From neutrons to
neutrinos and back again

Pablo FM (DIPC), a GdChild
2025/04/23 — The GdFather is reborn



Outlook

In the beginning there was
gadolinium and neutrons...

* The gadolinium R&D era
— When I didn’t know
— When I learned

* Neutron thermalization and
acceleration of research

* Looking forward and
beyond

And then, there is no end

(a “popurri”)

Let’s gadiate all detectors! (or
closer to Gd-efficient)
Atmospheric neutrinos
Combined (neutrino
oscillation) analyses for the
bigger picture



The Gd R&D era

[Submitted on 26 Sep 2003]
GADZOOKS! Antineutrino Spectroscopy with Large Water Cerenkov Detectors

John F. Beacom, Mark R. Vagins

Thanks to the commitment of the Super-Kamiokande
collaboration a long and fruitful R&D period started with the
EGADS prototype

It was already crucial for the UAM to become the first Spanish
SK (and then HK) member in 2008

But it was a bit too early for me...






Nevertheless, thanks to EGADS and the SuperK-Gd project, I
could start my research very soon almost 15 years ago

At it was like being
at home, huge green
mountains and mines,
only learning much
more







200 ton tank

The next 3 summers we pre-
calibrated the EGADS/HK PMTs P B
and installed EGADS (witha 8K, . ) |
LINAC festival in the middle) By stesn

..and a bit of rust-cleaning again

0

Water transparency measurement device

And started to analize one of the biggest threats of Gd, having
too many radioactive impurities

e Radioactive measurement (Ge detector) of a lot of Gd batches

* Estimate backgrounds for solar and reactor neutrinos and, of
course, the Diffuse Supernova Neutrino Bakcground (DSNB)



thermalisation

I I I 1

GADZODOKS!

" «—— Reactor E
Supernova ;:
(DSNB)

' Atmospheric

=
-
=

-y

20 25 30 35

y-cascade
(8 MeV)
Gd-capture
10°F
3 I0F
e :
< 90 =
2 a0 o2 E
=) b -
o 60 oo 10°F
S 50 =
3 40 o i
5 30 10 F
S 20
= £
2 13 1075
0 0.002 0.02 0.2
Gadolinium sulfate concentration (%)
Isotone Natural Cross-section | De-excitation
SOLOPE 1 Abundance (%) (barn) energy (MeV)
152Gd 0.20 1050 6.25
154Gd 2.18 85.0 6.44
155Gd 14.80 60700 8.54
156Gd 20.47 1.71 6.36
157Gd 15.65 254000 7.94
158Gd 24.84 2.01 5.94
160Gd 21.86 0.765 5.64

10724

-
<
w

O|||1|||| T T

Gd-neutron capture signal

Detector background (T2K dummy trigger)

107y

i

0.2 04 06 08 1
Gd-neutron tagging likelihood

25

20

15

10

E\

1
a

n+~ Gd - Gd* =X Gd 4 s

o

Prompt signal

Gd-capture signal

(3]

10 15 20 25 30 35
Event time (us)



It’s a great moment to thank the support from everyone in SK
and all they taught me, especially Mark as the one coordinating
and leading every Gd-aspect.

Finally, I started to understand the physics and what neutrinos
were about, and was able to start my PhD in SuperK-Gd.



Low Energy Physics of SuperK-Gd

* Below ~70 MeV, inverse beta decay

1/8 e

dominates the antineutrino cross-section
Neutron-tagging provides a very clean way
to separate neutrinos and (most of)
spallation background from small
antineutrino signals

One of the worries was that there might be too many
neutrons, mainly coming from radioactivity

The other one is that Gd was too “dirty” to be compatible
with ultrapure water and O(MeV) neutrino physics

. or the effect of Gd in light transmittance of water
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23 Spontaneous Fission

what

When the nucleus splits, gammas and
neutrons are emmited. In the case that
an energetic enough (MeV) gamma and
a single neutron could match the IBD
signal.

T i e 1
Nse(ly + 1 Gd-tagged n) = 21. 'rﬁ( o )

day - SKFV

impact

This was/is one of the main new
backgrounds for the DSNB searches,
which put very rigid limits to the
contamination from this chain.
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Radioactivity-Induced Neutron Production

what

Neutrons produced due to the

radioactive contamination is large,

there will be many neutron captures

with no prompt signal.

They could be mistaken for neutrino

signals or even saturate the detector
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This is the largest radioactive
background source, all chains
contribute largely to it.

Therefore it impacts solar neutrinos
(because of the gammas from the
capture) and, to a lesser extent,
antineutrinos (reactor and DSNB) due
to accidental coincidences.

Additionally, they impact the ability to
detect very low-enery antineutrinos
from pre-supernova stages



B-Rays from Radioactivity

what

"The main contributions are from the
20871 (Qp = 5.00 MeV), #?Bi (Qp = 2.25
MeV) and ?"Bi (Qp = 3.27 MeV)
isotopes, those with higher Qg-value of
the three radioactive chains.
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This backgroun largely affects the
lower energy bins of solar neutrinos.

But could also contribute significantly
to reactor antineutrinos due to
accidental coincidences.



Low Energy Physics of SuperK-Gd

With that we could set the requirements on the cleanness of
gadolinium (R&D cleaning programs) or at least set our physics

goals.
Water line . Gas linef.
water + Gd,(SO,);  XMASS Rn-less air
[Submitted on 13 Sep 2022] from 15t tank
Development of Ultra-pure Gadolinium Sulfate for the e \ 1

Super-Kamiokande Gadolinium Project ! Resin (AfL020)

K. Hosokawa, M. Ikeda, T. Okada, H. Sekiya, P. Fernandez, L. Labarga, |. Bandac, J. tank

Perez, S. Ito, M. Harada, Y. Koshio, M. D. Thiesse, L. F. Thompson, P. R. Scovell, E.
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https://academic.oup.com/ptep/article/2023/1/013H01/6888020?login=false

That’s way too many things/backgrounds to take into account,
let’s move to higher energies.



High(er) Energy Physics of SuperK-Gd

What opportunities could neutrons bring to mainly atmospheric,
but also accelerator neutrinos

* Varied interaction modes and with oxygen nuclei make that
separating neutrinos from antineutrinos is not precise but
statistical




High(er) Energy Physics of SuperK-Gd

e Still, we studied the potential of neutrons beyond that
— Neutrino-antineutrino separation
— Classification of charged and neutral currents
— Neutron-corrected neutrino energy reconstruction

* All of them rely on the same principle: The amount of
neutrons knocked-out encloses in a “diffuse way” information
of the neutrino interactions that is washed out by nuclear

media and secondary interactions
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NC-CC classification
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Neutron-corrected energy reconstruction

Upon event classification, the

differences in neutron

mutplicities are impacted by the

amount of neutrino energy

transferred to hadrons. This

complements the visible energy

reconstruction of charged e

leptons. son
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Concluding my first Gd-path

And Mark (and Roger) came all the way to

Spain to hear me saying all this once again ki eutrino Physics in Presen

Pablo Fernandez Menéndez




A brief saying of my current whereabouts



“Gadiating” the next-generation, HK

Gadolinium (and everything that comes with it) is expensive, so
something else has to be done to tag neutrons in Hyper-

Kamiokande

* Take advantage of HK superior PMTs and machine-learning to

improve neutron tagging on hydrogen

New Approaches of first selection for Neutron
Tagging in Hyper-Kamiokande

Sergio Luis Suarez Gomez®" and Pablo Fernandez Menéndez"*
a Department of Mathematics, University of Oviedo, C/ Leopoldo Calvo Sotelo 18, Oviedo, Spain

b University of Liverpool, Department of Physics, Liverpool, United Kingdom

From 58% to 82%
selection efficiency at the
same false positive rate
of previous methods


https://inspirehep.net/files/2d4328e427f6dd450a8eaa958cf0fd8f

“Gadiating” the next-generation, WCTE&IWCD

WCTE is another small Gd-based
prototype installed at CERN

* Ideal detector to study the System (GBS

Water

neutron production of different pipes

Detector liting lugs —__, ~ 1

beam particles (e* , p* , 1+,
and p) from 200 MeV/c to o
1.2 GeV /C ((e(:i:fT;Jser ball, Ni ball,'/

* Improve the impact of neutrons Pogemey

for accelerator and atmospheric
neutrinos

Followed and complemented by IWCD?



Combined Oscillation Analyses

* There have been two major strategies combining the neutrino
experimental data to improve the precision of the oscillation
parameters

- Solar and reactor for 0:; and Am?,
- Atmospheric and long-baseline (and reactor) 0., Am?2;, Ocr
and the ordering

* The latter are the most critical as those parameters are the
most uncertain

* But there are issues:

— Pheno.: not enough detail (especially for SK)
- Exp./official: not all datasets are included
— Both: very CPU demanding (oscillations, fits, systematics)



Focusing on atmospherics

Oscillation Probability
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Combined Oscillation Analyses

Working towards a comprehensive solution:

Atmospheric Neutrino Monte Carlo Simulations

* Closed eyes to make an SK simulation
using only public information
— Which is being improved further

thanks to the latest SK MC release

— And can be used for many other
things

[Submitted on 21 Mar 2025]

Probing the general axion-nucleon interaction in water Cherenkov
experiments

Mael Cavan-Piton, Diego Guadagnoli, Axel lohner, Pablo Fernandez-Menendez, Ludovico Vittorio

Fernandez, Pablo (Contact person) 1+ 2

Arglelles-Delgado, Carlos (Project me

Jin, Miaochen (Project member )3

o
2
3.

Vartinez-Soler (Project member) 3
Hide affiliations
rROR Donostia International Physics Center

rROR University of Liverpool
rOR Harvard University

‘We provide the MC simlation files of atmospheric neutrinos for the following experiments in HDF5 (https:/
www. hdfgroup.org/solutions/hdfs/) format.

IceCube-Upgrade: Copied from publibly available simulation from the [IlceCube Collaboration](hitps://
icecube.wisc.edu/data-releases/2020/04/icecube-upgrade-neutrino-monte-carlo-simulation/) converted into
.hdf5 format for completeness.

ORCA: Projected simulation based on lceCube-Upgrade's upgrade Monte Carlo applying reported detector
response.

SuperK: Simulation of fully-contained (FC) events with no neutron tagging covering the first 3 phases of the
experiment. It can be used as simulation for Hyper-Kamiokande scaling the weights accordingly (x8.3).
SuperK with neutron tagging on Gadolinium: Simulation of fully-contained (FC) events with neutron tagging
on gadolinium (80% efficiency) assuming the SuperK detector is loaded with Gd at the goal concentration of
0.1%.

SuperK with neutron tagging on Hydrogen: Simulation of fully-contained (FC) events with neutron tagging
on hydrogen (~24% efficiency) for phases 4 and 5 of SuperK and also used as HyperK's simulation file scaling
the weights accordingly (x8.3)


https://zenodo.org/records/14630968
https://arxiv.org/pdf/2503.17490

Combined Oscillation Analyses

* How the sensitivty to the “atmospheric” parameters will look

like adding all atmospheric V data
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FEATURED IN PHYSICS
Measuring Oscillations with a
Million Atmospheric Neutrinos

C. A Arglelles 1'*, P. Fernandez 2'3fT,L Martinez-Soler
1%, and . Jin (g125) @15

OPEN ACCESS

Share ~

Show more ~

Phys. Rev. X 13, 041055 -
Published 20 December, 2023

Export Citation

To be followed very
soon by a combined
fit to the data..


https://journals.aps.org/prx/pdf/10.1103/PhysRevX.13.041055

Combined Oscillation Analyses — —uir

* Improving the fit methodology ..ongoing... -
- For a frequentist/profiling approach, one

(s)

working thing is to compute analytically é 2
the derivative w.r.t. the systematic .
errors
— For marginalizing, you also get similar v
improvements by using more ke it e

sophisticated intagration methods that
rely in derivatives



Combined Oscillation Analyses

— It means you will need the derivatives of the oscillation
probabilities
— Rather complicated to do “analytically”, but it’s an
opportunity
* Improve computation time of oscillation probabilities
* They bring new insights for the oscillation effects (see
soon to be published HK sensitivity paper)

..out that’s ongoing and maybe for another time...

1 ] c1ll: tlom Prok hilitie s
H:i ] -If-xi--

Hamiltonian Monte Carlo for Bayvesian Inference at High-Energy Physics Statistical Analyses



Summary

* For me, it opened the huge and exciting field of neutrino
physics research

* But adding gadolinium in water-Cherenkov detectors brought
loads of original research paths, developments and new ideas,
and will continue to do so for many years

Congratulations and thank you, Mark!
Thank you very much for the invitation and

for everything
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