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Calabi-Yau four invariants




© Let X be a Calabi-Yau fourfold and M a moduli space of stable sheaves on X.




{%@ SIMIS Local models of moduli

Calabi-Yau four
invariants

@ Let X be a Calabi-Yau fourfold and M a moduli space of stable sheaves on X.

@ The obstruction theory at E now sees

Ext!(E, E) Ext?(E, E) Ext?(E, E)
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{%@ SIMIS Local models of moduli

Calabi-Yau four
invariants

@ Let X be a Calabi-Yau fourfold and M a moduli space of stable sheaves on X.

@ The obstruction theory at E now sees

Ext!(E, E) Ext?(E, E) Ext?(E, E)

© Locally around E, M looks like:

S

SN

Ext!(E,E) «—— Ext%(E,E)

M=s71(0)

where #* - the Serre isomorphism, the induced pairing, and
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@ Set V:=Ext?(E,E) and choose a splitting VV =A@ A* where A,A* are Lagrangian subspaces.




{%@ SIMIS Orientations

Calabi-Yau four
invariants

Q Set V:= Eth(E,E) and choose a splitting V =A@ A* where A,A* are Lagrangian subspaces.

@ This together with choosing A to be the positive Lagrangian determines an orientation at E.
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é‘;’é SIMIS Orientations

Calabi-Yau four
invariants
Q Set V:= Eth(E,E) and choose a splitting V =A@ A* where A,A* are Lagrangian subspaces.
@ This together with choosing A to be the positive Lagrangian determines an orientation at E.

© Orientation of M: A continuous choice of orientations as above.
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AL SIMIS Orientations

Calabi-Yau four
invariants

Q Set V:= Extz(E,E) and choose a splitting V =A@ A* where A,A* are Lagrangian subspaces.

@ This together with choosing A to be the positive Lagrangian determines an orientation at E.

© Orientation of M: A continuous choice of orientations as above.

Theorem (JU (25’), CGJ (19’), B.(20))

For many quasi-projective X, orientations exist.
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{r‘:@ SIMIS Orientations

Calabi-Yau four
invariants
Q Set V:= Eth(E,E) and choose a splitting V =A@ A* where A,A* are Lagrangian subspaces.
@ This together with choosing A to be the positive Lagrangian determines an orientation at E.

© Orientation of M: A continuous choice of orientations as above.

Theorem (JU (25’), CGJ (19’), B.(20%))

For many quasi-projective X, orientations exist. )
Remark

The argument for projective X consists of two parts - 1) prove orientability for U(n)-connections, 2)
transport it to sheaves and complexes on X. 1) was corrected by Joyce-Upmeier under extra conditions,

2) is done by CGJ. For quasi-projective X, | reduced orientations for complexes to orientations in 1) on a
compact manifold. )
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AL SIMIS Orientations

Calabi-Yau four
invariants
Q Set V:= Extz(E,E) and choose a splitting V =A@ A* where A,A* are Lagrangian subspaces.
@ This together with choosing A to be the positive Lagrangian determines an orientation at E.

© Orientation of M: A continuous choice of orientations as above.

Theorem (JU (25’), CGJ (19’), B.(20%))
For many quasi-projective X, orientations exist. )
Remark
The argument for projective X consists of two parts - 1) prove orientability for U(n)-connections, 2)
transport it to sheaves and complexes on X. 1) was corrected by Joyce-Upmeier under extra conditions,
2) is done by CGJ. For quasi-projective X, | reduced orientations for complexes to orientations in 1) on a
compact manifold.

v
Example
All X obtained as complete intersections in toric varieties satisfy this. )
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@ Let My now be connected moduli of sheaves of classes a € KO(X), and fix their orientations oq.




{%@ SIMIS Compatibility of orientations

Calabi-Yau four
invariants

@ Let My now be connected moduli of sheaves of classes a € K9(X), and fix their orientations oy .

@ The direct sum maps p: Mg x Mg — My, g (if they exist) can be used to compare orientations:

1 (0q+p) = €a,p0aXog.

Arkadij Bojko (SIMIS) CY4 wall-crossing 6/26



?&@ SIMIS Compatibility of orientations

Calabi-Yau four
invariants

@ Let My now be connected moduli of sheaves of classes a € K9(X), and fix their orientations oy .

@ The direct sum maps p: Mg x Mg — My, g (if they exist) can be used to compare orientations:

1 (0q+p) = €a,p0aXog.

© These signs satisfy associativity and more
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@ When M is orientable, Borisov-Joyce(15') and later Oh-Thomas(20’) construct

M7 € Ho_y (£,6) (M, Z),
6" e Ko(M,z[1/2]).




?&@ SIMIS Virtual integrals

Calabi-Yau four
invariants @ When M is orientable, Borisov-Joyce(15') and later Oh-Thomas(20’) construct

[M]VIr e Ho_y(e,£)(M. Z),
61" e Ko(M,Z[1/2]).

@ If M is connected, changing its orientation changes the sign of the above.
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{r‘:@ SIMIS Virtual integrals

Calabi-Yau four
invariants @ When M is orientable, Borisov-Joyce(15') and later Oh-Thomas(20’) construct

[M]VIr e Ho_y(e,£)(M. Z),
61" e Ko(M,Z[1/2]).

@ If M is connected, changing its orientation changes the sign of the above.

Example
Assume that the local model holds globally for a projective A and a vector bundle V — A:

S

S N

Ai—V
M=s"

1(0)

where for the induced pairing B. If V=A@ A*, then 1. [M]V" = e(A).
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Gross-Joyce-Tanaka conjecture




@ Consider two stability conditions in a stability manifold:

7




{%@ SIMIS Lie algebras in wall-crossing

@ Consider two stability conditions in a stability manifold:

Gross-Joyce-Tanaka
conjecture W,
/1

@ Let ¢,¢' be the associated phases of objects
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?\& SIMIS Lie algebras in wall-crossing

@ Consider two stability conditions in a stability manifold:

Gross-Joyce-Tanaka
conjecture 3%
Wi

@ Let ¢,¢' be the associated phases of objects

© For a pair of sheaves Ej, Ey, there can be short exact sequences

0 =1 E’' E> 0 st. ¢(E1)>¢'(E")>¢/'(E),

0 E> E E1 0 st. ¢(E1)<¢(E)<¢(Ep).
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{%@ SIMIS Lie algebras in wall-crossing

@ Consider two stability conditions in a stability manifold:

Gross-Joyce-Tanaka
conjecture 3%
Wi

@ Let ¢,¢' be the associated phases of objects

© For a pair of sheaves Ej, Ey, there can be short exact sequences

0 =1 E’' E> 0 st. ¢(E1)>¢'(E")>¢/'(E),

0 E> E E1 0 st. ¢(E1)<¢(E)<¢(Ep).
@ Subtracting the first type and adding the second type gives

—E]_ * E2+E2 * El = [E2,E1].
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{%@ SIMIS Lie algebras in wall-crossing

@ Consider two stability conditions in a stability manifold:

Gross-Joyce-Tanaka
conjecture 17
Wy

@ Let ¢,¢' be the associated phases of objects

© For a pair of sheaves Ej, Ey, there can be short exact sequences

0 =1 E’' E> 0 st. ¢(E1)>¢'(E")>¢/'(E),

0 E> E E1 0 st. ¢(E1)<¢(E)<¢(Ep).

@ Subtracting the first type and adding the second type gives

—E]_ * E2+E2 * El = [E2,E1].

© Vertex algebras are refinements of Lie algebras.
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@ Let /x be the stack of sheaves or complexes on X and set A, = H, yydimg (-4, k).




{?@ SIMIS Bicharacter construction

@ Let ix be the stack of sheaves or complexes on X and set Ax = H, .y dimg (#x, k).

Gross-Joyce-Tanaka

conjecture @ A is a (co)commutative bialgebra using the diagonal and the direct sum map p: . #x x Mx — Mx.
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{%@ SIMIS Bicharacter construction

@ Let ix be the stack of sheaves or complexes on X and set Ax = H, .y dimg (#x, k).
oS @ A is a (co)commutative bialgebra using the diagonal and the direct sum map p: . #x x Mx — Mx.

conjecture
© There is an action of Hy := H«(BGm) (a Hopf algebra) on A, induced by scaling automorphisms of
objects. Using (H*)* =k[z], the action induces a map

T Ay —— Adlzl
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{?@ SIMIS Bicharacter construction

@ Let ix be the stack of sheaves or complexes on X and set Ax = H, .y dimg (#x, k).
oS @ A is a (co)commutative bialgebra using the diagonal and the direct sum map p: . #x x Mx — Mx.

conjecture
© There is an action of Hy := H«(BGm) (a Hopf algebra) on A, induced by scaling automorphisms of
objects. Using (H*)* =k[z], the action induces a map

T Ay —— Adlzl

Theorem (Borcherds(99’))

Let Ay be a bialgebra with a compatible action of the above Hopf algebra H.. For a given
€A®A: —— A0 A«((2))
satisfying the axioms of a , there is a vertex algebra given by

Yz(v,w):m[eZT®id(v® WmBz)].
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@ Continue using As, Hy introduced as homologies.




{r‘:@ SIMIS Joyce's bicharacter construction

Gross-Joyce-Tanaka
conjecture

@ Continue using Ax, Hx introduced as homologies.

Theorem (Joyce (17'))

Let
Ext = RACOM 41y 11, (61,62)

and ¢: KO(X) x KO(X) = {+1} be the signs £q,p determined by comparing orientations. The cap product
€

is a bicharacter and therefore gives rise to a vertex algebra.
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Theorem (Borcherds’ foundational paper)
Let Ay be a vertex algebra. Then Ly = A, .2/ T(Ax) is a Lie algebra with

[v,w]= Reszzo{Yz(v, w)} .




AL SIMIS

Calabi-Yau four
invariants

Gross-Joyce-Tanaka
conjecture

First applications

Refinements and
tautological stable
pair
correspondences

Conjecture of GJT

Theorem (Borcherds’ foundational paper)

Let Ay be a vertex algebra. Then Ly = A, .2/ T(Ax) is a Lie algebra with

[v,w]= ResZ:O{Yz(v, W)}

@ In our case, there is a comparison (Joyce 17'):

so Ly contains all [MJ

]vir

Conjecture (GJT(20))

Often, the formula

holds in L.

(M= Y Ulaioo)||- [y ) )] (g,

aFga

Ly~ H*+vdimR(

rig
Ax

and their generalizations (.47 ).

),
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@ The proof can be separated into two problems:




@ The proof can be separated into two problems:

(1) Prove wall-crossing for 0,0’ close enough.



AL SIMIS Results |

Gross-Joyce-Tanaka

conjecture @ The proof can be separated into two problems:

(1) Prove wall-crossing for 0,0’ close enough.

(1) Prove that the invariants (%) are defined independent of choices made.
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AL SIMIS Results |

Gross-Joyce-Tanaka

conjecture @ The proof can be separated into two problems:

(1) Prove wall-crossing for 0,0’ close enough.
(1) Prove that the invariants (%) are defined independent of choices made.

@ New tools and conceptual framework for proving these two steps developed in B. (25').
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AL SIMIS Results |

Gross-Joyce-Tanaka

conjecture @ The proof can be separated into two problems:

N

(1) Prove wall-crossing for 0,0’ close enough.
(1) Prove that the invariants (%) are defined independent of choices made.
@ New tools and conceptual framework for proving these two steps developed in B. (25').

© Contains the first established proofs of wall-crossing in the CY4 setting.

Theorem (B. (25’))

Both (1) and (11) hold in the case of representations of CY4 quivers and sheaves or pairs on local
Calabi-Yau fourfolds.
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AL SIMIS Results Il

@ The invariants {(.#) counting stable sheaves are defined using

Gross-Joyce-Tanaka
conjecture

Pz,a = {L 2. F Joyce-Song/Bradlow stable }

and [P[Ut]\/ir for L a sufficiently positive line bundle.
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AL SIMIS Results 11

@ The invariants {(.#) counting stable sheaves are defined using
Gross-Joyce-Tanaka

conjecture

Pz,a = {L 2. F Joyce-Song/Bradlow stable }

and [Pzw]vir for L a sufficiently positive line bundle.

@ The following result concerns stabilities for torsion-free sheaves (e.g., Gieseker or slope stability)

Theorem (B. (25’))

For a very ample D and L' = L® Ox(—-D), there is an embedding : Pf = Pz, o It relates their virtual
fundamental classes by

W[PT ) =1 P ] (V).

This reduces Problem (Il) to Problem () for torsion-free sheaves on any X.
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AL SIMIS Results 11

@ The invariants {(.#) counting stable sheaves are defined using

Gross-Joyce-Tanaka
conjecture

Pz,a = {L 2. F Joyce-Song/Bradlow stable }
and [Pzw]vir for L a sufficiently positive line bundle.

@ The following result concerns stabilities for torsion-free sheaves (e.g., Gieseker or slope stability)

Theorem (B. (25’))

For a very ample D and L' = L® Ox(—-D), there is an embedding : Pf = Pz, o It relates their virtual
fundamental classes by

W[PT ) =1 P ] (V).

This reduces Problem (Il) to Problem () for torsion-free sheaves on any X.

© The theorem from the previous slide is extended using the Jouanolou trick in

Theorem (B.-Kuhn-Liu-Thimm (in progress))
Both (1) and (1) hold for any CY 4-fold X.
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First applications




@ In B. (21"), [HiIb"(X)]Vir for projective X were computed and studied.




AL SIMIS Historically first application

@ In B. (21"), [Hilb”(X)]Vir for projective X were computed and studied.

[Fiest eppiiEtiom @ Starting point: For a line bundle L on X, construct
L =y L (ux* (L))

using the projections X <2 X x Hilb"(X) £ Hilb"(X) and .# — @ — F the universal exact
sequence. Define tautological invariants

— [n]
Cn(X): f[Hnb"(X)]virc(L )
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AL SIMIS Historically first application

@ In B. (21"), [Hilb”(X)]Vir for projective X were computed and studied.

[Fiest eppiiEtiom @ Starting point: For a line bundle L on X, construct
L =y L (ux* (L))

using the projections X <2 X x Hilb"(X) £ Hilb"(X) and .# — @ — F the universal exact
sequence. Define tautological invariants

— [n]
Cn(X): f[Hnb"(X)]virc(L )

© The wall-crossing formula for Hilb”(X) becomes

X [HI" 06" = exp - [(np).~a" [ 1),

n=0
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@ The action of mc,,(L["]] commutes with [—,—] (roughly) because LI is a vector bundle of rank n.




a’é SIMIS Cap product is a morphism

First applications

@ The action of mcn(L[”]) commutes with [-,—] (roughly) because LI is a vector bundle of rank n.

@ Idea of the computation of [Hilb”(X)]vir:

Co(L) _ [rinen(L)

\

-l

(Mnp) -

[Hilb"(X)]vr
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{‘%@ SIMIS Cap product is a morphism

First applications

@ The action of mcn(L[”]) commutes with [-,—] (roughly) because LI is a vector bundle of rank n.

@ Idea of the computation of [Hilb”(X)]vir:

Co(L) _ [rinen(L)

\

-l

(Anp) -
[Hilb"(X)]vr

@ In fact, need invariants only for L=0x(D) when D is a smooth divisor.
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{?@ SIMIS Cap product is a morphism

First applications

@ The action of mcn(L[”]) commutes with [-,—] (roughly) because LI is a vector bundle of rank n.

@ Idea of the computation of [Hilb”(X)]vir:

Co(L) _ [rinen(L)

\

-l

(Anp) -
[Hilb"(X)]vr

@ In fact, need invariants only for L=0x(D) when D is a smooth divisor.
@ Conjectured by Cao—Kool (17’) and proved by Park (21").
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@ Consider the case when X =C* with the natural action of the CY4 torus T3={titrt3tg =1} [C*)4.




{‘%@ SIMIS Nekrasov's conjecture

© Consider the case when X = C* with the natural action of the CY4 torus T3 = {t;tyt3t5 = 1}  (C*)".

@ K-theoretic invariants Kn(L,y) refining Cp(L) were introduced by Nekrasov. Expressed using
x(Hilb"(X),6"Ir & -).

First applications
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{‘%@ SIMIS Nekrasov's conjecture

4

© Consider the case when X = C* with the natural action of the CY4 torus T3 = {t; tat3ts =1} < (C*)".

) - @ K-theoretic invariants Kj(L,y) refining Cn(L) were introduced by Nekrasov. Expressed using
First applications . ~
¥ (Hilb"(X),0V" & -).
© Ongoing discussions with Kool, Rennemo,... to prove Nekrasov's conjecture using wall-crossing and
to extend it to [C*/T] studied by Reinier Schmiermann.
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a’é SIMIS Nekrasov's conjecture

© Consider the case when X = C* with the natural action of the CY4 torus T3 = {t;tyt3t5 = 1}  (C*)".

@ K-theoretic invariants Kn(L,y) refining Cp(L) were introduced by Nekrasov. Expressed using
¥ (Hilb"(X),0V" & -).

© Ongoing discussions with Kool, Rennemo,... to prove Nekrasov's conjecture using wall-crossing and
to extend it to [C*/T] studied by Reinier Schmiermann.

First applications

Example
Use

Hilb"(c*) = Rep(; ) (Ca)
where

{xi}?:l

Cy =
1 n

and equivariant wall-crossing for CY4 quivers from B. (25').
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@ One limit of Ky(L,y) is

I =f[Hilb"(a:'*)]vir .




@ One limit of Ky(L,y) is
m:f 1.
[Hilb" (C4)pvir

@ The generating series was conjectured to be:

q(/ll +22)(A2 +13)(A1 +43)
A AaA3s

I(q):= ) Inq" =exp
n=0

where eli = ti.



AL SIMIS Example continued

@ One limit of Kn(L,y) is

In= f 1
[Hilb™ (C4)]vir
First applications

@ The generating series was conjectured to be:

q(/h +12)(A2 +13) (A1 +13) l

] = 1,q" =
(@):=) Ing" =exp NiAahals

n=0

where eti = ti.

@ After [1, the terms with [(ﬂnp),—] for n=0in

Y [Hilb"(cH)]""g" :exp{ Y [<ﬂnp>,—]q"}e(1v0).

n=0 n>0

vanish.

Q Use
(A1 +142) (A2 +13) (A1 +13)

[<J”p>’_] - AA2A3A4 .
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{‘r:@ SIMIS Example continued

@ One limit of Kn(L,y) is

In= f 1
[Hilb™ (C4)]vir
First applications

@ The generating series was conjectured to be:

q(/ll +12)(A2 +13) (A1 +13) l

] = 1,q" =
(@):=) Ing" =exp Aidadala

n=0

where eti = ti.

@ After [1, the terms with [(j[np),—] for n=0in

Y [Hilb"(cH)]""g" :exp{ Y [<ﬂnp>,—]q"}e(1v0).

n=0 n>0

vanish.

Q Use
(A1 +142) (A2 +13) (A1 +13)

[<J”p>’_] - AA2A3A4 .

@ Other proofs in Kool-Rennemo or Cao—Zhao—Zhou.
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@ Instead of counting points, one can count subvarieties of dimension up to 2.




{%@ SIMIS Stable pairs invariants

@ Instead of counting points, one can count subvarieties of dimension up to 2.

@ Still have the usual DT/PT stable pairs ©x > F (F 1-dimensional) given by

First applications
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{%@ SIMIS Stable pairs invariants

@ Instead of counting points, one can count subvarieties of dimension up to 2.

@ Still have the usual DT/PT stable pairs ©x > F (F 1-dimensional) given by

First applications

© The generalization to two-dimensional F on X leads to 3 different stability conditions:
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é‘;’é SIMIS Stable pairs invariants

@ Instead of counting points, one can count subvarieties of dimension up to 2.

@ Still have the usual DT/PT stable pairs ©x > F (F 1-dimensional) given by

First applications

© The generalization to two-dimensional F on X leads to 3 different stability conditions:
o PTO (this one only by BKP) and PT):
S Si

Sy Sy

@ DT - the usual Hilbert scheme of 2-dimensional subvarieties
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é‘;’é SIMIS Stable pairs invariants

@ Instead of counting points, one can count subvarieties of dimension up to 2.

@ Still have the usual DT/PT stable pairs ©x > F (F 1-dimensional) given by

First applications

© The generalization to two-dimensional F on X leads to 3 different stability conditions:
o PTO (this one only by BKP) and PT):
S Si

Sy Sy

@ DT - the usual Hilbert scheme of 2-dimensional subvarieties

@ | will denote the moduli spaces with ch(F)=(y,5) by PT)(/':BS even if y=0.
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Refinements and tautological stable pair correspondences




Q@ For PTg,'), define ng the same way we did Llnl

,0




Q@ For PT;’%, define ng the same way we did Llnl
Q Set
(PT))" = v c(Lys)
7,6 [PT(i) ]wr v,0)-
7,0



{r*g SIMIS Stable pair invariants

Q For PT( ). define L, 5 the same way we did L["].

Refinements and
tautological stable Q Set
pair

correspondences PT( ) f VII’ C y 5)
Pral

© Conjecture of BKP:

Integrals 3 Integrals ] Integrals
over DT moduli spaces |~ | over PT(®) moduli spaces over Hilb"(X) [~

follows by a similar calculation as in B. (21') relying on BKLT.
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{r*g SIMIS Stable pair invariants

Q For PT( ). define L, 5 the same way we did L["].
Refinements and

tautological stable Q Set
pair

correspondences PT( ) f VII’ C y 5)
Pral

© Conjecture of BKP:

Integrals 3 Integrals ] Integrals
over DT moduli spaces |~ | over PT(®) moduli spaces over Hilb"(X) [~

follows by a similar calculation as in B. (21') relying on BKLT.
@ Would like to formalize it and extend it to PT(® /PT 1) wall- crossing.
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@ Without insertions get

; [PT](/?g o =exp{§ [(.ﬂA>,_]qA} 62(): [PTSgO vir g0,

from the variation of stabilities




@ Without insertions get

(0)
; [PT% )

vir 5

o =oo{ T [cah-]a} [P, "o,

from the variation of stabilities

@ The operation Ncy(Ly,5) no longer behaves well.



@ Without insertions get

(0)
; [PT% )

vir 5

o =oo{ T [cah-]a} [P, "o,

from the variation of stabilities

@ The operation Ncy(Ly,5) no longer behaves well.

@ Instead, construct “vertex algebras" twisted urkcu_l(Lyyg)



@ Produces additive deformations of vertex algebras.




{%@ SIMIS Additive deformations of vertex algebras

© Produces .
@ These are special nice deformations of VAs in the sense of H. Li (02') that depend on

Refinemt.ents and Spec(Clu]/(u*))
tautological stable Ll
pair t T 7
correspondences 0 u
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{‘r:@ SIMIS Additive deformations of vertex algebras

Refinements and
tautological stable
pair
correspondences

@ Produces

@ These are special nice deformations of VAs in the sense of H.

Li (02") that depend on

Spec(Clu]/(uk))

{ | \
\ I 7

0

© To get Lie algebras, need residues, so choose an expansion:

Arkadij Bojko (SIMIS)

Additive
deformations

(2 —nu)~!

1\:\>>\u\

Naive
deformations
OPE ~ !

—z2—nu)

[u| > ||

Equivariant

wall-crossing

CY4 wall-crossing

Vertex
algebras

over C(u)

Wall-crossing

with insertions
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@ Taking the appropriate coefficients of u in [-,—], - the deformed Lie bracket, get:




AL SIMIS  Applications: PT/{Gx}

Calabi-Yau four
invariants

@ Taking the appropriate coefficients of u in [-,—], - the deformed Lie bracket, get:
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@ Taking the appropriate coefficients of u in [-,—], - the deformed Lie bracket, get:
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e Example

Zr:_t appmuo: PT/{0x} wall-crossing: Set y =0 and do PT(O)/PT(I) wall-crossing with 7. (8) =0 for the geometry
efinements an
tautological stable

E(a:i:espondences X L = ﬂ* LB
o
B+— ILg
V.
Conjecture (Cao-Toda (21’))
5 Kk _(B.k)\ K 0,6(L) (6,0)111,5(X)
Y Ps(Da= [ (1-(-1)*qPH) [T M(gPo)mst™.
74+ (6)=0 B: m«(B)=0 B: s+ =0
k>0
v
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@ Taking the appropriate coefficients of u in [-,—], - the deformed Lie bracket, get:

Gross-Joyce-Tanaka

e Example

Zr:_t appmuo: PT/{0x} wall-crossing: Set y =0 and do PT(O)/PT(I) wall-crossing with 7. (8) =0 for the geometry
efinements an
tautological stable

E(a:i:espondences X —— L2=ﬂ* LB
o
B+— g
4
Conjecture (Cao-Toda (21’))
k-ng,p(L)
Y Ps(a?= T (1-(-1kgPR)T T m(g(PO)metX),
74+ (6)=0 B: m«(B)=0 B: m«p=0
k>0 )
@ For now have
Po(L) = Pol (g )" (tep )X - 7u () =0,k >0),  (M55)" :f(%) cr (L),
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ézs!‘ SIMIS  PT( /PT(1) wall-crossing on elliptic fibrations

Calabi-Yau four
invariants

Gross-Joyce-Tanaka
conjecture

First applications

Refinements and
tautological stable
pair
correspondences

Example

Consider the situation 7 : X — B for an elliptic fibration and L=0x.

Conjecture (BKP (upcoming))

If (y,8) =7*(B,n)+ mp for (B,n) € HZ*(B) then

T( 5+dE>ﬁX d= Z <PT( 6+d0E>@X do Z (PTAE> qA

Claim (B. (upcoming))

The wall-crossing formula holds for the total path of

Will come back to prove the vanishing of the last segment of the arc.

Arkadij Bojko (SIMIS)

CY4 wall-crossing
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