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Blazars: supermassive black holes with a jet
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Extragalactic background light

]

Sr

<

E
J
-~
~
(]
0
(]
C
e
<
=
—
o)
()
S
=
=}
w

® CIBER nominal EBL
(Kelsall ZL model)
A CIBER nominal EBL
(Wright ZL model)
s CIBER minimum EBL
IGL in 0.8-1.0 um

3

sheete] o

IRTS (Matsumoto 15)
DIRBE (Levenson 07)
DIRBE (Sano 15)

AKARI (Tsumura 13)
Pioneer10/11 (Matsuoka 11)
Dark cloud (Mattila 11)

HST (Bernstein 07)

= Helgason & Kashlinksy 2012
== Abramowski et al. 2013
[ Ackermann et al. 2012
| Orr et al. 2011

~— Mazin & Raue 2007 (realistic)
~ Mazin & Raue 2007 (extreme)
~—— Aharonian et al. 2006
Dominguez et al. 2011

Xu et al. 2005

Gardner et al. 2000

Madau & Pozzetti 2000
Matusmoto et al. 2005
Keenan et al. 2010
Cambresy et al. 2001
Metcalfe et al. 2003

Gorjian et al. 2000

Fazio et al. 2004

Dwek & Arendt 1998
Levenson & Wright 2008
Elbaz et al. 2002

Hopwood et al. 2010

Chary et al. 2004

Papovich et al. 2004
Finkbeiner et al. 2000
Matsuura et al. 2010

Frayer et al. 2006

Dole et al. 2006

Altieri et al. 2010

Hauser et al. 1998

OdPedX0e<c00VORDADR> > 4@

Schlegel et al. 1998

0.8

Krennrich

Wavelength [um]
Matsuura et al. ApJ 839,7,2017




Distant blazars: implausibly hard spectra?
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3C 213 (z = 0.159) VERITAS (Benbow, ICRC-2025)
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Blazar spectra

Measured spectra Naive EBL-corrected spectra
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Spectral softening: problem with distant blazars
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The mysterious transparency of the Universe...

e Hypothetical axion-like particles: photons convert into them in magnetic fields
near the source, and they convert back to gamma rays? [de Angelis et al.]
e Violation of the Lorentz invariance suppresses the pair production?

[Stecker, Glashow; etc.] M

New physics is an exciting possibility,
but can there be a more conventional explanation?



Gamma rays and cosmic rays
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Different scaling
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One-parameter fit (power in CR) for each source
[Essey & AK (2010); Essey, Kalashev, AK, Beacom (2011)]

~ ~  Fermi limit
v

~

- —

"
)

~ Eepns
\Ferml limit s

~ —

=
S
s

EdN/AE (eV cm™s™)
s

2

EdN/dE (eV cm™%7™")

=
=
=
(=1

Fermi limit

~ —

Zs—l)

~N

4

2

E dN/dE (eV cm”™

2

£
3]
d
£
5
=

Fermi limit

~ —

Fermi limit
-
e it

)|

._.
S
4

2

E dN/dE (eV cm™

2

E dN/dE (eV am ™5 ™)




Secondary gamma, neutrinos from 1£S0229+200
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Robust shapes explain observed universality

Measured Spectra
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PKS 1424+240 at z > 0.6 (a very extreme TeV blazar!)
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E2F, eV/cm©?/s

GRB221009A, the brightest GRB ever observed, E up to 250 TeV

7.,-(18 TeV) 2 10 for all recent EBL models
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Lorentz invariance violation?
[Finke, Razzaque, 2023 ApJL 942 1.21]

Secondary gamma rays explain
the last data points well.

[Kalashev, Aharonian, Essey, Inoue,
AK, PhysRev.D 112 (2025) 2,
023022]



Spectral softening
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Magnetic fields delay protons (and cascades)

¥ @B

close to the source:

B doesn't matter - J
(except for power) EGMFs are important Y,

close to Earth:
B doesn't matter

Magnetic fields in voids affect the propagation of protons and the electrons in the
cascades. Also important: any filaments that intersect the line of sight. However, with
probability ~1 a source at z=1 is not obscured by a filament.

[Aharonian et al,, Phys.Rev.D 87 (2013) 6, 063002, 1206.6715]



Erosion of time variability for £>7 leV, z20.15

Nearby blazars are variable at all energies. 1812 |
Distant blazars are variable at lower o 10" L
energies, but there is no evidence of & 1012 1
variability for, e.g,, E>1 TeV, z > 0.15 % 1811 j

8 10" F 1
Prediction: stochastic pedestal emerges at 2 10°f :
high energy, high redshifts, for distant % 183 : ;
blazars above which some flares may rise = g6 | it
in a stochastic fashion. 18‘51 ’ o .1
[Prosekin, Essey, AK, Aharonian, ApJ 757 (2012) 183] 10° 10° 10" 1EO1 1eV 10 10 10

Y



3C273: no time variability at the highest energies

Variability is not Dominant

VERITAS
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¢ VERITAS sees VHE emission from 3C 373 during both the high & low Fermi epochs
® All high-state data: t = ~86 h (37% of data); 76 y; 3.10; F(>350 GeV) = (2.3 +0.8) x 103 cm2 s
e All low-state data: t = ~136 h (59% of data); 117 y; 3.70; F(>350 GeV) = (2.1 £ 0.6) x 10-3 cm2 s
® Pre-Fermi data: t = ~9 h (4% of data); 21 y; 2.40; F(>350 GeV) = (9.0 +4.1) x 103 cm2 s

e VERITAS emission incompatible with all Fermi states, including SED from highest 30-day flux

Wystan Benbow, “Highlights from the VERITAS AGN Program”, 39th ICRC, Geneva



Case study: PKS 044/-439, assuming z=1.3
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[Aharonian et al.,
Phys.Rev.D 87
(2013) 6, 0630021]
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CTAO extragalactic survey discovery potential
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Figure 3: Cumulative source count as a function of redshift for CTA-South, assuming a 50 integral flux sensitivity and 50 hr exposure
observation. Dashed horizontal line represents 1 source detected in a 250 hr survey.




Seeing farther with secondary gamma rays

radio/microwave infrared/optical X-rays gamma-rays neutrinos cosmic-rays
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IceCube neutrinos: the spectrum
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Neutrino scaling = no point sources

1
Fsecondary,u(d) X (Fprotons X d) X E
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Line-of-sight interactions of CRs from blazars
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Secondary neutrinos
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A peaked spectrum at a few PeV can result from cosmic
rays accelerated in AGN and interacting with photon
backgrounds, assuming that secondary photons explain
the observations of TeV blazars.

Essey et al., PRL 104, 141102 (2010)
Kalashev et al. PRL 111, 041103 (2013)




Implications for intergalactic magnetic fields

o . . 1

Magnetic fields along the line of sight: 107 ]
— 1ES 0229+200 |

1x107'7"G < B<3x107 Gl b F | |
! ermi upper limit

Lower limits: Neronov and Vovk (2010) Finke et al. % 100 ¢

(2015) 3
5

Upper limits: Essey, Ando, AK (2011) % i

If an intervening filament deflects protons, then no -

secondary component is expected. However, even

a source at z~1 has an order-one probability to be 10 i por: 1010 =t 1012 107

unobscured by magnetic fields, and can be seen in E(eV)

secondary gamma rays
[Aharonian, Essey, AK, Prosekin, arXiv:1206.6715] Essey’ Ando’ AK (2011)



Magnetic fields and matter-antimatter asymmetry

Intergalactic magnetic fields away from galaxies may
be representative of primordial seed fields.

Magnetic helicity

(~ Chern-Simons term for the U(1) of hypercharge)

can break the symmetry between matter and
antimatter and possibly explain the

matter-antimatter asymmetry of the

universe [Cornwall; Vachaspati et al.]




Magnetic helicity may be observable

left-handed

Observer




Treating gamma rays and cosmic rays consistently leqasd to excellent agreement

of gamma-ray spectra with observations of distant blazars

(and very little model dependence)

Neutrinos are an interesting probe (but predictions are model-dependent)
IceCube neutrinos show arrival directions consistent with production on the
background, not in sources that trace matter distribution.

The spectrum is model dependent, but is consistent.

Now as we understand the “beam”, we can use it to test the cosmic photon
backgrounds (EBL) and magnetic fields



