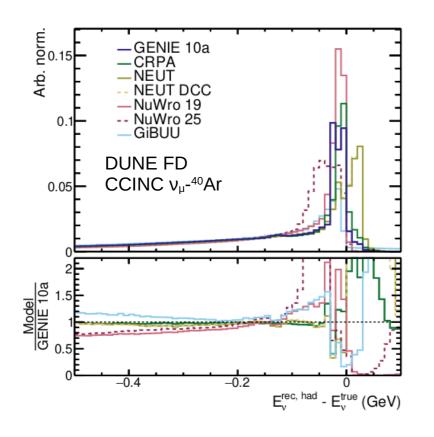
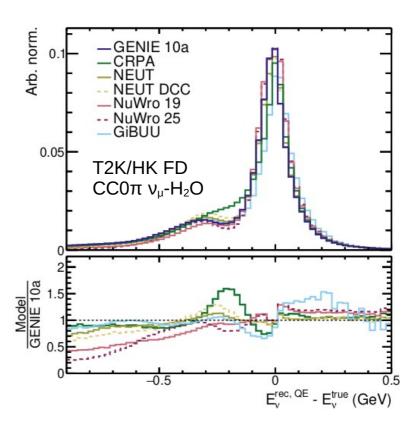
Surrogate event generator as a data challenge


Callum Wilkinson LBNL, Physics Division



Physics background

- 0.1-10 GeV neutrino interaction physics poorly known
- Experiments rely on event generators predictions: GENIE, NuWro, NEUT, GiBUU, Achilles
- What's the cost of picking a different model? E_{ν} biases!

Physics background

- Generators are computationally cheap!
- ...but the cost of pushing many through GEANT4 + det sim + reco
 + analysis is prohibitely expensive
- Generators reweight the cross section to avoid the same problem. E.g., for an generated with parameters p, "reweight" to p with:

$$w(\vec{x}) = \frac{\sigma(\vec{x}, \vec{p}')}{\sigma(\vec{x}, \vec{p})}$$
 where \vec{x} fully defines the outgoing event state

Could similarly try to "reweight" from generators A → B, if you can estimate the probability density for an event with x:

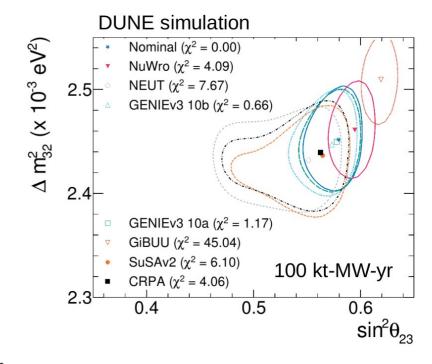
$$w(\vec{x}) = \frac{G_{\rm B}(\vec{x})}{G_{\rm A}(\vec{x})}$$

Physics background

- Several attempts to do this!
 - **DUNE:** BDT, *Instruments 5 (2021) 4, 31*
 - MINERVA: BDT, arXiv:2510.07463
 - Andrew Cudd: transformer, see recent NuFact <u>poster</u>

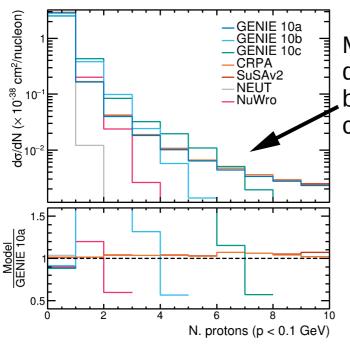
How?

(Stolen wholesale from Andrew's poster:)

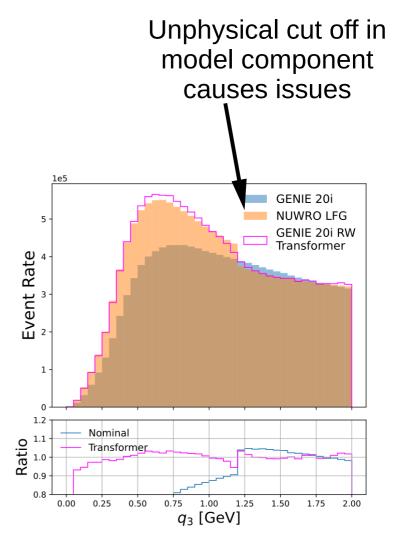

Calculating Event Weights:

- Train a model to classify between two datasets A & B using the weighted cross-entropy loss (L)
- Each event x has a true label p and receives a prediction q
 from the network

$$L_i = p_i \log q_i + (1 - p_i) \log(1 - q_i)$$


 Model predictions can be used to approximate the ratio of the datasets and used as weights for reweighting

$$\mathcal{L} = p_A(x_i)/p_B(x_i) \approx q_i/(1-q_i)$$



What's the problem?

- If there are regions of non-overlapping phase space, this approach breaks
- Also a problem for general generator reweighting in some cases

Major phase space differences, even between generator configurations!

From Andrew Cudds's poster!

What's the solution?

 Generate in a wider phase space and then deweight regions which are not there in your target model

$$w(ec{x}) = rac{G_{
m B}(ec{x})}{G_{
m A}(ec{x})}$$
 This can be 0
This cannot be 0

(This approach currently used in some GENIE tunes to make nuclear binding energy reweightable)

- Challenges:
 - Very difficult to generalize analytically
 - Deweighting reduces effective MC statistics

Data challenge?

- This seems like an impactful problem with an ML solution
- Challenge: develop a surrogate model for fast neutrino event generation with phase-space covering an ensemble of generators
- **Dataset:** release a set of events for each generator, for a given E_{ν} range and set of target materials
- Target audience: natural appeal for neutrino people, +collider folk who have done similar work. Not sure about non-HEP appeal

Datasets

- Easy to generate large samples of events from a variety of models and put in the same format
- For each generator, can provide complete information (\bar{x}) : E_{ν} , target, and four vector + PDG code of outgoing particles
 - Simple to document
 - In ROOT this would be ~200 MB/million events
 - Easy to put in hdf5(?), simple file layout
 - Generators are public, no permission required to release datasets
- Could also provide containers with simple event generation wrappers included if there's a benefit (maybe overkill?)

Metrics

Here's where I fall down a bit and would invite some discussion

1) A clear metric is:
$$w(\vec{x}) = \frac{G_{\mathrm{target}}(\vec{x})}{G_{\mathrm{surrogate}}(\vec{x})} \neq 0$$

For all \bar{x} generated by the target generators of interest

- 2) Minimal efficiency loss when applying the deweighting factors $w(\bar{x})$:
 - A particle bomb can fulfill (1), but is a bad solution
 - Minimizing MC stat. uncertainties when applied to a test set?
 - Maximize the average value of w(x) for a test set?

+Maybe

3) The model should be as computationally inexpensive as possible to train, as it will need to be retrained to add new generators

Barriers to physics impacts?

Solves a key problem for all few-GeV neutrino experiments, but some technical barriers:

- Can't be backported, and it would be a breaking change
- If the efficiency is low, the cost might seem prohibitive
- Adds a technical barrier as reweighting required downstream
- Integration with flux drivers which place vertices in a complex geometry from a complex flux would require some effort
- Retraining required to include new physics models