Production of dark photon DM in the early universe

Naoya Kitajima (A01)

NK, F. Takahashi, 2303.05492 NK, K. Nakayama, 2212.13573, 2303.04287, 2306.17390

"What is dark matter? - Comprehensive study of the huge discovery space in dark matter"

Apr 24-25, 2025, Online

Dark photon DM production

- Gravitational particle production during inflation / reheating

Graham, Mardon, Rajendran (2016) / Ema, Nakayama, Tang (2019)

$$\Omega_{\gamma'} \simeq \Omega_{\rm DM} \sqrt{\frac{m_{\gamma'}}{6\,\mu {\rm eV}}} \left(\frac{H_{\rm inf}}{10^{14}\,{\rm GeV}}\right)^2 \ -> {\rm lower \ limit \ on \ dark \ photon \ mass}$$

- Resonant production from scalar field

Axion : Agrawal, NK, Reece, Sekiguchi, Takahashi (2020), <u>NK, Takahashi (2023)</u>
Co, Pierce, Zhang, Zhao (2019), Bastro-Gil, Santiago, Ubaldi, Vega-Morales (2019)
Higgs : Harigaya, Narayan (2019)

- Misalignment production Nakayama (2019), Nakayama (2020), NK, Nakayama (2023)

- Production from cosmic strings Long, Wang (2019), NK, Nakayama (2022,2023)

Resonant dark photon (DM) production from axion

Agrawal, NK, Reece, Sekiguchi, Takahashi (2018) Co, Pierce, Zhang, Zhao (2018), Bastero-Gil, Santiago, Ubaldi, Vega-Morales, (2018)

- magnetogenesis Fujita+(2015), Kamada+(2016), Patel+(2020), ...

- GW emission with circular polarization NK, Soda, Urakawa (2020), ...

see also Machado+ (2019), Salehian+ (2020), Ratzinger+ (2020), Namba+ (2020)

Relic abundance of dark photon DM and axion

Agrawal, NK, Reece, Sekiguchi, Takahashi, 1810.07188

Axion abundance is suppressed due to the backreaction

(see also NK, T. Sekiguchi, F. Takahashi, 1711.06590)

& dark photon can be the dominant DM component

Resonant dark photon production w/o large coupling

NK, Takahashi, 2303.05492

$$V(\phi) = m_a(t)^2 f_a^2 \left[1 - \cos\left(\frac{\phi}{f_a}\right) \right] + \Lambda_H^4 \left[1 - \cos\left(\frac{N_H \phi}{f_a}\right) \right]$$

$$m_a(t) = \begin{cases} m_{a0}(t/t_*)^{b/2} & \text{for } t < t_* \\ m_{a0} & \text{otherwise} \end{cases}$$

$$p_{a0}^{(1)} = \begin{cases} m_{a0}(t/t_*)^{b/2} & \text{for } t < t_* \\ m_{a0} & \text{otherwise} \end{cases}$$

$$\beta = 1$$

$$p_{a0}^{(1)} = \frac{\beta}{10^{10}} = 1$$

axion starts to oscillate even when H << m (delayed onset of oscillation)

Coherent vector DM production

Nakayama (2019), Nakayama (2020), NK, Nakayama (2023)

$$\mathcal{L} = -\frac{f^2(\phi)}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} m_A^2 A_\mu A^\mu - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi)$$

$$(f \to 1 \text{ after inflation}) \qquad \qquad f^2 \propto a^\alpha, \ \bar{A}_i = f A_i / a, \ R_A = \frac{\rho_A}{\rho_\phi}$$

$$\ddot{\phi} + 3H\dot{\phi} + \partial_\phi V \left(1 + \frac{\alpha R_A}{2\epsilon_V}\right) = 0 \qquad \epsilon_V = \frac{M_P^2}{2} \left(\frac{\partial_\phi V}{V}\right)^2$$

$$(\text{slow-roll parameter})$$

$$\ddot{A}_i + 3H\dot{A}_i + \left(\frac{m_A^2}{f^2} - \frac{(\alpha + 4)(\alpha - 2)}{4}H^2 + \frac{2 - \alpha}{2}\dot{H}\right)\overline{A}_i = 0$$

Statistical anisotropy $\mathcal{P}_{\zeta}(\mathbf{k}) = \mathcal{P}_{\zeta}^{(\text{iso})}(k)(1 + g_k \sin^2 \theta_k), \quad \hat{\mathbf{k}} \cdot \hat{\mathbf{A}} = \cos \theta_k$ & $\& g_k \propto R_A$ DM isocurvature perturbation $S = \frac{\delta \rho_A}{\bar{\rho}_A} \sim \frac{H_{\text{inf}}}{\pi \bar{A}_i} \propto R_A^{-1}$

CMB observation —> $g_k \lesssim 0.01$, $S \lesssim 0.1\zeta$

"Viable" coherent vector DM scenario — curvaton scenario NK, Nakayama 2303.04287

additional constraints: non-Gaussianity & residual isocurvature

curvaton domination before curvaton decay & dark photon oscillation

 $m_{\chi} = 10^6 \text{GeV}, \ T_{\chi} = 10 \text{MeV}, \ \Gamma_{\phi} = m_{\phi}$

Dark photon DM from Abelian-Higgs cosmic strings

Long, Wang 1901.03312, NK, Nakayama 2212.13573

$$\mathcal{L} = (\mathcal{D}_{\mu}\Phi)^* \mathcal{D}^{\mu}\Phi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - V(\Phi), \ V(\Phi) = \frac{\lambda}{4}(|\Phi|^2 - v^2)^2$$
$$(\mathcal{D}_{\mu} = \partial_{\mu} - ieA_{\mu}, \ F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})$$

Scenario

- We are interested in light dark photon (i.e. small gauge coupling) -> cosmic string is almost global (Type-II string) e = 0 -> global (axion) string
- Dark photon is continuously produced by the collapse of loops. (similar to the axion emission from global strings)
- Dark photon production becomes inefficient for $\ell_{
 m loop}\gtrsim m_A^{-1}$

(i.e. loop oscillation frequency becomes smaller than the mass) $~~{
m or}~~H \lesssim m_A$

- After that, string behaves like local string (GW emission is dominant)

Emission of (longitudinal) vector boson

$$\rho_A^{(L)} = \frac{|\Phi|^2}{v^2} \left[\frac{2}{a^2} \left(\frac{\operatorname{Im}(\Phi^* \Phi')}{|\Phi|} \right)^2 + \frac{1}{a^4} \left(E_i^{(L)} \right)^2 \right]$$

 $n_A = \int dk \frac{dn_A}{dk} = \int dk \frac{1}{E_A(k)} \frac{d\rho_A}{dk}, \quad n_A^{(L)}(t) \simeq \frac{8\xi\mu H}{\bar{E}_A/H} \quad \text{analytic estimation by}$

peak wavenumber: $k/a \sim 10H \iff$ typical loop size: $\ell \sim 0.1H^{-1}$

Summary

- Resonant production from scalar (axion) field

Dark photon can be the dominant DM component (axion abundance is suppressed due to the nonlinear effect)

We have shown that the efficient production of dark photon can be realized even if the axion-gauge coupling is small (<<O(1))

- Misalignment production

Coherent dark photon DM is viable in the curvaton scenario

- Production from cosmic strings

Cosmic strings can be efficient source of light dark photon DM and this scenario can be tested by gravitational wave observations (spectrum is "tilted")