Exotic Defect Dynamics in an Axion Cosmology

Yu Komiya | YITP, Kyoto University

Dark Matter and Black Holes Workshop | IPMU, University of Tokyo | 2/12/25

Work Supervised by Assoc. Prof. Fumihiro Takayama

Contents

	Symmetry Breaking in an Inflationary Universe
	The Peccei-Quinn Mechanism and Axion Cosmology
-	Defect Formation
	Standard Scenario: Primordial Black Hole (PBH) Formation
	The Monopole-Domain Wall System
	Regular Magnetic Black Holes
	Conclusions and Outlook

Symmetry Breaking in an Inflationary Universe

Inflation¹ explains observations including flatness, monopole abundances, and the CMB

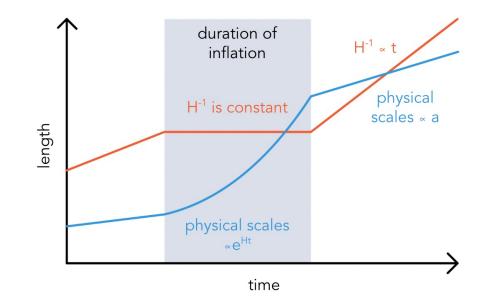
Monopole problem – produced as GUT symmetry broken at early times, overpopulation in absence of effective dilution mechanism

Often predicted by inflationary models:

Symmetry breaking

Degeneracy of vacua

Phase transitions



The Peccei-Quinn Mechanism and Axion Cosmology

Peccei-Quinn mechanism¹: an elegant solution to the strong CP problem

- ϑ is dynamical
- Axion acquires mass from QCD anomaly
- QCD axions are pseudo-Nambu-Goldstone bosons
- lacksquare stabilised at CP conserving minimum in axion potential
- Non-trivial, physically relevant EM coupling

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \varphi \partial_{\mu} \varphi - \frac{\lambda}{4} (\varphi^2 - \eta^2)^2$$

$$\varphi = e^{i\vartheta} = \eta e^{ia/\eta}$$

$$\mathcal{L} = \frac{1}{2} \eta^2 \partial_{\mu} \vartheta \partial_{\mu} \vartheta - \frac{m_a^2 f_a^2}{N_{DW}} [1 - \cos(N_{DW} \vartheta)]$$

$$f_a \equiv \eta/N_{DW}$$

$$\mathcal{L}_{EM} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{\alpha N_{DW}\vartheta}{8\pi}F_{\mu\nu}\tilde{F}^{\mu\nu}$$

The Peccei-Quinn Mechanism and Axion Cosmology

We will proceed with the following choices of parameters

•
$$N_{DW} = 1^1$$

- PQ symmetry is broken during inflation²
- m_a , f_a obey astrophysical bounds³:

$$10^{-6}eV < m_a < 0.1eV$$

 $10^{8}GeV < f_a < 10^{12}GeV$

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \varphi \partial_{\mu} \varphi - \frac{\lambda}{4} (\varphi^2 - \eta^2)^2$$

$$\varphi = e^{i\vartheta} = \eta e^{i\alpha/\eta}$$

$$\mathcal{L} = \frac{1}{2} \eta^2 \partial_{\mu} \vartheta \partial_{\mu} \vartheta - \frac{m_a^2 f_a^2}{N_{DW}} [1 - \cos(N_{DW} \vartheta)]$$

$$f_a \equiv \eta / N_{DW}$$

$$f_a \equiv \eta/N_{DW}$$

$$\mathcal{L}_{EM} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{\alpha N_{DW} \vartheta}{8\pi} F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Defect Formation

Four classes:

- 1. Domain walls
- 2. Cosmic strings
- 3. Monopoles
- 4. Textures

Naturally produced in a large number of theories, largely due to

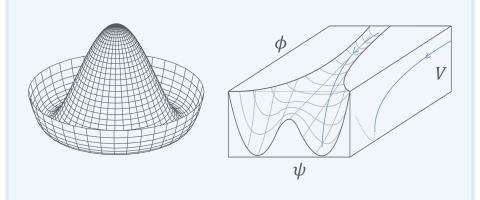
Phase transitions

Symmetry breaking

Degeneracies are common to many theories

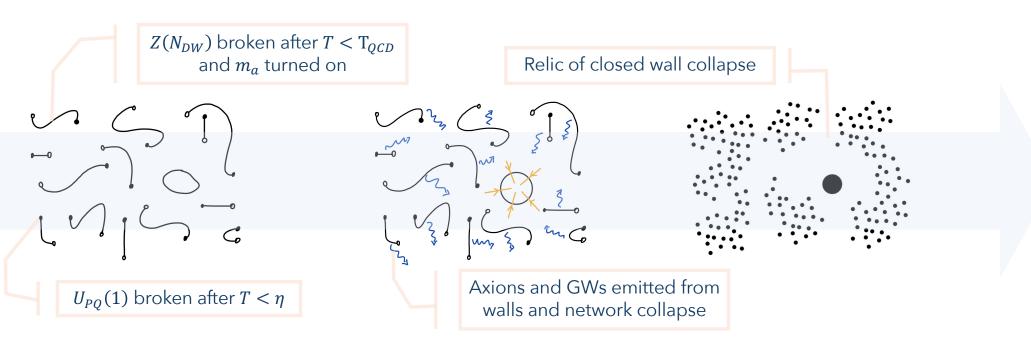
L, different vacua separated by defects

L, energies are usually equal



Defect Formation

String-domain wall networks are naturally formed from axion cosmology



Standard Scenario: PBH Formation

Closed domain walls are found to collapse to PBHs (or wormholes¹) upon horizon re-entry

Assuming for simplicity:

Spherical symmetry

Thin wall in comparison to radius

Often assumed to form PBH if²

$$2GM \gtrsim r \sim m_a^{-1}$$

Gravitational waves and axion emission upon collapse

(GW emission also due to $\mathcal{O}(\rho) \sim \mathcal{O}(p)$)

$$ds_{+}^{2} = -\left(1 - \frac{M}{r}\right)dt^{2} + \left(1 - \frac{M}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2} = g_{\mu\nu}^{+}x^{\mu}x^{\nu}$$

$$ds_{\Sigma}^{2} = -d\tau^{2} + R^{2}d\Omega^{2} = \gamma_{ab}\zeta^{a}\zeta^{b}$$

where $\zeta^a = (\tau, \theta, \varphi)$

$$ds_{-}^{2} = -dt^{2} + dr^{2} + r^{2}d\Omega^{2} = g_{\mu\nu}^{-} x^{\mu} x^{\nu}$$

² S. Ge et. al., 2023

Standard Scenario: PBH Formation

PBHs proposed to be dark matter candidates

Abundance estimated and constrained by

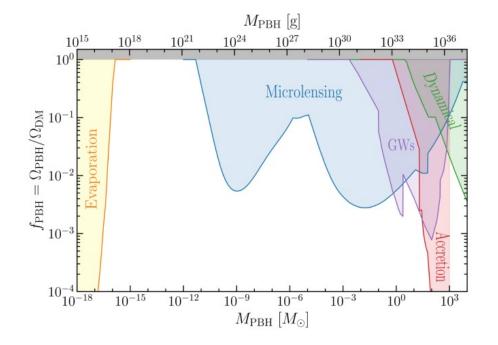
Axion abundance

Evaporation

Observational data

Ly other possibilities allowing for larger/difference viable parameter space?

Ly other final states other than black holes?



The Monopole-Domain Wall System

Monopoles and axion fields interactions unique due to anomalous $\vartheta F_{\mu\nu}\tilde{F}^{\mu\nu}$ term in the theory's Lagrangian

- Formed in gauge symmetry breaking, contains fixed mass and stable core region ('t Hooft-Polyakov monopoles)
- Monopoles have dyonic (electrically charged) excitations
- Charge is dependent on value of ϑ (Witten effect¹)
- Charge conservation ⇒ induced charge on domain wall

Dirac quantisation condition dictating electric and magnetic charge on a particle²:

$$qg = 2\pi N, \qquad N \in \mathbb{Z}$$

$$q = ne - e \frac{\vartheta}{2\pi}$$

The Monopole-Domain Wall System

This hybrid defect is proposed to have a stable final state—the monopole bag¹

⇒ domain wall must collapse without forming a PBH

Suppose $\vartheta(r \to 0) = 2\pi$, $\vartheta(r \to \infty) = 0$:

$$B_r = \frac{1}{er^2}$$

$$E_r = -\frac{e^2}{8\pi^2}\vartheta(r)B_r(r) + \frac{e}{r^2} = \frac{e}{4\pi r^2}\left(1 - \frac{\vartheta(r)}{2\pi}\right)$$

 $\boldsymbol{E} \cdot \boldsymbol{B}$ term implies an effective potential:

$$V(\vartheta) = m_a^2 f_a^2 (1 - \cos \vartheta) + \frac{e^2}{32\pi^2 r^4} \left(\frac{\vartheta}{2\pi} - 1\right)^2$$

When
$$m_a^2 f_a^2 \ll \frac{e^2}{32\pi^2 r^4}$$
: $\vartheta(r)=2\pi\left[1-\exp\left(\frac{R_b}{r}\right)\right]$
$$R_b=\frac{e^2}{8\pi^2 f_a}$$

The Monopole-Domain Wall System

Notable features of the monopole bag

- For physical minimal case with $N_{DW} = 1$, complete screening of dyon charge is possible
- Potential dark matter component
- Constraints include
 - Astrophysical bounds (Parker bound¹)
 - (Non-)Detection
 - Primordial fields
 - Clustering behaviour

 $\boldsymbol{E} \cdot \boldsymbol{B}$ term implies an effective potential:

$$V(\theta) = m_a^2 f_a^2 (1 - \cos \theta) + \frac{e^2}{32\pi^2 r^4} \left(\frac{\theta}{2\pi} - 1\right)^2$$

When
$$m_a^2f_a^2\ll \frac{e^2}{32\pi^2r^4}$$
:
$$\vartheta(r)=2\pi\left[1-\exp\left(\frac{R_b}{r}\right)\right]$$

$$R_b=\frac{e^2}{8\pi^2f_a}$$

Regular Magnetic Black Holes

Black holes with non-singular centres as an alternative final state of collapse

Monopole naturally provides a regular core region with de Sitter geometry¹

At critical mass $M_{crit}=q_{m}$, exterior collapses to a black hole geometry with

one degenerate
Killing horizon if
$$M = M_{crit}$$

two Killing horizons
at r_{\pm} if $M > M_{crit}$

Domain wall and exterior:

$$ds_{RN}^{2} = -\left(1 - \frac{r_{s}}{r} + \frac{q_{m}^{2}}{r^{2}}\right)dt^{2} + \left(1 - \frac{r_{s}}{r} + \frac{q_{m}^{2}}{r^{2}}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}$$

Monopole core:

$$ds_{dS}^2 = -(1-H^2r^2)dt^2 + (1-H^2r^2)^{-1}dr^2 + r^2d\Omega^2$$

$$H = \frac{8\pi G}{3}\frac{\lambda\eta^4}{4}$$

Regular Magnetic Black Holes

Dynamics are non-standard with observationally relevant consequences

Evaporation described by Vaidya-like spacetime¹:

$$ds_V^2 = -\left(1 - \frac{r_s}{r} + \frac{q_m^2}{r^2}\right)du^2 - 2dudr + r^2d\Omega^2$$

where u is retarded time

Extremal magnetic black holes can be stable relics

Non-singular relics as dark matter

Domain wall and exterior:

$$ds_{RN}^{2} = -\left(1 - \frac{r_{s}}{r} + \frac{q_{m}^{2}}{r^{2}}\right)dt^{2} + \left(1 - \frac{r_{s}}{r} + \frac{q_{m}^{2}}{r^{2}}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}$$

Monopole core:

$$ds_{dS}^{2} = -(1 - H^{2}r^{2})dt^{2} + (1 - H^{2}r^{2})^{-1}dr^{2} + r^{2}d\Omega^{2}$$

$$H = \frac{8\pi G}{3} \frac{\lambda \eta^4}{4}$$

Conclusions and Outlook

We considered a specific physical scenario in which axion domain walls are produced in an early-time inflationary cosmology

Monopole problem continues to plague a host early universe models¹, with existing solutions including dissociation on domain walls² and additional symmetry breaking phases³

We propose alternative final states to a well-studied class of axion models: monopole bags and regular magnetic black holes

Opens additional parameters space for considering dark matter from primordial processes

Close ties to other studies of regular solutions such as gravastars, and to dynamics of other early universe objects such as vacuum bubbles formed in phase transitions

Updates to bounds and constraints for application to cases such as ours necessary

Appendices

- Standard Domain Wall Collapse
- ② More Details on Monopole Bags
- Regular Black Hole Formation and Conditions

Standard Domain Wall Collapse

Condition $2GM \gtrsim r \sim m_a^{-1}$ derived from point when radiation from bubble/defect becoming significant¹

There are caveat and assumptions:

- Sphericity maintained
- No radiation backreaction
- No angular momentum or other unexpected degrees of freedom

Bounds for when BH very unlikely to be formed, but not for when BHs definitely formed

Repulsive gravitational potential property shared by domain walls and monopoles

Formation of regular BHs from standard domain wall collapse?

More Details on Monopole Bags

Given that
$$B_r=rac{1}{er^2}$$
, $E_r=-rac{e^2}{8\pi^2}\vartheta(r)B_r(r)+rac{e}{r^2}=rac{e}{4\pi r^2}(1-rac{\vartheta(r)}{2\pi})$

The equation of motion of ϑ is

$$0 = f_a^2 \ddot{\vartheta} - f_a^2 \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \vartheta}{\partial r} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{8\pi^2} \mathbf{E} \cdot \mathbf{B} = f_a^2 \ddot{\vartheta} - f_a^2 \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \vartheta}{\partial r} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{e^2}{32\pi^3 r^4} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{\vartheta}{2\pi} \left(1 - \frac{\vartheta}{2\pi} \right) + m_a^2 f_a^2 \sin \vartheta - \frac{\vartheta}$$

The energy for the stationary axion configuration can be derived from the classical effective action and found to be

$$E = \int dr r^2 \left[\frac{1}{2} (\nabla \theta)^2 + m_a^2 f_a^2 (1 - \cos \theta) + \frac{e^2}{32\pi^2 r^4} \left(1 - \frac{\theta}{2\pi} \right)^2 \right]$$
 $V(\theta)$

The effective potential $V(\vartheta)$ implies a critical radius a which the term $m_a^2 f_a^2 (1 - \cos \vartheta)$ is negligible. Solving the equation of motion gives the field profile

$$\vartheta(r) = 2\pi \left[1 - \exp\left(\frac{R_b}{r}\right) \right]$$

with stable monopole bag radius $R_b = \frac{e^2}{8\pi^2 f_a}$

Regular BH Formation & Conditions

Ingoing radiation also modelled by a Vaidya-like spacetime, except with¹

$$ds_V^2 = -\left(1 - \frac{r_s}{r} + \frac{q_m^2}{r^2}\right) dv^2 - 2dvdr + r^2 d\Omega^2$$

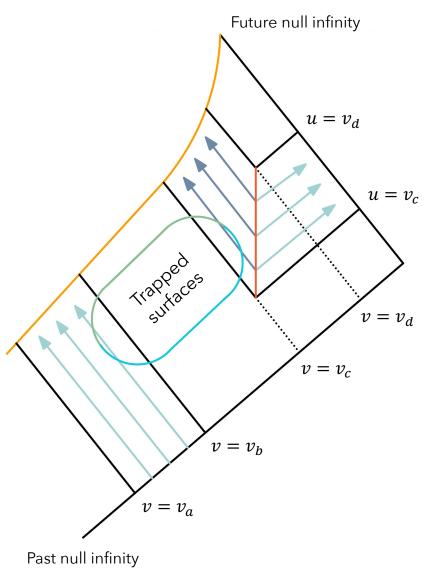
in which v is the advanced time $v = t + \int \frac{dr}{F(r)}$

Some traditional energy conditions may be violated in forming a regular space time:

WEC	$ \rho \ge 0, \rho + p_{\perp} \ge 0 $
SEC	$\rho + \mathbf{p}_{\parallel} + 2p_{\perp} \ge 0$
NEC	$\rho + p_{\perp} \geq 0, \rho + p_{\parallel} \geq 0$
DEC	$\rho \geq 0, p_{\parallel,\perp} \in [-\rho, \rho]$

Regular centre

Positive energy flux radiation
Inner Killing horizon
Outer Killing horizon
Negative energy flux
radiation
Pair Creation surface



¹ S. A. Hayward, 2005

18