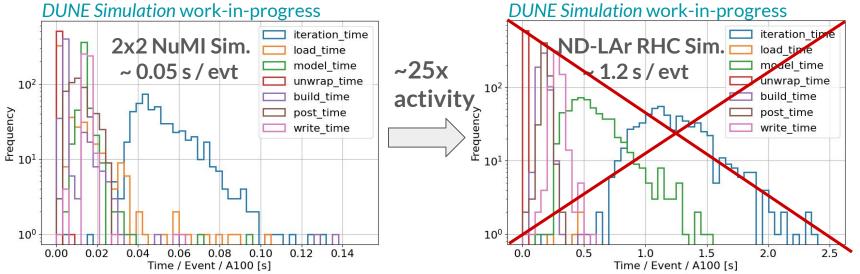


ND-LAr: Scalability

"SPINE" would be "PINE" without scalability...

- SPINE leverages **GPU acceleration** extensively
- Scales with activity, i.e. number of active voxels (DUNE-FD << DUNE-ND)

Can reco a full run (active year) of ICARUS in < 1 day with 20 GPUs



ND-LAr: Scalability

"SPINE" would be "PINE" without scalability...

- SPINE leverages GPU acceleration extensively
- Scales with activity, i.e. number of active voxels (DUNE-FD << DUNE-ND)
- Can reco a full run (active year) of ICARUS in < 1 day with 20 GPUs

