

Dark Matter Search with e⁺ e⁻ collider (B05)

Shohei Nishida KEK Dark Matter Symposium Apr. 24, 2025

S. Nishida (KEK) Apr. 24, 2025

Dark Matter Search with e⁺ e⁻ collider (B05)

B05 Members

305	「電·	子阝	易	電子	加速	器に、	よる	ダー	-クマ	マター	·探索」	
	" D				\sim		141				• 4	-

B05 "Dark Matter Search with Electron-Positron Collider"

研究代表者 (Principal Investigator)	西田昌平(Shohei Nishida)	KEK
研究分担者 (Co-investigator)	原康二 (Koji Hara)	КЕК
科研費研究員	Sourav Dey	KEK
研究協力者	Eiasha Waheed	Melbourne
研究協力者	宇野健太 (Kenta Uno)	KEK
研究分担者 (Co-investigator)	角野秀一 (Hidekazu Kakuno)	都立大(TMU)
研究分担者 (Co-investigator)	Yun-tsung Lai	КЕК
研究員	金道玄樹 (Haruki Kindo)	Virginia
研究協力者 (Collaborative Researcher)	松本重貴 (Shigeki Matsumoto)	IPMU
日メンバー 伊藤慎太郎 (Shint		

Thomas Czank \rightarrow Company

S. Nishida (KEK) Apr. 24, 2025

Dark Matter Search with e⁺ e⁻ collider (B05)

(due to trigger setting etc.) and may be searched with initial Belle II data.

SuperKEKB and Belle II

SuperKEKB and Belle II

- Located at KEK, Tsukuba, Japan
- SuperKEKB: asymmetric e⁺e⁻ collider (4 GeV e⁺ + 7 GeV e⁻)
 - ✓ Nano-beam scheme to achieve high luminosity
- Belle II: flavor physics experiment at SuperKEKB
- Successor of KEKB, Belle in operated in 1999-2010
 - Verified Kobayashi-Maskawa theory in the study of CP violation in B mesons

Kibayashi, Maskawa (2008 Nobel Prize)

S. Nishida (KEK) Apr. 24, 2025

Dark Matter Search with e⁺ e⁻ collider (B05)

Belle II

Superconducting **K**_L, μ Solenoid(1.5T) Detector KLM Electromagnetic Calorimeter ECL Particle Indentification Electron(7GeV) TOP(barrel), ARICH(endcap) **Central Drift** Chamber _{CDC} Positron(4GeV) Silicon Vertex Detector • General purpose 4π detector PXD, SVD with good vertexing (for time © Rey.Hori/KEK CP violation) and particle Belle II Detector (8m×8m×8m, 1400t) identification.

S. Nishida (KEK) Apr. 24, 2025

Luminosity

• Luminosity is a key for the experiment.

- ✓ Luminosity $[cm^{-2} s^{-1}] = (event rate [s^{-1}]) / (cross-section [cm^{-2}])$
- ✓ Integrated luminosity [fb⁻¹] = Luminosity × time : collected data size

S. Nishida (KEK) Apr. 24, 2025

Dark Matter Search with e⁺ e⁻ collider (B05)

SuperKEKB has an issue of Sudden Beam Loss (SBL)

• All the beam is lost within a few turns.

- SBL can cause QCS (final focusing magnet) quench or damage the detector.
- One of the causes of SBL seemed to be identified.

Many more challenges: injection, high background ...

For B05 project (dark matter study with e⁺e⁻ collider)....

- High beam background is problematic to some of the dark sector analysis.
- The dataset collected in 2020-2024 was much smaller than expected.
 - ✓ SuperKEKB issue + high electricity cost.

S. Nishida (KEK) Apr. 24, 2025

研費 Dark Matter Searches at Belle (II)

- $e^+e^- \rightarrow \gamma A'(\rightarrow invisible)$ [on-going at Belle II]
- $Z' \rightarrow invisible [PRL 130, 231801 (Belle II)]$
- + $Z' \rightarrow \mu^+\mu^-$ [PRD 106, 012003 (Belle), PRD 109, 112015 (Belle II)]
- $Z' \rightarrow \tau^+ \tau^-$ [Phys.Rev.Lett 131, 121802 (Belle II)]
- ALP (Axion Like Particle) $e^+e^- \rightarrow a(\rightarrow\gamma\gamma) \gamma$ [PRL125 (2020), 161806]
- Dark Higgsstrauhlung $e^+e^- \rightarrow A'(\rightarrow \mu^+\mu^-) h'(\rightarrow invisible)$ [PRL 130, 071804 (2023)]
- Heavy neutral lepton [PRD 109, L111102 (2024)] reported by S.Dey last year
- Inelastic Dark Matter [presented at Moriond2025]
- Dark Matter etc. from B ($\Upsilon,\,\tau,\,\ldots$) decays.
 - ✓ $B \rightarrow K S$ (→ leptons) : dark scalar
 - ✓ $B \rightarrow K S$ (long-lived) : long-lived dark scalar [Phys.Rev.D 108, 111104 (Belle II)]
 - ✓ $B \rightarrow Ka (\rightarrow \gamma \gamma)$: ALP search [presented at Moriond2025]
 - ✓ $B \rightarrow K a$ (→ hadrons) : heavy QCD axion (S.Ito → S.Dey, E.Waheed)
 - ✓ $\Upsilon(1S) \rightarrow \gamma$ + invisible : light Higgs [PRL 128, 081804 (2022) (Belle)]
 - ✓ $\tau \rightarrow I \alpha$ [Phys.Rev.Lett. 130 (2023) 181803] → new Belle result (K.Uno)

On-going analysis. S. Dey's presentation

T.Czank worked an analysis with

Belle data, but he left...

S. Nishida (KEK) Apr. 24, 2025

Invisible Mode

$e^+e^- \rightarrow \gamma$ + invisible

- Final state: a single photon only.
- Bump in a recoil mass or photon energy.
- Need special "single photon trigger" to collect such events.
 - ✓ Belle didn't have this trigger.
 - ✓ BaBar had it (for some period).
 - ✓ Belle II has (some) single photon trigger.

On-going analysis at Belle II

Dark Photon A', SIMP (Strongly Interacting Massive Particle)...

S. Nishida (KEK) Apr. 24, 2025

Invisible Mode

$e^+e^- \rightarrow \gamma + A'$ (invisible)

• Measure the photon energy and calculate the recoil mass.

$$m_{A'}^2 = 4E_b(E_b - E_{\gamma}^*), \ E_b = \sqrt{s/2}$$

- Struggling with large beam background of SuperKEKB.
- Main background $e^+e^- \rightarrow \gamma\gamma(\gamma)$
 - $\checkmark\,$ Photon inefficiency study is going on.
 - Photon missed by the calorimeter (ECL) is detected by outer KLM.
 - Data reprocess.
- Study of signal extraction, trigger efficiencies, systematic errors going on.

Top priority analysis in dark sector. Taking time...

S. Nishida (KEK) Apr. 24, 2025

Inelastic Dark Matter

Inelastic Dark Matter

- Expanded dark sector with two dark matter states with a small mass splitting and a dark photon.
 - ✓ Stable χ_1 (relic candidate) and long-lived χ_2
- Explains why no observation in direct detection.
- Focus on a specific model large A' mass (A' $\rightarrow \chi_1 \chi_2$) and with a dark Higgs (h') that provides A' mass.
 - $\checkmark\,$ h' mixes with SM Higgs with θ
 - $\checkmark\,$ h' becomes long-lived for small θ

• We have 4 dark sector particles: A', h', χ_1 and χ_2

• We have 7 parameters: $m_{A'}$, $m_{h'}$, $m_{\chi 1}$, Δm_{χ} , θ , ε , α_D

Duerr, M., et al., J. High Energ. Phys. 2021, 146 (2021)

 $e^+e^- \rightarrow h'(\rightarrow x^+x^-)A'(\rightarrow \chi_1\chi_2(\rightarrow \chi_1e^+e^-),$

S. Nishida (KEK) Apr. 24, 2025

Signature

- 4 tracks with two displaced vertex (pointing one and non-pointing one).
- Missing energy.

- Challenging for tracking and trigger
- Almost zero background analysis

Searches for displaced vertex etc. (+ trigger study)

S. Nishida (KEK) Apr. 24, 2025

$\tau \rightarrow I \alpha$ (Belle)

$\tau \rightarrow I \alpha \ (I = e, \mu)$

[arXv:2503.22195]

- τ decays with invisible scalar α : predicted in models with ALP etc.
- Belle II obtained best limit with 63 fb⁻¹ [Phys.Rev.Lett. 130 (2023) 181803] \rightarrow New result with 800 fb⁻¹ taken at Belle.
- Peak in the lepton momentum in τ rest frame is the signature, but it cannot be calculated due to missing neutrinos in the tag side \rightarrow approximation.

S. Nishida (KEK) Apr. 24, 2025

Dark Matter Search with e⁺ e⁻ collider (B05)

- SuperKEKB achieved world highest luminosity in the end of 2024.
 - ✓ However, it suffers many problems including Sudden Beam Loss.
 - \checkmark Electricity cost is a serious problem (no run till autumn this year).
- The accumulated data (integrated luminosity) of Belle II is still similar to the previous Belle experiment.
- Many results on dark matter search from Belle II (and Belle).
 - \checkmark New triggers for low multiplicity events (and single photon trigger).
 - ✓ Improved analysis technique.
 - No signature of the dark matter; but excluding some of the models, parameter space.
- Many analyses are going on; continue the searches with available + coming data.

Backup

S. Nishida (KEK) Apr. 24, 2025

Dark Matter Search with e⁺ e⁻ collider (B05)

Belle II Plan

S. Nishida (KEK) Apr. 24, 2025

Dark Matter Search with e⁺ e⁻ collider (B05)