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ν oscillation

|να(t)〉 =
∑

i=1,2,3

U∗
αi |νi(t)〉

Mixing of different ν mass eigenstates leads to
oscillation:

〈νe | νe(t)〉 = |〈νe | ν1〉|2 + e−i
∆m2

21L

2E |〈νe | ν2〉|2 + e−i
∆m2

31L

2E |〈νe | ν3〉|2

describes the survival probability of νe as P (νe → νe) = |〈νe | νe(t)〉|2.
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ν mass ordering (NMO): sign of ∆m2
31

• ∆m2
21 = m2

2 −m2
1 = 7.5× 10−5 eV2

• ∆m2
31 = m2

3 −m2
1 = 2.4× 10−3 eV2

• normal order: m2
3 > m2

1;
• inverted order: m2

3 < m2
1

• imprints subtle difference on energy spectra.
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Jiangmen Underground Neutrino Observatory

• 52.5 km is the sweet spot for ν̄ oscillation.
• Detected via inverse β decay ν̄e + p −−→ e+ + n.
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Sensitivity to ν mass ordering

∆χ2 is the χ2 different between correct and wrong hypothesis.
3σ determination in 6.5 years. Chin. Phys. C 49 033104
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JUNO design: a liquid scintillator detector
large exposure:
• proven technology to scale up.
• world’s largest by 20×.

measurement of ν energy;
• bright liquid scintillator.
• maximize the coverage of

photomultiplier tubes.
• > 1300 photo-electrons/MeV.

control of backgrounds.
• effective impurity removal:

filteration, distillation, absorption.
• active shield of water and µ tracker.
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Measurement of ν energy

Replacing KamLAND as the world’s largest liquid scintillator detector

KamLAND JUNO KamLAND2
(reference) (future)

PE yield per MeV 250 ∼ 1600 1200
Photocoverage/% 34 78 61
Light yield 1 1.5 1.4
PMT QE × CE/% 12 30 23

• 52.5 km is the first minimal of 〈νe | ν2〉.
• 〈νe | ν3〉 oscillations 30 times faster.

• Requires energy resolution better than 3% at 1MeV.
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Configuration of photo-multiplier tube array

size type quantity detection dark noise transit time
efficiency rate/kHz spread 1σ/ns

�50 cm micro-channel plate 15057 30% 31 7.0
dynode 4939 29% 17 1.3

�7.6 cm dynode 25600 25% 0.5 1.6
Eur. Phys. J. C 82 12, 1168(2022)

8 / 30



Cutting-Edge
Machine-
Learning

Advancements
at JUNO

Benda Xu

JUNO ν

Construction

Reconstruc-
tion
Water Cherenkov

Waveform

MeV Event

GeV Event

Conclusion

Liquid scintillator

• Carefully designed liquid
scintillation cocktail.
• Efficienct transmission of

ionization energy to
scintillation photons.

NIM A 967, 163860 (2020)
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Timeline

How to put an elephant into a fridge?
1 dig a experimental hall: 2015–2021;
2 put a detector inside: 2021–2024;
3 top out the water pool: 2024;
4 official data taking: 2025.
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Milestones of JUNO
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Snapshots construction progress

• Stainless steel frame bottom-up, acrylic sphere top-down.
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Construction of acrylic sphere

• Construction layer by layer.
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Layer inspection

Inspection of bonding lines.
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Final layer

All the panels are welded together in situ.
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Completion of construction

• Dense packing of PMTs.
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Reconstruction as inverse problems
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Reconstruction with pure water
Pattern recognition

• Inspired by SuperK NIM A 433 (1999) 240–246

• Narrow peak in residual time for vertex.
• Hough transformation for direction.

Likelihood estimator
• Inspired by fiTQun MiniBooNE and SuperK, but without Q.
L =

∏
Nj>0

{
exp

[
−vEλ0

j,[T−t0,Tj−t0]
(~r)

]
vER0

j (Tj − t0;~r)

}
×

∏
Nj=0

exp
[
−vEλ0

j,[T−t0,T−t0]
(~r)

]
.

• ~r: position (x, y, z) and momentum (px, py, pz).
• Employ Markov Chain Monte Carlo (MCMC) to avoid local extrema.
• Simulated annealing is adopted to accelerate convergence.
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AIC for removal of dark noise

AIC = −2 lnL+ 2k

• L: The minimum likelihood of the event

• Use dA = AICv − AIC0 to decide
whether the event is a signal or
background.
• Dataset: Simulation

1 2.2MeV gamma uniformly
distributed in the detector.

2 Events triggered by dark noise.
• It is possible to remove dark noise

from 2.2MeV gamma by AIC.
-200 -150 -100 -50 0 50

AICv - AIC0
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Demonstrated low energy threshold in water phase

• From AmBe calibration → 4.4MeV γ;
• From AmC calibration → 6.1MeV γ;
• Coincident analysis → 2.2MeV γ;
• n20: The total count of PE hits in

[-20,20]ns, primary measure of energy.
• Demonstrates JUNO’s low energy

threshold and clear neutron capture
detection with pure water.
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Photon couting with time
Photon counting is chance to improve JUNO energy resolusion.

Figure: Total charge from overlapping pulses. Figure: Time helps recovering pulses from
fluctuation and noise.

Go directly from waveforms to event time, location and energy.
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Photon counting
Given a light curve µφ(t− t0) received photoelectron (PE), their times being
~z := (t1, t2, · · · , tN ). waveform ~w is a time series.

µ, t0 → ~z → ~w
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reconstruction

µ, t0
fit←− ~z

analyze←−−−− ~w

• overlapping pulses, cannot measure ~z precisely. Big challenge.
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Waveform reconstruction with NN classifier
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Data-driven photo-electron counting
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Reversible jump Markov Chain Monte Carlo
p(~w|t0, µ) = p(~w|∅)p(∅|t0, µ)︸ ︷︷ ︸

no integral

+

∫
~z∈T

p(~w|~z)p(~z|t0, µ)d~z︸ ︷︷ ︸
single integral

+
x

~z∈T 2

p(~w|~z)p(~z|t0, µ)d~z︸ ︷︷ ︸
double integral

+
y

~z∈T 3

p(~w|~z)p(~z|t0, µ)d~z︸ ︷︷ ︸
triple integral

· · · .

NPE is the uncertain count of elements
in ~z.

• Use Markov chain, having ~z jumping over different terms.
JINST 17 P06040, NIM A 1082(2026) 170986

25 / 30



Cutting-Edge
Machine-
Learning

Advancements
at JUNO

Benda Xu

JUNO ν

Construction

Reconstruc-
tion
Water Cherenkov

Waveform

MeV Event

GeV Event

Conclusion

Waveforms to event time, location and energy
• Fusion of waveform analysis and event reconstruction.

L({~wi}|E, t0, ~r) =
∏
i

p[~wi|Ri(t;E, t0, ~r) + bi]

=
∏
i

∑
j

p(~wi|~zj)p[~zj |Ri(t;E, t0, ~r) + bi]

dark noise

waveform

all PE times (sampled)
SPE charge spectrum embedded

total probability

• The PEs on PMT i follow inhomogeneous Poisson process Ri(t;E, t0, ~r). It
captures scintillation profile, time-of-flight, scattering, re-emission, etc.
• Interfacing with trans-dimensional ~z space allow full propagation of

uncertainty.
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End-to-end Neural Networks
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Atmospheric ν

• Machine learning for GeV atmospheric ν → Milo Charavet’s talk
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Probablistic machine learning
• Recent break-throughs e.g. diffusion model are synergy between probability,

neutral network and physics.

Table: table of synonyms

Statistics Computer Science Physics
estimation learning determinate
classification supervised learning
clustering unsupervised learning
data training sample
covariates features
guess estimate

• Wasserman, Larry. All of Statistics: A Concise Course in Statistical Inference. Springer, 2003.
• James, Frederick. Statistical Methods In Experimental Physics. 2nd edition. Wspc, 2006.
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Conclusion
Personal vision on ν experiments
• an inner machine learning and outer statistical approach.

• the statistical part captures well-understood distributions.
• the machine learning part handles complexity of the reality.

• → Andrea Serafini’s talk on calibration and detector surrogates.

Summary
• ν mass ordering motivate JUNO and machine learning studies.
• JUNO represents state-of-the-art of liquid scintillator detector.
• Liquid scintillator filling completed and data taking started.
• Expecting much excitement in physics!

JUNO collaboration since 2014
17 countries/regions, 74 institutes, >700 people.
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Ledders of likelihood
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ν̄ detection with inverse beta decay (IBD)

ν̄e + p −−→ e+ + n

e+/γ scintillation light are collected by photomultipliers.
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ν research enabled by large 20 kt target
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Precision Measurement of Oscillation Parameters
Sensitive to mass differences ∆m2

31,∆m2
21 and mixing angles θ12, θ13.

|〈νe | ν1〉| = cos θ13 cos θ12
|〈νe | ν2〉| = cos θ13 sin θ12
|〈νe | ν3〉| = sin θ13

Non-unitarity
3∑

i=1

|〈νe | νi〉|2 < 1 indicates the

existance of NR and 〈νe |NR〉 > 0.

PDG JUNO
2024 6 years

sin2 θ13 3.2% 12%
sin2 θ12 4.2% 0.5%
∆m2

21 2.4% 0.3%
∆m2

31 1.1% 0.2%

Chin. Phys. C46 12, 1230001 (2022)
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Underwater electronics system
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Liquid scintillator handling system

• Attenuation length >20m

• U/Th < 1× 10−15 g/g

procedures
• Al2O3 for transperancy.
• Water extraction.
• Rn and O2 gas stripping.
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Radiopurity
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Removal of radio-purity preserving paper film

Water washing with hand picking.
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Calibration system
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Water phase: stopping muon
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Water phase: michel electron
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Status of the detector

PMTs
• Gains are stable.
• 8 are dead, about 200 are unstable. (out of 17596)

Radiopurity
• 214Bi/214Po from 238U chain and 212Bi/212Po from 232Th chain
• 238U/232Th less than 1× 10−16 g/g
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Water phase comparison with SK

• The fitted light-yield in water phase is 14.0± 0.1MeV−1

• Higher PMT PDE than SK~(16%)
• Higher PMT coverage rate than SK~(40%)
• Smaller size of detector than SK
• The light of SK is around 10MeV−1
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Supernova burst neutrinos
up to 10 kpc. supernova at the local cluster.
• supernovae observer
• pre-supernova alert
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Supernova relic neutrinos
• Discriminate against atmospheric neutrino background;
• 5σ discovery potential with reference model.
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Solar fusion process

• JUNO is an solar neutrino detector by elastic scattering on the electrons.

predictions of solar neutrino flux
• fusion cross sections are critical inputs

• together with the abundance, temperature and gravity-radiation presure equation
constitutes the standard solar model.

Cleanness of the detector
Solar sensitivity study.

16 / 23



Cutting-Edge
Machine-
Learning

Advancements
at JUNO

Benda Xu

backup

8B neutrinos

8B −−→ 8Be∗ + e+ + νe

• capable to detect 8B in a model
independent way.
• combination of charged and neutral

on 13C.

13C+ νe −−→ 13N+ e−

• measurement of θ12 and ∆m2
12.

Astrophys. J. 965.2: 122 (2024)
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pep and 7Be neutrinos
7Be + e− −−→ 7Li + νe

p + e− + p −−→ 2H+ νe

• better than Borexino (state of the art) in 2 years.
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Neutrinos from CNO-cycle
13N −−→ 13C+ e+ + νe
15O −−→ 15N+ e+ + νe
17F −−→ 17O+ e+ + νe

• better than Borexino (state of the art) in 6 years.
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Veto
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Non-zero ν mass beyond the standard model
(BSM)

Non-zero mν is established as a solution to the solar neutrino problem.

Indicates the existance of right-handed
counterparts:
• Lorentz: try travel faster than a νL.
• Higgs: right-handed ν to have mass.

L =
1

2
MNN

c
RNR + YνHLLNR + · · ·+ h.c.

MN � mν is the mass of majorana right-handed ν.
The standard solar model defeated standard model of particle physics.
• Solar physicists won the battle against their particle colleagues;
• Particle physicists are excited to lose!
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The inevitable majorana term and seesaw
mechanism
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Seesaw mechanism mν ∝ 1/MN is a minimal extension to the standard model.

Clues to the difficult problems of physics, astronomy and cosmology:
1 How ν have mass and why the mν is so small (< 1 eV).
2 If lepton number is violated i.e. if there are majorana fermions in nature.
3 If leptogensis created the matter-antimatter asymmetry.
→ the origin of matter preluding nucleosynthesis.

4 νR is among the dark matter candidates.
→ gravitational evolution of galaxies.

JUNO is the next milestone
to measure the ν mass spectra and falsify νL-NR mixing.
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