Contribution ID: 7 Type: not specified

A Way of Axion Detection with Mass 10^(-4)eV ~ 10^(-3)eV using Cylinder with Low Electric Conductivity

Tuesday 11 November 2025 14:20 (20 minutes)

A dark matter axion with mass ma induces an oscillating electric field in a cylindrical sample placed under a magnetic field B parallel to the cylinder axis. When the cylinder is made of a highly conductive material, the induced oscillating current primarily dissipates the axion energy at the surface. In contrast, if the cylinder is composed of a material with low conductivity, e.g. $\sigma = 10^{(-3)}$ eV, the axion energy is dissipated mainly inside the bulk of the cylinder. Within the QCD axion model, the dissipated power P is estimated as P $\boxtimes 2.8 \times 10^{(-2)}$ eV/ma $\cong 2.8 \times 10^{(-2)}$ eV/ma

(ρa/0.3GeV cm^(-3))(yx^2/(ε^2 +y^2)), with parameters $y = \sigma/ma = 10$, $x = maR \boxtimes 10$, axion mass ma, radius R = 2cm, length L = 100cm, electric permittivity $\varepsilon = 10$ and axion energy density ρa. For the coupling constants, we take g(KSVZ) = -0.96 and g(DFSZ) = 0.37. Using an LC circuit tuned to a quality factor $Q = 10^6$, the signal-to-noise ratio is given by $P(Q \ sqrt(\delta\omega \ tob/2\pi)/Pt \boxtimes 10 \ g^2(ma/10^(-4)eV)^(-3/2) \ (T/100mK)^(-1) sqrt(tob/60s)$, where Pt is the thermal noise power at temperature T = 100mK and bandwidth $\delta\omega = 10^6(-6)ma$. By choosing appropriate values of conductivity and cylinder radius for example, $\sigma/ma = 10$ and ma $R \ge 10$, the detection of dark matter axions is feasible in the mass range $ma = 10^6(-4)eV \sim 10^6(-3)eV$

Presenter: IWAZAKI, Aiichi

Session Classification: Parallel session - Experiments II