Latest results on Dark matter Axion search with riNg Cavity Experiment (DANCE)

<u>Hinata Takidera</u>^A, Hiroki Fujimoto^A, Yuka Oshima^A, Satoru Takano^B, Kentaro Komori^{A,C}, Jun'ya Kume^{D,E,C}, Soichiro Morisaki^F, Koji Nagano^G, Tomohiro Fujita^{H,C,I}, Ippei Obata^{I,J}, Atsushi Nishizawa^K, Yuta Michimura^{C,I}, Masaki Ando^{A,C}

Dept. of Phys., UTokyo^A, AEI^B, RESCEU^C, UNIPD^D, INFN^E, ICRR^F, LQUOM^G, Dept. of Phys., Ochanomizu Univ.^H, Kavli IPMU^I, IPNS^J, ADSE, Hiroshima Univ.^K

Dark matter symposium, April 25th, 2025

Abstract

DANCE: Dark matter Axion search with riNg Cavity Experiment

- Search for axion-like particles dark matter with an optical cavity
- Prototype experiment: DANCE Act-1 is in progress
 - Non-simultaneous resonance degrades the sensitivity
 - Currently operating for simultaneous resonance to improve the sensitivity

Dark matter

Subaru telescope

Axion and Axion-Like-Particles (ALPs)

- Axion is suggested to solve strong CP problem on Quantum Chromo Dynamics (QCD)
- Various Axion-Like-Particles (ALPs) is predicted
- Axion weakly interacts with photon, electron, proton, neutron
- Very light particles \rightarrow Behave like waves

$$f_a = 242 \text{ Hz} \left(\frac{m_a}{10^{-12} \text{ eV}} \right)$$

• Many experiments have utilized the axion-photon conversion under magnetic field (Primakoff effect). However, axion has not been observed yet.

Previous searches

Relation between axion mass and frequency

$$f_a = \frac{m_a}{2\pi\hbar} \text{ Hz}$$

- Solid line is upper limit
- Dotted line is target sensitivity
- White region is unexplored

Axion-photon interaction

Axion-photon interaction induces phase velocity difference between left- and right-handed circularly polarized light

$$c_{\rm L/R}(t) = 1 \pm \frac{g_a \gamma t}{2}$$

Phase velocity

Axion-photon coupling

Rotation of linearly polarized light

Axion dark matter

How to amplify the axion signal

Rotation of polarization is small Photo detector for short optical path

Extend optical path with a linear cavity However, rotation of polarization can not be amplified because it is flipped by reflections

Extend optical path with a bow-tie ring cavity Rotation of polarization can be amplified because the flip is canceled upon reflections on both two mirrors

DANCE

DANCE: Dark matter Axion search with riNg Cavity Experiment

- Prototype experiment: DANCE Act-1 is in progress

Amplify p-polarization (Axion signal) generated by the axion-photon coupling

Target sensitivity of DANCE

- Shot noise limited
- Assume all dark matter is axion
- L: Round-trip $\mathcal{F}_{s/p}$: Finesse (s/p-pol.)
- $P_{\rm in}$: Input power

Conduct a sensitive axion search by improving parameters

Simultaneous resonance

Oblique incidence \rightarrow Resonant frequency difference \rightarrow Degrades the sensitivity

Issue: Degrading the sensitivity due to non-simultaneous resonance \rightarrow Developing new method with zero phase shift mirror and wavelength tunable laser

Y. Oshima et al., Phys. Rev. D 108, 072005 (2023).

How to achieve simultaneous resonance

Zero phase shift mirror: Reflection phase difference between s- and p-pol. is 0 deg at specific wavelength ECDL(Wavelength tunable laser): Select wavelength by changing angle of IF \rightarrow Tuning wavelength to cross point of zero phase shift mirror with an ECDL

11

Evaluation of reflection phase difference

phase shift mirror with a folded cavity

- 1. Proof of principle for simultaneous resonance
- 2. Suppress time fluctuations of beat note between s- and p-pol.
- \rightarrow In order to improve calibration accuracy to the sensitivity, we need to estimate reflection phase difference between s- and p-pol. per mirror accurately

Evaluation of reflection phase difference between s- and p-pol. of zero

- Fix mirrors with a jig
- Super-invar spacer

Mirror	Reflectivity	CC [
Input	99%	5
End	99%	5
Test	s-pol.: 99.99%, p-pol.: 99.97%	10

Evaluation of reflection phase difference

1. Proof of principle for simultaneous resonance

- Requirement for reflection phase difference between s- and p-pol. per mirror
 - $|\Delta \phi \Delta \phi_{\text{ave}}| \le \frac{1}{4} \frac{\nu_{\text{HWHM,p}}}{\nu_{\text{FSR}}} \times 360 \,\text{deg} = 8.6 \times 10^{-3} \,\text{deg}$
- Half width at half maximum (HWHM) of p-pol. with a mirror reflectivity of 99.97%
- Confirmed that simultaneous resonance is achievable at 1066.7 nm
- \rightarrow Shift from the design specification due to error of mirror coating thickness
- Satisfied the requirement

Evaluation of reflection phase difference

- 2. Suppress time fluctuations of beat note between s- and p-pol.
- Satisfied the requirement $|\Delta \phi \Delta \phi_{ave}| \le 8.6 \times 10^{-3} \text{ deg}$
- Temperature fluctuations are likely to be dominant noise

- Measured reflection phase difference with a bow-tie ring cavity
- It is possible to achieve simultaneous resonance by tuning at \sim 1066 nm

ce with a bow-tie ring cavity us resonance by tuning at ~ 1066 nm

- Achieved simultaneous resonance at 1065.84(2) nm
- Satisfied the design value of finesse

Transmission of s- and p-pol. 1.00 s-polarization 0.75 Transmission 0.50 0.25 PDs 0.00 10 8 2 6 1.00 p-polarization 0.75 ransmission 0.25 auxPDp 0.00 2 10 0 6 8 time [s]

Plot by Hiroki Fujimoto

- Phase noise is likely to be couple to birefringence inside the cavity • Succeeded in subtracting phase noise and intensity noise by offline analysis

Axion signal is proportional to the square of the birefringence inside the cavity \rightarrow Its contribution is negligible in offline analysis

- Shot noise limit is better about 4 orders of magnitude than detuned shot noise
- Identify and reduce technical noise to reach shot noise
- Introduce power amp. to reach target of DANCE Act-1

Plot by Hiroki Fujimoto

Comparison with other groups

	Round-trip	Finesse	Input power	Observation bandwidth	How to tune resonant freque difference between s- and p-
DANCE (UTokyo)	~1 m	s-pol.: ~3800 p-pol.: ~3800	6 mW	Broadband 1 feV - 0.4 neV (Possible with narrowband)	 Zero phase shift mirror Wavelength tunable laser
ADBC (MIT)	~4.7 m	s-pol.: ~7260 p-pol.: ~212	0.8 W	Narrowband 40.9 - 56.7 neV	Tuning incident angle by rota the mirrors
LIDA (Birmingham)	~10 m	s-pol.: ~74220 p-pol.: ~2220	12 W	Narrowband 1.97 - 2.01 neV	Plan to tune angle of the mirr

Summary

DANCE: Dark matter Axion search with riNg Cavity Experiment

- angle of linearly polarized light

• Dark matter axion search with a bow-tie ring cavity by detecting a rotation

 Achieved simultaneous resonance with zero-phase-shift mirror and ECDL • Reduce technical noise and introduce power amp. to improve the sensitivity

