A Neural Network Approach to Model Secondary Dependence of Halo Bias

12h

Keitaro Ishikawa (Nagoyasu).

Collaborators :

T. Nishimichi (Kyoto Sangyo U.),

H. Miyatake (Nagoya U.),

S. Tanaka (Hitotsubashi U.),

T. Sunayama (ASIAA)

公募研究E01: アセンブリ・バイアス入りの宇宙論エミュレータの開発とACDM標準宇宙論の徹底検証

50

Motivation

Construct an emulator that also predicts secondary dependence parameter

Current & Future Observations

Current & Future Observations

2026

2028

Observational

2022

2024

・Photo-z

2020

- Galaxy shape
- Random catalog etc.

Astrophysical

2032

2034

2030

- Halo Assembly Bias
- AGN feedback etc.

Current & Future Observations

Analysis inclu. non-linear region

Halo Emulator: Dark Emulator

T. Nishimichi et al. 2019

is besed on N-body simu., learns statistics using Gaussian process.

Halo Emulator

Halo Assembly Bias

Secondary dependence on physical quantities other than halo mass

Halo Assembly Bias

Secondary dependence

Galaxy Assembly Bias

🔷 B. Hadzhiyska et al. 2023 (MillenniumTNG project)

Success or failure of galaxy formation (galaxy bias) has possibility that depends on halo envs. other than halo mass

Galaxy assembly bias

To consider $P_{h}(k; M_{h}, c) \rightarrow P_{g}(k)$

Relationship between halo mass and concentration

Implement assembly bias effect

*normalizing flow + scrambled Sobol sequence

Implement assembly bias effect

Feed Forward Neural Network (FFNN)

Regress cross-corr. as a function of $M_{\rm threshold}$, $c_{\rm threshold}$

- loss function: RMSE
- $k : [3 \times 10^{-3}, 50] [h/Mpc]$
- suppressing cosmic variance using propagator method
- sample size: 39,120
 (90%: train, validation, 10%: test)
 - automatic survey of hyper params

(hidden layer, # of neuron, batch size, scheduler, initial learning rate, epoch)

* consider cosmological dependence as a future work

Result: achieve 1% accuracy

- $\log n_1 + \log n_2 \ge -3 \times 2$

Result: achieve 1% accuracy

Redshift space (ell = 2)

2

Prediction ($\log_{10} M_{\rm h} = 12.3$ **)**

Summary

 \bigotimes The goal of this study:

Implement halo assembly bias effect into Dark Emulator II

Result:

 \cdot Achieved 1% accuracy (k < 1 [Mpc/h]) in prediction on FFNN

Next Step:

- Redshift / Cosmological parameters dependence
- Develop halo mass concentration function

Infrastructure work:

Implement Dark Emulator I into Roman/LSST analytical pipeline

