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Local models of moduli

1 Let X be a Calabi-Yau fourfold and M a moduli space of stable sheaves on X .

2 The obstruction theory at E now sees

Ext1(E,E) Ext2(E,E) Ext3(E,E)

3 Locally around E , M looks like:

Ext1(E ,E) Ext2(E ,E)

M = s−1(0)

s

#
∗

where # - the Serre isomorphism, B : Ext2(E ,E)⊗2 →C the induced pairing, and B(s ,s)= 0.
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Orientations

1 Set V :=Ext2(E ,E) and choose a splitting V =Λ⊕Λ∗ where Λ,Λ∗ are Lagrangian subspaces.

2 This together with choosing Λ to be the positive Lagrangian determines an orientation at E .
3 Orientation of M: A continuous choice of orientations as above.

Theorem (JU (25’), CGJ (19’), B.(20’))
For many quasi-projective X, orientations exist.

Remark
The argument for projective X consists of two parts - 1) prove orientability for U(n)-connections, 2)
transport it to sheaves and complexes on X . 1) was corrected by Joyce-Upmeier under extra conditions,
2) is done by CGJ. For quasi-projective X , I reduced orientations for complexes to orientations in 1) on a
compact manifold.

Example
All X obtained as complete intersections in toric varieties satisfy this.
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Compatibility of orientations

1 Let Mα now be connected moduli of sheaves of classes α ∈K0(X), and fix their orientations oα.

2 The direct sum maps µ : Mα×Mβ→Mα+β (if they exist) can be used to compare orientations:

µ∗(oα+β)= ϵα,β oα⊠oβ .

3 These signs satisfy associativity and more

oα oβ oγ

oα+β oβ+γ

oα+β+γ

εα,β εβ,γ

εα+β,γεα,β+γ

Arkadij Bojko (SIMIS) CY4 wall-crossing 6 / 26
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Virtual integrals

1 When M is orientable, Borisov-Joyce(15’) and later Oh-Thomas(20’) construct

[M]vir ∈H2−χ(E ,E)
(
M,Z

)
,

Ôvir ∈K0
(
M,Z[1/2]

)
.

2 If M is connected, changing its orientation changes the sign of the above.

Example
Assume that the local model holds globally for a projective A and a vector bundle V →A:

A V

M = s−1(0)

s

∗ι

where B(s ,s)= 0 for the induced pairing B. If V =Λ⊕Λ∗, then ι∗[M]vir = e(Λ).
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Ôvir ∈K0
(
M,Z[1/2]

)
.

2 If M is connected, changing its orientation changes the sign of the above.

Example
Assume that the local model holds globally for a projective A and a vector bundle V →A:

A V

M = s−1(0)

s

∗ι

where B(s ,s)= 0 for the induced pairing B. If V =Λ⊕Λ∗, then ι∗[M]vir = e(Λ).

Arkadij Bojko (SIMIS) CY4 wall-crossing 7 / 26



Calabi-Yau four
invariants

Gross-Joyce-Tanaka
conjecture

First applications

Refinements and
tautological stable
pair
correspondences

Virtual integrals

1 When M is orientable, Borisov-Joyce(15’) and later Oh-Thomas(20’) construct

[M]vir ∈H2−χ(E ,E)
(
M,Z

)
,
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Lie algebras in wall-crossing

1 Consider two stability conditions in a stability manifold:

W1

W2

σ

σ
′

γ

2 Let φ,φ′ be the associated phases of objects
3 For a pair of sheaves E1,E2, there can be short exact sequences

0 E1 E ′ E2 0 s.t. φ′(E1)>φ′(E ′)>φ′(E2) ,

0 E2 E E1 0 s.t. φ(E1)<φ(E)<φ(E2) .

4 Subtracting the first type and adding the second type gives

−E1 ∗E2 +E2 ∗E1 = [E2,E1] .

5 Vertex algebras are refinements of Lie algebras.

Arkadij Bojko (SIMIS) CY4 wall-crossing 9 / 26
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Bicharacter construction

1 Let MX be the stack of sheaves or complexes on X and set A∗ =H∗+vdimR
(MX ,k).

2 A∗ is a (co)commutative bialgebra using the diagonal and the direct sum map µ : MX ×MX →MX .
3 There is an action of H∗ :=H∗(BGm) (a Hopf algebra) on A∗ induced by scaling automorphisms of

objects. Using
(
H∗

)∗ ∼=k�z�, the action induces a map

ezT : A∗ A∗�z�

Theorem (Borcherds(99’))
Let A∗ be a bialgebra with a compatible action of the above Hopf algebra H∗. For a given

−∩Bz ∈A∗⊗A∗ A∗⊗A∗((z))

satisfying the axioms of a bicharacter, there is a vertex algebra given by

Yz (v ,w)=m
[
ezT ⊗ id

(
v ⊗w ∩Bz

)]
.

Arkadij Bojko (SIMIS) CY4 wall-crossing 10 / 26
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Joyce’s bicharacter construction

1 Continue using A∗,H∗ introduced as homologies.

Theorem (Joyce (17’))
Let

E xt=RH omMX×MX

(
E1,E2

)
and ε : K0(X)×K0(X)→ {±1

}
be the signs εα,β determined by comparing orientations. The cap product

∩Bz =∩εzrkcz−1
(
E xt

)
is a bicharacter and therefore gives rise to a vertex algebra.

Arkadij Bojko (SIMIS) CY4 wall-crossing 11 / 26
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Conjecture of GJT

Theorem (Borcherds’ foundational paper)
Let A∗ be a vertex algebra. Then L∗ =A∗+2/T (A∗) is a Lie algebra with

[v ,w ]=Resz=0
{
Yz (v ,w)

}
.

1 In our case, there is a comparison (Joyce 17’):

L∗ ∼H∗+vdimR

(
M

rig
X

)
,

so L∗ contains all
[
Mσ
α

]vir and their generalizations
〈
Mσ

α

〉
.

Conjecture (GJT(20’))
Often, the formula 〈

Mσ
α

〉= ∑
α⊢A α

Ũ(α;σ′,σ)
[[

· · ·
[〈

Mσ′
α1

〉
,
〈
Mσ′

α2
〉]

, . . .
]

,
〈
Mσ′

αn
〉]

holds in L0.

Arkadij Bojko (SIMIS) CY4 wall-crossing 12 / 26
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Results I

1 The proof can be separated into two problems:

W1

W2

σ

σ
′

σ
′′

τ

(I) Prove wall-crossing for σ,σ′ close enough.
(II) Prove that the invariants

〈
Mτ

α

〉
are defined independent of choices made.

2 New tools and conceptual framework for proving these two steps developed in B. (25’).
3 Contains the first established proofs of wall-crossing in the CY4 setting.

Theorem (B. (25’))
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Results II

1 The invariants
〈
Mτ

α

〉
counting stable sheaves are defined using

Pτ
L,α =

{
L s−→F Joyce-Song/Bradlow stable

}
and

[
Pτ

L,α

]vir for L a sufficiently positive line bundle.

2 The following result concerns stabilities for torsion-free sheaves (e.g., Gieseker or slope stability)

Theorem (B. (25’))
For a very ample D and L′ =L⊗OX (−D), there is an embedding ι : Pτ

L,α
→Pτ

L′,α. It relates their virtual
fundamental classes by

ι∗
[
Pτ

L,α

]vir = ι∗
[
Pτ

L,α

]vir ∩e(V) .

This reduces Problem (II) to Problem (I) for torsion-free sheaves on any X.

3 The theorem from the previous slide is extended using the Jouanolou trick in

Theorem (B.-Kuhn-Liu-Thimm (in progress))
Both (I) and (II) hold for any CY 4-fold X.
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Historically first application

1 In B. (21’),
[
Hilbn(X)

]vir for projective X were computed and studied.

2 Starting point: For a line bundle L on X , construct

L[n] =πH ,∗(πX
∗(L) ·F)

using the projections X
πX←−−X ×Hilbn(X)

πH−−→Hilbn(X) and I →O →F the universal exact
sequence. Define tautological invariants

Cn(X) :=
∫
[Hilbn(X)]vir

c(L[n])

3 The wall-crossing formula for Hilbn(X) becomes

∑
n≥0

[Hilbn(X)]virqn = exp
{ ∑

n>0

[〈
Mnp

〉
,−

]
qn

}
e(1,0) .
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Cap product is a morphism

1 The action of ∩cn
(
L[n]) commutes with [−,−] (roughly) because L[n] is a vector bundle of rank n.

2 Idea of the computation of [Hilbn(X)]vir:

Cn(L) 〈
Mnp

〉
[Hilbn(X)]vir

[−,−]∩cn
(
L[n]

)

[−,−]

.

3 In fact, need invariants only for L=OX (D) when D is a smooth divisor.
4 Conjectured by Cao–Kool (17’) and proved by Park (21’).
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Nekrasov’s conjecture

1 Consider the case when X =C4 with the natural action of the CY4 torus T3 = {
t1t2t3t4 = 1

}⊂ (
C∗

)4.

2 K-theoretic invariants Kn(L,y) refining Cn(L) were introduced by Nekrasov. Expressed using
χ
(
Hilbn(X), Ôvir ⊗−)

.
3 Ongoing discussions with Kool, Rennemo,... to prove Nekrasov’s conjecture using wall-crossing and

to extend it to [C4/Γ] studied by Reinier Schmiermann.

Example
Use

Hilbn(C4)=Repσ(1,n)(C4)

where
{xi}

4

i=1

C4 =

[xi, xj ] = 01 n

and equivariant wall-crossing for CY4 quivers from B. (25’).
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.
3 Ongoing discussions with Kool, Rennemo,... to prove Nekrasov’s conjecture using wall-crossing and

to extend it to [C4/Γ] studied by Reinier Schmiermann.

Example
Use

Hilbn(C4)=Repσ(1,n)(C4)

where
{xi}

4

i=1

C4 =

[xi, xj ] = 01 n

and equivariant wall-crossing for CY4 quivers from B. (25’).

Arkadij Bojko (SIMIS) CY4 wall-crossing 18 / 26



Calabi-Yau four
invariants

Gross-Joyce-Tanaka
conjecture

First applications

Refinements and
tautological stable
pair
correspondences

Example continued

1 One limit of Kn(L,y) is
In =

∫
[Hilbn(C4)]vir

1 .

2 The generating series was conjectured to be:

I(q) := ∑
n≥0

Inqn = exp
[
q

(λ1 +λ2)(λ2 +λ3)(λ1 +λ3)
λ1λ2λ3λ4

]

where eλi = ti .
3 After

∫
1, the terms with

[〈
Mnp

〉
,−

]
for n≥ 0 in

∑
n≥0

[Hilbn(C4)]virqn = exp
{ ∑

n>0

[〈
Mnp

〉
,−

]
qn

}
e(1,0) .

vanish.
4 Use [〈

Mp
〉

,−
]
= (λ1 +λ2)(λ2 +λ3)(λ1 +λ3)

λ1λ2λ3λ4
·

5 Other proofs in Kool-Rennemo or Cao–Zhao–Zhou.
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Stable pairs invariants

1 Instead of counting points, one can count subvarieties of dimension up to 2.

2 Still have the usual DT/PT stable pairs OX
s−→F (F 1-dimensional) given by

3 The generalization to two-dimensional F on X leads to 3 different stability conditions:

1 PT(0) (this one only by BKP) and PT(1):
S1

S2

S1

S2

2 DT - the usual Hilbert scheme of 2-dimensional subvarieties

4 I will denote the moduli spaces with ch(F )= (γ,δ) by PT(i)
γ,δ

even if γ= 0.
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Stable pair invariants

1 For PT(i)
γ,δ

, define Lγ,δ the same way we did L[n].

2 Set 〈
PT(i)

γ,δ

〉L =
∫[

PT(i)
γ,δ

]vir c
(
Lγ,δ

)
.

3 Conjecture of BKP:{
Integrals

over DT moduli spaces

}
=

{ Integrals
over PT(0) moduli spaces

}
·
{

Integrals
over Hilbn(X)

}
.

follows by a similar calculation as in B. (21’) relying on BKLT.
4 Would like to formalize it and extend it to PT(0)/PT(1) wall-crossing.
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PT(0)/PT(1) wall-crossing

1 Without insertions get

∑
δ

[
PT(0)

γ,δ

]vir
qδ = exp

{∑
∆

[〈
M∆

〉
,−

]
q∆

} ∑
δ0

[
PT(1)

γ,δ0

]vir
qδ0 .

from the variation of stabilities

2 The operation ∩crk
(
Lγ,δ

)
no longer behaves well.

3 Instead, construct “vertex algebras” twisted urkcu−1
(
Lγ,δ

)
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Additive deformations of vertex algebras

1 Produces additive deformations of vertex algebras.

2 These are special nice deformations of VAs in the sense of H. Li (02’) that depend on (z −u)−1:

3 To get Lie algebras, need residues, so choose an expansion:
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Applications: PT/{OX }

1 Taking the appropriate coefficients of u in [−,−]u - the deformed Lie bracket, get:

Example
PT/{OX } wall-crossing: Set γ= 0 and do PT(0)/PT(1) wall-crossing with π∗(δ)= 0 for the geometry

X L :=π∗LB

B LB

π .

Conjecture (Cao-Toda (21’))
∑

π∗(δ)=0
Pδ(L)qδ = ∏

β : π∗(β)=0
k>0

(
1−(−1)k q(β,k)

)k ·n0,β(L) ∏
β : π∗β=0

M
(
q(β,0))n1,β(X)

.

2 For now have

Pδ(L)=Pol
(〈

Mβ,k
〉L

,
〈
Mβ,k

〉OX : π∗(β)= 0,k > 0
)

,
〈
Mss
δ

〉L =
∫〈

Mδ

〉 c1
(
L[δ]) .
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PT(0)/PT(1) wall-crossing on elliptic fibrations

Example
Consider the situation π : X →B for an elliptic fibration and L=OX .

Conjecture (BKP (upcoming))
If (γ,δ)=π∗(β,n)+mp for (β,n) ∈H≥4(B) then∑

d≥0

〈
PT(0)

γ,δ+dE
〉OX qd = ∑

d≥0

〈
PT(1)

γ,δ+d0E
〉OX qd0

∑
∆≥0

〈
PT∆E

〉Lq∆

Claim (B. (upcoming))
The wall-crossing formula holds for the total path of

Will come back to prove the vanishing of the last segment of the arc.
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