Current status on eV dark matter and future prospects

@FY2024 "What is dark matter? - Comprehensive study of the huge discovery space in dark matter", April 24-25,2025

Tokyo Metropolitan U. Wen Yin

Axion Dark Matter

Axion Dark Matter

Why eV axion dark matter?

Why eV axion dark matter? ALP miracle scenario: Axion=Dark Matter=Inflaton Daido, Takahashi, WY, 1702.03284,1710.11107 White dwarfs CROWS ALPS-I CAST **OSQAR** SN1987A **Solar** ν (ν) CAST Diffuse- γ **Globular clusters** MWD X-rays Neutron stars SN1987A (7) baby 0.1 Solar basin JANAI fraction Ionisation RGAN BBNX **RBF+UF** Pulsars Freezerin ADMX SLIC IAXO SOWL **NUS**

XMM-Newton $^{7}10^{-6}10^{-5}10^{-4}10^{-3}10^{-2}10^{-1}10^{0}10^{1}10^{2}10^{3}10^{4}10^{5}10^{6}10^{7}$ See also WY, 2301.08735 $m_a [eV]$ Sakurai, WY, 2410.18968 for cold "hot dark matter"

DMX

Why eV axion dark matter? ALP miracle scenario: Axion=Dark Matter=Inflaton

Daido, Takahashi, WY, 1702.03284,1710.11107

Caputo et al, 2012.09179

Why eV axion dark matter? ALP miracle scenario: Axion=Dark Matter=Inflaton Daido, Takahashi, WY, 1702.03284,1710.11107 White dwarfs CROWS ALPS-I CAST **OSQAR** SN1987A **Solar** ν (v)CAST Diffuse- γ bular clusters MWD X-rays Neutron stars SN1987A (7) 0.1 Ionisation RGAN BBLATZ **RBF+UF** Pulsars Solar Freeze III ADMX SLIC IMOS 0.01└<u></u> 0.01 0.1 $m_{\phi}[eV]$ 10^{-8} TRA S 10^{-9} CAST [GeV XMM-Newton 10^{-10} NuSTAR-ັ ອັ 10⁻¹¹ ⊧ HB $10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7}$ See also WY, 2301.08735 $^{-7}10^{-6}10^{-5}10^{-4}10^{-3}10^{-2}10^{-1}10^{9}10^{1}$ 10^{-12}

 m_a [eV] Sakurai, WY, 2410.18968 for cold "hot dark matter

Anisotropic cosmic infrared

background Gong et al 1511.01577,

Caputo et al, 2012.09179

Why eV axion dark matter?

Why eV axion dark matter? White dwarfs CROWS ALPS-I **OSQAR** SN1987A Solar v (ν) CAST Diffuse- γ bular clusters MWD X-rays Neutron stars SN1987A (2) **RBF+U** Pulsars ADMX SLIC $m_a \approx 2.5 eV,$ DMX $g_{a\gamma\gamma} \approx 1.5 \times 10^{-10} \text{GeV}^{-1}$ $10^{2} \ 10^{3} \ 10^{4} \ 10^{5} \ 10^{6} \ 10^{7}$ See also WY, 2301.08735 $10^{-6}10^{-5}10^{-4}10^{-5}10^{-2}10^{-1}10^{0}10^{1}$ m_a [eV] Sakurai, WY, 2410.18968 for cold "hot dark matter

eV dark matter decaying into narrow line photons may be interesting.

Difficulties of eV DM indirect detection

Significant background:

Thermal radiation(T=290K)

 Zodiacal light: sun light scattered by dust

Difficulties of eV DM indirect detection

Significant background: **Continuous spectra**

Thermal radiation(T=290K)

 Zodiacal light: sun light scattered by dust

A high-resolution detector can reduce background illumination, maintaining a bright DM line.

Infrared spectrographs with high spectral resolution on Earth/in the sky can be excellent eV dark matter detectors by directly searching for the narrow line.

T. Bessho, Y. Ikeda, WY, 2208.05975

eV DM search with WINERED @ Magellan

https://www.cfa.harvard.edu

<u>کم</u> 0.05 0.01

$\lambda/\delta\lambda \sim 30000$, on Earth

T. Bessho, Y. Ikeda, WY, 2208.05975

eV DM search with NIRSpec @ JWST $\lambda/\delta\lambda \sim 3000$ in the sky

 10^{10} [GeV 0.50 × 0.10 <u>کی</u> 0.05 0.01

See also Janish, Pinetti, 2310.15395, Roy et al, 2311.04987 See also WY, Hayashi, 2305.13415 for Subaru/IRCS

T. Bessho, Y. Ikeda, WY, 2208.05975

What we have observed

Based on proposals "eV-Dark Matter search with WINERED", Jun 2023, PI. WY Co-I. Ikeda, Bessho "eV-Dark Matter search with WINERED", Nov 2023, PI. WY Co-I. Ikeda, Bessho WY, Ikeda, Bessho, Kobayashi+WINERED team, 2402.07976

Object name	Object type	RA(J2000)	DEC(J2000)	Obs. date	J_m	R	T_I (
Leo V	dSph	11:31:09.6	+02:13:12	2023.06.06	_	28,000	36
Tucana II	dSph	22:51:55.1	-58:34:08	2023.11.02	_	28,000	42
Sky region 1		11:31:56.97	+02:09:19	2023.06.06	_	28.000	18
Sky region 2	_	22:51:06.5	-57:28:46	2023.11.02	_	28,000	12
Sky region 3		22:38:08.1	-58:24:39	2023.11.02	_	28,000	12
HD134936	A0V	15:14:41.4	-52:35:42	2023.06.06	9.44	28,000	9

 Object-sky-object nodding observation Doppler shift analysis

Simbad, Inger et al 0002110

What we have observed

Based on proposals "eV-Dark Matter search with WINERED", Jun 2023, PI. WY Co-I. Ikeda, Bessho "eV-Dark Matter search with WINERED", Nov 2023, PI. WY Co-I. Ikeda, Bessho WY, Ikeda, Bessho, Kobayashi+WINERED team, 2402.07976

	Object name	Object type	RA(J2000)	DEC(J2000)	Obs. date	J_m	R	T_I (
Target dSphs	Leo V	dSph	11:31:09.6	+02:13:12	2023.06.06	_	28,000	36
	Tucana II	dSph	22:51:55.1	-58:34:08	2023.11.02	_	28,000	42
	Sky region 1		11:31:56.97	+02:09:19	2023.06.06	—	28.000	18
	Sky region 2	_	22:51:06.5	-57:28:46	2023.11.02	—	$28,\!000$	12
	Sky region 3	_	22:38:08.1	-58:24:39	2023.11.02	—	$28,\!000$	12
	HD134936	A0V	15:14:41.4	-52:35:42	2023.06.06	9.44	28,000	9

Object-sky-object nodding observation
Doppler shift analysis

Simbad, Inger et al 0002110

bservation background subtraction

Experimental result: 4hrs obs by WINERED NIRE WY, Ikeda, Bessho, Kobayashi+WINERED team, 2402.07976 Indeed, infrared spectrograph

Ikeda et al 2006

 10^{-8} 10^{-9} \$ 50 10⁻¹⁰ 1.8

is an excellent LeoV LeoV DM detector! Tucl Tucl 2.2 2.4 2.0 2.6 $m_{\phi}[eV]$

Future prospects

Further Checks of Potential Signals Two more observations were performed!

Tucana II 2hrs, $\lambda/\delta\lambda \sim 70000!!$ "eV-Dark Matter search with WINERED", Sep 2024, PI. WY Co-I. Ikeda, Bessho, Kobayashi

Reticulum II 3.5hrs $\lambda/\delta\lambda \sim$ 30000 "eV-Dark Matter search with WINERED", Feb 2025, PI. WY Co-I. Ikeda, Bessho, Kobayashi, Nemin Yaginuma

Data analysis in progress.

Other approaches for the DM indirect search are also important.

• Getting time at state-of-the-art observatories is extremely competitive — you're not just competing with other scientists, but also with the weather!

"eV-Dark Matter search with WINERED", May 2024, PI. WY Co-I. Ikeda, Bessho, Kobayashi Totally cancelled due to weather condition.

- many rejected proposals, and many cancelled ones.
- "eV-Dark Matter search with WINERED", Sep 2024, PI. WY Co-I. Ikeda, Bessho, Kobayashi Partially cancelled "eV-Dark Matter search with WINERED", Feb 2025, PI. WY Co-I. Ikeda, Bessho, Kobayashi, Nemin Yaginuma Partially cancelled

Are there any less competitive ways?

BTW, what's the difference between a smartphone camera and a digital camera with a larger lens?

<u>https://www.rentio.jp/matome/2021/01/dslr-smartphone-compare/</u> https://www.n-pri.jp/print/tips/tips17/

<image>

BTW, what's the difference between a smartphone camera and a digital camera with a larger lens?

A key difference is angular (spatial) resolution. DM search does not need very good angular resolution!

<u>https://www.rentio.jp/matome/2021/01/dslr-smartphone-compare/</u> https://www.n-pri.jp/print/tips/tips17/

Dark Matter Quest Spectrograph(DMQS)

Bessho, Ikeda, WY, Paper 13096-274 (SPIE-Conference 13096) We proposed the design of an infrared spectrograph with the same senstivy for DM as WINERED but installable on a sub-meter aperture telescope!

Figure 3. The top and front views of the optical layout of the high-resolution mode of the DMQS

C.f. state-of-the-art telescopes Magellan:6.5m JWST:6.5m Subaru:8.3m TMT(future):30m Our strategy: Install DMQS on less competitive small telescopes and wait!

Dark Matter Quest Spectrograph(DMQS)

Bessho, Ikeda, WY, Paper 13096-274 (SPIE-Conference 13096) We proposed the design of an infrared spectrograph with the same senstivy for DM as WINERED but installable on a sub-meter aperture telescope!

Figure 3. The top and front views of the optical layout of the high-resolution mode of the DMQS

C.f. state-of-the-art telescopes Magellan:6.5m JWST:6.5m Subaru:8.3m TMT(future):30m Our strategy: Install DMQS on less competitive small telescopes and wait!

DM search with repurposed data from state-of-the-art observatories

c.f. Blank sky data for dark matter search

(I will not talk about preliminary Subaru/PFS DM search strategy. If you are interested in, please ask me.)

DM search from XRISM open data (sorry not eV) No blank sky data for bright targets. WY, Fujita, Ezoe and Ishisaki, XMM-newton 2503.04726, using the open data DM signal is double peak! in XRISM collaboration 2502.08722 $\therefore \lambda/\delta \lambda = O(1000)$ XRISM/Resolve 10²¹ ~ velocity dispersion⁻¹ of MW DM (similar to subaru/PFS, JWST/NIRSpec etc) ີ່ 🕁 10²⁰ Centaurus cluster (d 0.00014 Milky way 0.00012 10¹⁹⊦ 0.00010 Centaurus cluster 0.00008 [∽] 0.00006 10¹⁸∟ 0.00004 2.32 2.26 2.28 2.30 2.34 2.24 12 8 14 10 6 4 Energy (keV)

WY, Fujita, Ezoe, and Ishisaki, 2503.04726

Conclusions: eV DM

- •eV dark matter may be interesting because various independent hints.
- It can be very efficiently searched for by using infrared spectrographs. Bessho, Ikeda, WY, 2208.05975
- Performing just 4hours observations we set one WY, Ikeda, Bessho, Kobayashi of the strongest bounds in the world. +WINERED team, 2402.07976
- Future directions have been discussed.

DM quest spectrograph: Bessho, Ikeda, WY, Paper 13096-274 (SPIE-Conference 13096) First DM limit by XRISM: WY, Fujita, Ezoe, and Ishisaki, 2503.04726

Back up slides