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When I started…
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@ Ohio State University• Graduate student project
• With John Beacom while visiting



When I started…
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• Graduate student project
• With John Beacom while visiting
• Mark: gave me much enthusiam & 

support

The 7th RESCEU International 
Symposium in November 2008



Progress since
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Searches reaching into many predictions

Looking for the positron:

SuperK (Abe et al 2021)

Red: SK-IV 2970 days



Where we’re headed
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Li, Vagins, Wurm (2022)

Gd tags the n to reduce e backgrounds
à DSNB discovery 

Beacom & Vagins (2004)

Gd in Super-K working superbly 

Harada (Neutrino 2024)

SKGd + JUNO figure of merit 
vs year
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Our sun, L ~ 1026 watts
Over 1 billion years old
è ~1050 erg total

Typical supernova, L ~ 1035-36 watts
Shines for a few months
è ~1050 erg total*

(*still only tip of the iceberg)

~~

Core-collapse Supernovae

SN1054 Crab pulsar



Core collapse = neutrino burst

H H

He

Hydrogen burning Hydrogen burning Helium burning

Main-sequence star Helium-burning star

(adapted from G. Raffelt’s slides)7Shunsaku Horiuchi



Core collapse = neutrino burst
Massive (>8Msun) star structure

FeSiOCHeH

Core collapse (implosion)

~8000 km

(adapted from G. Raffelt’s slides)8Shunsaku Horiuchi



Core collapse = neutrino burst
Core collapse (implosion)

R: 8000 km à ~20 km
r: ~109 g cm-3 à ~1014 g cm-3

T: ~1010 K à ~30 MeV

Bounce shockNewborn neutron star   

Neutrino 
Cooling

Energy budget ~ 3 x 1053 erg
99% into neutrinos
(~0.01% into photons)

Neutrino luminosity
    Ln ≈ 3 x 1053 erg / 3 sec 
         ≈ 3 x 1019 LSUN
While it lasts, it outshines the 
entire visible Universe

(adapted from G. Raffelt’s slides)9Shunsaku Horiuchi



Supernovae occur EVERYDAY

Nn >> 1 : BURST regime

SN rate ~ 0.01 /yr

Nn << 1 : DIFFUSE regime

SN rate ~ 1-10 per second

~kpc ~Mpc ~Gpc
Adapted from Beacom (2012)
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SN 1987A
Occurred in the Large 
Magellanic Cloud 
(LMC), 50 kpc away



DSNB: model prediction
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Rate of massive 
star core collapse

Super-K (2023)

Time-integrated 
neutrino emission

Neutrino detector capabilities

Merging of astronomy, astrophysics, and neutrino experiment



Importance of supernova rates
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Directly measurements
Measurements of cosmic 
supernova rate densities 
were not so great O(20) 
years ago…

Strigari et al (2005)

They impact DSNB 
predictions ~linearly, so 
these uncertainties better 
go down. 

Beacom & Vagins (2004)



Cosmic supernova rates
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Direct measurements
Improved dramatically

Broadly 2 strategies:
1. Efficient but Biased: 

target pre-selected 
galaxies, e.g., LOSS, 
STRESS

2. Unbiased but harder: 
target pre-selected 
fields, e.g., SNLS, HST-
ACS, DES, …

(1+z)3.3

Updated from Horiuchi et al (2011)
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Cosmic SNR measurements

Future measurements 
coming up (ASAS-SN, DES, 
LSST) e.g., Forecasts in Lien & Fields (2009)
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Cosmic supernova rate
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Cosmic cross checks
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Star formation Cosmic stellar density 

Ia supernova rate

Extragalactic background light

Core-collapse supernova rate

Cosmic metallicity

Time 
integrated 
checks

14

Many cross checks have been performed, which give further support:



Cosmic cross checks
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Ekanger et al (2023); 
see also Horiuchi et al (2011), Graur et al (2015), etc

Birth rate of 
massive stars

Core collapse 
rate

because lifetime of 
massive stars are 
cosmologically short

15

Madau & Dickinson (2014); 
see also Hopkins & Beacom (2006), 
Horiuchi & Beacom (2010), etc 

Note: includes 
collapse to black 
holes



Integrated cross checks
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Horiuchi & Beacom (2010) Horiuchi et al (2009)

Predicted: 78 nW m-2 sr-1 

Star formation

Extragalactic background light
    *Measurement systematics

Ia supernova rate
    *Needs delay-time distribution

16



Integrated cross checks

Shunsaku Horiuchi

Madau & Dickinson (2014) Madau & Dickinson (2014) 

Horiuchi et al (2009)

Star formation

Cosmic metallicity
    *measurement systematics

Cosmic stellar density
    *Sensitive to cosmic initial mass function 

17

From clusters



DSNB: model prediction
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Rate of massive 
star core collapse

Super-K (2023)

Time-integrated 
neutrino emission

Neutrino detector capabilities

✅



Neutrino emission evolution
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Li et al (2020)

Cooling
• PNS cooling on diffusion time scale
• Less uncertain (EOS, remnant mass)

Accretion
• Powered by matter accretion
• Most model dependent (explosion 

mechanism, dimensions, 
instabilities, oscillation, etc)

Si burning
• Stellar evolution
• Important IC for core 

collapse

Neutronization
• Burst of nue from 

freed p capturing 
electrons

• Small uncertainties



Guidance from SN1987A
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Yuksel & Beacom (2007); 
also Krauss (1987), Bahcall (1987), 

Vissani (2015), others

Thermal

Look to SN1987A for guidance:

SN1987A spectrum



Not standard candles
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O’Connor & Ott (2013)

Look to simulations for guidance: neutrino emission reflects the progenitor

21
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Neutrino emission synthesis
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Kresse et al (2021)

Challenge is long-term (~10 sec) simulations for multiple progenitors
1. Multi-D are computationally expensive, although large sets are 

becoming available
2. Useful are 1D “calibrated central neutrino engines”

Exploding cores non-exploding cores (more later)



Making sense of neutrino emission

Shunsaku Horiuchi Horiuchi et al (2018)

Systematic dependence on progenitor
Based on 100+ simulations (2D) of Nakamura et al 2015, 18 simulations (2D) of 
Summa et al 2016.

Core size

23

Higher mass accretion 
àMore binding energy 

released
àMore neutrinos

⇠M =
M/M�

R(Mbary = M)/1000 km

����
t

Compactness x:



Extreme: collapse to black holes

Core collapse

Stalled shock

Supernova No supernova

Black holeNeutron star

Fall back

Energetic shock

24Shunsaku Horiuchi

Neutrinos
Photons ?

Neutrinos
Photons



Black hole channel: simulations
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Look to simulations for guidance: collapse to black hole are different

Liebendoerfer et al (2004); many others

Black hole 
channel

NS channel

• Neutrino luminosities all rise quickly J
• Some neutrino energies rise J
• Then abruptly terminate L

Ando, Ekanger, Horiuchi, Koshio (2023)

BH channel

NS channels

è When time-integrated, shows a 
systematically higher-energy spectrum

Lunardini (2009)

So, important for the DSNB! 

BH

NS



Neutrino emission synthesis II
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Kresse et al (2021)

Challenge is long-term (~10 sec) simulations for multiple progenitors
1. Multi-D are computationally expensive, although large sets are 

becoming available
2. Useful are 1D “calibrated central neutrino engines”

Exploding cores non-exploding cores: a lot more neutrinos (depending)



Making sense of neutrino emission II
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O’Connor & Ott (2011)

Duration
Larger cores (=compactness) 
à higher mass accretion 
à earlier black hole formation

⇠M =
M/M�

R(Mbary = M)/1000 km

����
t

Horiuchi et al (2018)

(EOS=LS220,SFHo)

Time-integrated
Larger cores (=compactness) 
à higher Ln but shorter duration
à net decline (except nx energy)

Compactness x:

Heavy lepton flavor impacted most 
heavily à Oscillation depence

Core sizeCore size



Black hole prediction circa 2000
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Failed explosions ~ 10%

Collapse to 
black holes

Qualitative expectations, no binaries, no rotation, metal-driven mass loss only
Heger et al. (2003)

Based on simple stellar & neutrino mechanism 



Black hole prediction updates 
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Janka 2017; based on Ertl et al (2016); see also Ugliano et al (2012), Sukhbold et al (2016), Pejcha & Thompson (2015), 
                                  Mueller et al (2016), Sukhbold & Adams (2019), Kresse et al (2021)

Neutrino mechanism predicts islands of successful explosions & implosions
(exact mass ranges subject to large uncertainties – more work ongoing)



Finding collapse to black holes
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Monitor ~27 galaxies
à Survey ~106 progenitor stars
à Expect ~1 core collapse /yr
à In 10 years, sensitive to 20 – 30% failed 

fraction at 90% CL Kochanek et al. (2008)

Look for disappearance of stars

30



Looking for disappearing stars
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In 11 years survey
ü 9 luminous CC supernovae    
ü 2 implosion candidates

• NGC6946-BH1: SED well fit 
by ~25 Msun RSG

• M101-OC1: follow-ups

Neustadt et al (2021) 

Also: Gerke et al(2015), Adams et al ( 2017), 
Reynolds et al (2016)

R-band

V-band



More stellar diversity: binaries

Shunsaku Horiuchi

Non-merger 
systems

Single Double

SN SN SN

Merger systems

Spinning massive star

SN

Visuals: thanks to Kinugawa-san

è Masses of stars changed! è Masses of stars changed! 
number of stars changed!

Majority of massive stars evolve in binaries…

Sana et al (2012)



Binary effects: progenitors
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binary effect creates more and higher mass cores for collapse

Horiuchi et al (2021)
33

If all single 
stars

Boost to number of 
progenitors due to 
mergers: ~25% more 
progenitors

Boost to masses of 
progenitors due to 
mergers and mass 
transfers (at the 
expense of donor’s 
mass)

**More realizations ongoing



Black hole contribution can be big
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• Strong EOS dependence
• Can be driven by late-time accretion

Ashida & Nakazato (2022)

BH channel

BH channel

SK-10yr

HK-3yrHK-5yr

BH

Genesis 2022

stiffer

Nakazato et al (2024)



So where to now?
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• Spherical symmetric simulations
• Thermal neutrino spectra
• No black hole considerations
• Core-collapse rate sysmatics

• Multi-dimentional long-term simulation sets
• Accounting for stellar & collapse diversity
• Black hole considerations (but still rich!)
• Core-collapse rate well established and cross checked

This is just my contribution to a much wider active field:

J



So where to now?
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Core collapse rate

Cosmology

Neutrino emission

Ekanger et al (2024)

An attempt at the error budget:

Assumptions (no late-
time accretion, 2D 
sims, no binary, etc) 
è Nevertheless, 
showcases the exciting 
prospects of studying 
core collapse & 
neutrino physics



Happy birthday, Mark
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Thank you, Mark, for you and your team making the Gd dream.
As a theorist, I felt confident DSNB models will be tested, with you at 
the helm. 

37

• The DSNB is a guaranteed signal with a well-established 
canonical flux (and we continue to make it richer).

• DSNB neutrinos are there, in the data set! The Gd upgrade will 
allow it to be discovered.

• When discovered, these will be the first confirmed MeV neutrinos 
crossing cosmological distances, opening new windows into core 
collapse, neutrinos, and BSM physics. 


