

The SK-Gd Journey Toward DSNB Detection Hiroyuki Sekiya

The Gdfather is reborn (Mark's 60th birthday)

May 24, 2025

Super-Kamiokande History

Super-Kamiokande is now nearly 30 years old

— That's half of Mark Vagins!

Super-Kamiokande (since July 5, 2022)

Atmospheric v

TeV

- Ring imaging Gd-doped water Cherenkov detector
 - 49.5k m³ of pure water with 16.2 tons of Gd(0.033 w%)
 - 39 tons of $Gd_2(SO_4)_3 \cdot 8H_2O$

LowE Group SNV

Solar v

~3.5 MeV ~20

- ~75% Neutron capture efficiency
- Target volume 32k m^3 for SN v offline analysis
 - 22.5k m³ for SN n online monitoring
- 11129 50cm PMTs for Inner detector
- 1885 20cm PMTs for outer detector

~100

1km (2700 mwe) underground in Kamioka

atmpd Group

• Measurable : Energy, neutrino types, and direction

~1 GeV

The interaction channels

Supernova neutrino in SK $\bar{\nu}_{e} + p \rightarrow e^{+} + n$

The main channel Inverse Beta Decay reaction (IBD) ~90%

The direction of the positron does not reflect the direction of the neutrino

As the neutrino telescope Elastic Scattering interactions (ES) ~5%

The electron keeps the neutrino direction information.

 $\nu + e$

Once a supernova explosion occurs in the Milky Way

 Model discrimination and parameter estimation should be possible using SK's data.

Just waiting… with preparation for Multi-Messenger Astronomy

Diffuse Supernova Neutrino Background

Supernova Relic Neutrino

Neutrinos emitted in past supernova explosions and stored in the current universe

Promising extra-galactic v

There must have been $O(10^{18})$ explosions in the history of the universe.

Diffuse Supernova Neutrino Background

- $\checkmark\,$ History of Star Formation
- ✓ BH formation

Access to

 $\checkmark\,$ Mechanism of the supernova explosion

Diffuse Supernova Neutrino Background

Access to

- ✓ BH formation
- $\checkmark\,$ Mechanism of the supernova explosion

Experimental DSNB search overview@2021

Experimental DSNB search overview@2021

Background of DSNB search

• These BGs (using >30MeV region) can be estimated with systematic/statistical uncertainties.

12

Background : Atmospheric v NC

 $\nu_x/\overline{\nu}_x$ n γ

• Large uncertainty

NC(QE)

- Atm. v flux × NCQE cross-section (-T2K measurement) × Number of generated neutrons (-T2K measurement)
 - \times Neutron detection efficiency

 $(\leftarrow Am/Be \ calibration \)$

Understanding and reducing uncertainty is important

Background : Accidental and Spallation ⁹Li

Accidental

⁹Li

• Spallation events without neutrons

+ fake neutron

• Beta decay + n: same topology as IBD

Both can be reduced using the spallation cut and strict neutron selection, but there is a tradeoff with the efficiency of detecting signal events. \rightarrow Optimize cut conditions for each energy

Model-independent limit

SK-IV 2970 days (Pure Water Phase)

- Strongest limit above 15 MeV
- Already reached some model prediction regions

Phys. Rev. D 104, (2021) 122002

DSNB "signal" search in Water Cherenkov Det.

- Search for inverse-beta decay (IBD) $\bar{\nu}_e + p \rightarrow e^+ + n$
- Largest cross-section @ DSNB signal range
- Simple event topology: 1 positron and 1 neutron
- → Require only one delayed neutrons signal

In pure water, the neutron tagging efficiency is low.

Gd-loading improves neutron tagging efficiency.

The interaction channels

Challenges of loading Gd to SK

R&D items in 2016

Stopping the SK leakage 1st level Environmental Estimation of the leak location Safety Development of the leak-fixing method • Reduction of RIs from $Gd_2(SO_4)_3$ powder Test of Ra removal resins 2nd level Material screening with HP-Ge detectors Minimize negative • High sensitivity measurement with ICP-MS impacts to on-going Test with the EGADS demonstrator physics programs at SK • Continuous monitoring of the water quality • Continuous monitoring of Gd concentration • Demonstration of Gd-captured neutron signal/QBEE upgrade 3rd level Construction of the new water system Further investigate physics capability Gd gamma measurements and improved simulation of with n-tagging Gd capture

Development of Water-sealing material

Polyurethane-based materials had a track record of water leakage, not only at SK but also at SNO.

This was due to the hydrolysis of the ester/ether bonds they contain.

To address this issue, we developed a polyurea-based material.

Our special requirement

- Materials with minimal elution into the Gd water and that do not degrade water transparency
- Materials with low radon emanation that do not increase the low-energy background

Cleaning before the Painting

• A major cleaning of the 40-meter tank carried out by collaborators and volunteers from around the world

Water-sealing work on the SK tank

Primer painting

Mixing two materials (main and curing agent)

Mine-guard painting

Checking and correction

Result of SK tank refurbishment

After completely filling the tank with water, we conducted the water leakage measurement from 11:30 AM on January 31st to 3:52 PM on February 7th, 2019 — a total duration of 7 days, 4 hours, and 22 minutes.

Conclusion

- No water leakage has been observed from the SK tank within the sensitivity of our measurement, which is better than 0.017 tons per day.
- This corresponds to less than 1/200th of the leak rate recorded before the 2018–2019 tank refurbishment.

Water purification

Gd sulfate could not be doped with the original SK water system designed to remove all the impurities other than H_2O .

Key technology: Ion exchange resin

Development of special ion exchange resins Anion exchange resin $OH^- \rightarrow SO_4^{2-}$ Cation exchange resin $H^+ \rightarrow Gd^{3+}$

RI impurities (Ra²⁺, UO₂(SO₄)₃⁴⁻ etc.) are also removed.

• The recirculation flow rate had been doubled to 120m³/h

Required purity of $Gd_2(SO_4)_3 \cdot 8H_2O$

- Radioactive impurities (²³⁸U, ²³²Th, etc.) affect SK's solar neutrino observations above 3.5MeV due to energy resolution.
- 99.999% high purity products contain 50~100 mBq/kg of RIs.

RI levels of Typical 5N $Gd_2(SO_4)_3 \cdot 8H_2O$						
	Main sub- Chain chain isotope		Radioactive concentration (mBq/kg)			
	²³⁸ U	²³⁸ U 50				
		²²⁶ Ra	5			
	²³² Th	²²⁸ Ra	10			
		²²⁸ Th	100			
	²³⁵ U	²³⁵ U	32			
		²²⁷ Ac/ ²²⁷ Th	300			

Simulated energy spectrum in SK

→ 3 orders reduction

The difficulty that we overcome;

- Homogeneous production of 40 tons of powder
- Evaluation methods

Required RI levels ^{238}U < 5mBq/kg</td>= 400 ppt ^{232}Th < 0.05mBq/kg</td>= 13ppt

Purer Gd arXiv:2209.07273

Kamioka ICP-MS result

- Development with NYC
 - Pure Gd₂O₃
 - Further purification of $\mathrm{Gd}_2\mathrm{O}_3$ for the second loading

Nippon Yttrium Co., ltd.

- Solvent extraction
- Neutralization and sulfation
- Evaluation with Boulby, Canfranc, and IBS CUP
 - Lots of Ge detectors were needed to evaluate all the batches of the feedstock of Gd_2O_3 and the production LOTs of the $Gd_2(SO_4)_3 \cdot 8H_2O$

The 1st Gd-loading Jul. 14 – Aug. 18, 2020

The pure water in the SK tank was taken from the top and returned from the bottom in 0.02% $Gd_2(SO_4)_3$ solution (=0.01% $Gd = 0.026\% Gd_2(SO_4)_3 \cdot 8H_2O$) It took 35 days to replace 50,000 tons of water at 60 m^3/h

8.2 kg of $Gd_2(SO_4)_3 \cdot 8H_2O$ + 768 L of SK water = total 13 tons

Repeated every 30 minutes for 24 hours for 35 consecutive days

Just after mixing

One batch:

Spallation neutron for Gd check

 μ-induced spallation neutrons (the BG events!) were used for Gd concentration monitoring

List of spallation products

S.Li and J.Beacom, Phys. Rev. C 89, 045801 (2014)

Isotope	Half-life (s)	Decay mode	Yield (total) (×10 ⁻⁷ μ^{-1} g ⁻¹ cm ²)	Yield (E > 3.5 MeV) (×10 ⁻⁷ μ^{-1} g ⁻¹ cm ²)	Primary process
n			2030		
¹⁸ N	0.624	β^{-}	0.02	0.01	¹⁸ O(n,p)
^{17}N	4.173	$\beta^{-}n$	0.59	0.02	$^{18}O(n,n+p)$
¹⁶ N	7.13	$\beta^-\gamma$ (66%), β^- (28%)	18	18	(n,p)
¹⁶ C	0.747	$\beta^{-}n$	0.02	0.003	$(\pi^-,n+p)$
^{15}C	2.449	$\beta^{-}\gamma$ (63%), β^{-} (37%)	0.82	0.28	(n,2p)
^{14}B	0.0138	$\beta^-\gamma$	0.02	0.02	(n,3p)
¹³ O	0.0086	β^+	0.26	0.24	$(\mu^{-},p+2n+\mu^{-}+\pi^{-})$
${}^{13}B$	0.0174	β^{-}	1.9	1.6	$(\pi^{-}, 2p+n)$
^{12}N	0.0110	β^+	1.3	1.1	$(\pi^+, 2p+2n)$
${}^{12}B$	0.0202	β^{-}	12	9.8	$(n,\alpha+p)$
^{12}Be	0.0236	β^{-}	0.10	0.08	$(\pi^-, \alpha + p + n)$
¹¹ Be	13.8	β^{-} (55%), $\beta^{-}\gamma$ (31%)	0.81	0.54	$(n,\alpha+2p)$
¹¹ Li	0.0085	$\beta^{-}n$	0.01	0.01	$(\pi^+, 5p + \pi^+ + \pi^0)$
^{9}C	0.127	β^+	0.89	0.69	$(n,\alpha+4n)$
⁹ Li	0.178	$\beta^{-}n$ (51%), β^{-} (49%)	1.9	1.5	$(\pi^-, \alpha+2p+n)$
^{8}B	0.77	β^+	5.8	5.0	$(\pi^+, \alpha+2p+2n)$
⁸ Li	0.838	β^{-}	13	11	$(\pi^-,\alpha^+ H^+ p^+ n)$
8 He	0.119	$\beta^{-}\gamma$ (84%), $\beta^{-}n$ (16%)	0.23	0.16	$(\pi^{-},^{3}H+4p+n)$
¹⁵ O			351		(γ,n)
¹⁵ N			773		(γ, \mathbf{p})
¹⁴ O			13		(n,3n)
¹⁴ N			295		$(\gamma, n+p)$
¹⁴ C			64		(n,n+2p)
¹³ N			19		$(\gamma,^{3}H)$
¹³ C			225		$(n,^{2}H+p+n)$
¹² C			792		(γ, α)
¹¹ C			105		$(n,\alpha+2n)$
¹¹ B			174		$(n,\alpha+p+n)$
¹⁰ C			7.6		$(n,\alpha+3n)$
${}^{10}B$			77		$(n,\alpha+p+2n)$
^{10}Be			24		$(n,\alpha+2p+n)$
⁹ Be			38		$(n,2\alpha)$
sum			3015	50	

Neutron event rates vs. Gd-loading

Gd concentration check after loading

Z=+12m

Z=0m

220 200

> 180 160

120

100 80

0.0001

0.001

0.1

Gd concentration [% weight]

0.01

constant

Neutron capture time

• Neutron capture time is sensitive to Gd concentration.

$\rm Am/Be$ neutron source was deployed in SK

Am/Be neutron source 100~200 neutrons/s $^{241}Am \rightarrow ^{237}Np + \alpha$

 ${}^{9}\text{Be} + \alpha \rightarrow {}^{13}\text{C}^* + \text{n}$ (2-6 MeV)

 $^{13}C^* \rightarrow ^{12}C + \gamma (4.43 \text{ MeV})$

8 BGO Crystals

The 2^{nd} Gd-loading Jun 1 – Jul. 5, 2022

0.01% Gd water was taken from the top and returned from the bottom in 0.06% $Gd_2(SO_4)_3$ solution (=0.03% Gd = 0.078% $Gd_2(SO_4)_3 \cdot 8H_2O$). It took 35 days to replace 50,000 tons of water at 60 m³/h

=1350 x 20kg cardboard boxes!

NIMA 1065 (2024) 169480

The 2nd Gd-loading

Am/Be neutron calibration ~310ppm was confirmed by the neutron capture time

Spallation neutrons 1.5 times neutron capture efficiency was confirmed

The first result of SK-Gd

ApJ. Letter 951, L27 (2023)

• Using conventional methods with 552 days of data from SK-VI, after the introduction of 0.01% Gd.

 Thanks to Gd, the accidental background was reduced significantly.

Analysis improvement: Atmospheric v NCQE reduction

If multiple gamma rays of the prompt events are identified, they can be reduced.

Multiple scattering goodness (MSG)

• A parameter developed to reduce low-energy background (BG) in solar neutrino analysis.

33

Analysis improvement: ML-based neutron-tagging

Neutron tagging using Neural Network

SK-VI: $45.4 \pm 3.9\%$ with 0.02% mis-ID \rightarrow **1.3 times better than the Cutbased analysis**

Analysis improvement: ML-based neutron-tagging

Neutron tagging using Neural Network

The efficiency is significantly improved!

SK-Gd(0.01% 552.2d+0.03% 404d)

• No apparent signal excess, but small indication (minimum p-value = 0.04)

Flux upper limits

- Spectrum-independent astrophysical \bar{v}_e flux limit
- Stringent limit 10MeV < E

	Borexino 2771 days Observed 90% C.L. (Astropart. Phys.	
	KamLAND 4529 days Observed 90% C.L. (ApJ. 2021)	
0	SK-VI+VII 956.2 days, Observed 90% C.L. (New)	
	SK-VI+VII 956.2 days, 90% C.L. sensitivity (New)	
	SK-IV 2970 days, Observed 90% C.L. (PRD. 2021)	
	SK-IV 2970 days, 90% C.L. sensitivity (PRD. 2021)	
	Modern DSNB Theoretical Predictions	

We will soon publish the paper!

nature

Explore content Y About the journal Y Publish with us Y Subscribe

nature > news > article

NEWS 09 July 2024

Huge neutrino detector sees first hints of particles from exploding stars

Japan's Super-Kamiokande observatory could be seeing evidence of neutrinos from supernovae across cosmic history.

By Davide Castelvecchi

Ƴ f ⊠

Hints?

(5823 days of pure water and 956 days of Gd water)

Lowering the analysis threshold while advancing the understanding of atmospheric neutrino background through T2K, aiming for discovery.

More challenges still lie ahead.

If the insulation of a cable is damaged and the copper is exposed, it can dissolve when submerged in a gadolinium sulfate solution.

SK's geomagnetic compensation coil problems and countermeasures

V06 disconnected on Oct.25, 2023. Damaged sub-cable was bypassed on Dec.1, 2023. [recovered]

- SK geomagnetic compensation coil cables have failed in three locations.
- At two of locations, part of the coil was successfully bypassed to restore functionality. The other location is entirely underwater, resulting in the entire cable group being turned off.
- A 10-20% decrease in collection efficiency is observed for about 20% of PMTs in the barrel.
- Efficiency for detecting neutron capture on Gd has also decreased by about 3%.
- The physics impact can be compensated by calibration and simulation.
- The likely cause is corrosion of wire connections due to ionized water seeping in under heat shrink insulation.
- SK plans to install six new horizontal coils in summer 2024 to restore the geomagnetic field cancellation.

For vertical coils

Coil repair work • 2024 June-September

SK's DSNB search prospects

The 3rd generation of "Kamiokande"

Kamiokande Φ16 m × H16 m 0.7-1 kton / 3 kton 1k 20" PMTs 1983-1996

Super-Kamiokande Φ41 m × H40 m 22 kton / 50 kton 11k 20'' PMTs 1996-ongoing

Hyper-Kamiokande Φ68 m × H71 m 186 kton / 260 kton(~8 x SK) 20k 20'' High QE, T res. PMTs (2 × SK's performance) 2028 ----> 20yers

Hyper-Kamiokande site

- 8 km south of Super-K
- 295 km from J-PARC and 2.5 deg. off-axis beam (same as Super-K) 13km depth
- 600 m rock overburden

Hyper-Kamiokande Status

- Excavation of the dome part and the cavity for the water system completed in 2023
- Barrel excavation ongoing, and tank construction will be started soon.
- As of Feb. 2025, 13271 x 50cm PMTs are there! > SK's 11129 PMTs

HK's DSNB search for 20 years

Hyper-Kamioaknde Design Report arXiv:1805.04163

Middle angle (38-50°)

Assumptions

- No neutron tagging
- Energy > 19 MeV, where the impact of spallation background is small
 - Cut performance: Spallation BG=0, while signal efficiency 19-25MeV 54%, >25MeV 100%

M. Harada

3σ Sensitivity

- Sensitivity at 3 σ, to model discrimination/parameter estimation
- SK FY2028 + 0 y
- SK FY2028 + 5y(FY2033)
- SK FY2028 + 10y(FY2038)
- HK FY2028+ 20y(FY2048)

Based on HK design report

Assuming an early 3σ detection at SK or HK

S.Ando et al., Proc. Jpn. Acad., Ser. B, Phys. 99 (2023) 10

 10^{-1}

s⁻¹ MeV

 $0 \le Z \le 1$

 $0 \leq Z \leq 5$

 $\leq Z \leq 2$ $\leq Z \leq 5$

Test models?

Volume or threshold?

Yudai Suwa

- $M_{\bar{V}_e}/dE \, [\, 10^{56} \, \, {
 m MeV^{-1}}]$ 1987a dF_{ve}/dE [cm⁻² 13: Successful 10^{-2} 10^{-3} 10 10^{-5} 10 20 30 40 50 50 10 20 30 40 E_v [MeV] E [MeV] • If we can capture the DSNB peak around ~10 MeV (the thermal component), we may be able to place constraints on the star formation rate (SFR). In other
 - words, we could infer the frequency of massive star deaths up to around redshift z ~ 2.

 10^{1}

 10^{0}

 10^{-1}

- This could also provide a way to probe the initial mass function (IMF) in the early universe.
- The **power-law region above** ~20 MeV does not, by itself, allow us to determine any overall quantities. However, with a large statistical sample, dividing the data into two energy regions may allow us to measure the spectral hardness.
 - This highlights the importance of low-energy observations with Super-Kamiokande (SK).
 - Such information can help constrain whether the emission is purely thermal, or if it includes a power-law component resulting from compression and acceleration in the accretion flow during black hole formation. 50

If the focus is on BH

Ashida, Nakazato (2022)

Is it possible to observe differences in the spectral slope above 20 MeV?

 3σ sensitivity M. Harada

- SK FY2028 + 0 y
- SK FY2028 + 5y(2033)
- SK FY2028+10y(2038)

low-energy data from SK and high-energy data from HK will be important

$Summary \ - \ {\sf The \ SK-Gd \ Journey \ beyond \ DSNB \ Detection}$

- After a long journey, we have conducted a DSNB search using 956.2 days of SK-Gd data.
 - The spectrum-independent analysis sets the most stringent limit to date on the astrophysical $\bar{\nu}_{\rm e}$ flux.
 - By incorporating 5823 days of pure-water data, spectral fitting excludes the null-DSNB hypothesis at 2.3 σ for the Horiuchi+09 model (6 MeV, maximum).
- Our journey continues. With ongoing SK observations, we expect to reach a sensitivity of <1 cm⁻² s⁻¹ above 17.3 MeV by 2029, bringing us closer to a potential discovery.
 - Further lowering the analysis threshold in SK-Gd will help us constrain the star formation rate (SFR) and the initial mass function (IMF).
- SK is now well-prepared not only for the potential discovery of the DSNB, but also for a decade-long observation program to rigorously test theoretical models.
 - We hope to continue observations through to Mark's 70th birthday—keeping SK active and impactful.