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Multi-wavelength/Multi-messenger Astronomy
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F16. 1.—Photograph of the region containing the new X-ray position of Sco X-1, reproduced from the Palomar
Sky Survey prints. The two equally probable X-ray positions are marked by crosses surrounded by a rectangle of

.1 by 2 arc min. The object described in the text is marked with an arrow. The identifications of other stars for which

photoelectric photometry exists are also marked.
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e Multi-wavelength astronomy has already started in 1990s

(or 1960s).

e \What innovation will we make in 2030s?
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Outline

o Hot Coronae in Seyfert Galaxies
o Coronal Magnetic Activity in Seyfert Galaxies
e Coronal Magnetic Fiela?

e Non-thermal Coronal Magnetic Activity
in Seyfert Galaxies




Hot Coronae
In Seyfert Galaxies
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What is the origin of Seyfert X-ray emission?

High-energy non-thermal particles?

o« Gamma-ray cascade for X-ray
~ 0-1 continuum
i (e.g., Kazanas & Ellison ’86;
- Zdziarski ’86)
% 0.0 - mpNeutrino emission (Stecker+’92)
I o But,
0.001

e non-detection of power-law tail

1 10 100 1000 (e.g., Madejski+'95; Lin+’93)

E ke \adejski+'95



E F, (keV cm2 s7!)

X-ray emission is from black hole corona

100 keV hot plasma above/below accretion disks

e Power-law continuum is
generated by

O
(—y

e« Thermal Comptonization of
disk photons in the corona.
0.01 C 4 = ')
0.001
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Transition
Region Corona

Solar corona heatlng
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o Magnetic activity heats the solar
corona to ~10° K.

o Magnetic fields transfer interior
convection energy to the
corona (e.g., Matsumoto & Suzuki’14).
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Haardt & Maraschi ’91; Liu, Mineshige, & Shibata ‘02

1. Reconnection heating = Compton cooling in corona

B’ 4kpT,
v 4_7Z'VA ~ " o2 neGTCUseedl ~ Y CUseed
e

2. Conduction heating = Evaporation cooling in disk chromosphere
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Magnetic reconnection heated corona model

Magnetic loops

© B. Liu
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Coronal Magnetic Activity
In Seyfert Galaxies




Coronal Synchrotron emission?

Magnetized corona can generate Syn emission

e Hot corona ~ 100 keV

o Heated by magnetic activity ?
(e.g., Haardt & Maraschi '91; Liu, Mineshige, &
Shibata ’02; Beloborodov '17)

o Millimeter Coronal Synchrotron Emission
(Di Matteo+’97; Yl & Doi ’14; Raginski & Laor ’16)

o Due to Synchrotron self-absorption, we
expect a spectral break at 10-1000 GHz (mm-
wave).

Magnetic loops

reconnection

© B. Liu
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Hints of millimeter excess in nearby Seyferts

A new component in AGN SED? Non-thermal coronal Synchrotron?
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o Spectral excess in the mm-band
(e.g., Antonucci & Barvainis’88; Barvainis+’96; Doi &

Inoue ’16; Behar+’18).

o Contamination of extended components?

o Multi-frequency property?



ALMA observations toward nearby Seyferts
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Day to Year time variability in the mm excess

Origin should be small regions
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Where is the origin of the mm excess?

Structure of AGN core in the <10 pc scale

o8 (5 e Dust torus?
ol QO 31 go NER e spectral shape, not enough, variability
cone O O 2| Q Q o Free-free?
Q DD o OOQO e spectral shape, not enough
D OO °| OO Polar o Jet?
dust Torus
o Outflow | O o radio-quiet
2] O
® O .' X i f < O CQ e Wind (Henkla+'25)?
" O N T sir 0O
@ D : O O -
0 Q@ B 7 o & O o day-scale or shorter variability
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cm-mm spectrum of AGN core

Corona can explain the mm excess

o Hybrid (thermal + non-thermal) corona
model (Yl & Doi ’14)
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Coronal Magnetic Field?



cm-mm spectrum of AGN core

Weak Magnetic Field
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Non-thermal electron fraction: 0.03 (fixed)

o Consistent with the MeV gamma-ray

background spectrum
(Yl, Totani, & Ueda ’08; YI+’19)

Non-thermal electron index: 2.9
Size: 40 rs

B-field strength : 10 G (see also
Shablovinskaya+’24)



Can we heat up corona by magnetic activity?

Implication for the truncated accretion disk structure

e Heating vs Cooling e Disk truncation at some radii (e.g. ~40 r)

e Magnetic Heating: B*V,/4r e Theinner part=hot accretion flow
(Ichimaru ’77, Narayan & Yi '94, ’95).
e QB heat ~ 1010 erg/cm2/s
e Advection Dominated Corona?
o Compton Cooling: 4kTn o cU. ,l/mc?
o We can expect kT, ~ 86 keV (z,/1.1)* (YI+’19)
° QIC, cool ~ 1013 erg/sz/S
o Suggested for Galactic X-ray binaries.
o Magnetic field energy is NOT sufficient to (e.g. Poutanen+97; Kawabata+’10; Yamada+’13).

keep coronae hot.




Plasma beta is too high? (too low magnetic field?)

Are weak-jet AGNs MAD or not MAD?

o Our ALMA analysis suggests
e coronal B-field is ~10-30 G at 30 re.

o Interms of plasma beta (5 = p,../Ppa0)>
we have s ~ 100.

e Gas pressure dominates the accretion dynamics.

o« However, GRMHD simulations suggest g <« 1 for some cases
(e.g., McKinney+’'12; Tchekhovskoy+’11; Liska+’23)

o so-called magnetically arrested disk (MAD; Narayan’03)

z [rg]

McKinney et al. 12



We are observing AGNs without powerful jets

MAD is needed for powerful jet production
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7.24
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-9.64 o Otherwise, Parker instability would regulate

-10.84 f ~ 10— 100 (e.g., Takasao+’18; Liska+’23)

e Coronal magnetic field may strongly depend on

40 20 0 20 10 o o . :
z/R;,  Liska+'23 initial magnetic field configuration.



Non-thermal Coronal Magnetic Activity
In Seyfert Galaxies



cm-mm spectrum of AGN core

Power-law mm spectrum : Evidence of non-thermal coronal activity
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Generation of non-thermal
electrons in coronae

Timescale [s]

o Required CR injection index : ~2 10'3121"""1"52' T e
Ye
o 1st-order Fermi acceleration would Electron Spectrum
explain the observed electrons — Py =2.0
106_% == |C 4329A (Inoue & Doi 2018)
n'?_l 5 - ALMA Coverage
o Other mechanisms may be difficult. 57
o Because of low magnetic field. 5
e What is the acceleration mechanism?




Flux vF, [erg/cm?/s]
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High energy emission from AGN coronae

Multi-messenger Signature: MeV Gamma-ray & TeV Neutrinos

e MeV emission
e but, no GeV emission

e Key for disentangling the
degeneracy of non-thermal
electron fraction

e Protons would be accelerated
= high energy neutrinos

o See also Stecker+’91,°92,°05, ’13;
Kalashev+’15; Murase+’20;
Gutiérrez +'21; Kheirandish+'21



lceCube detection of TeV neutrinos from NGC 1068

Evidence of Non-thermal Activity in a Seyfert galaxy
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What is NGC 1068?

An obscured Seyfert galaxy with a weak jet activity
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Where is the neutrino production site?

“Neutrino flux> Gamma-ray flux” = Gamma-ray Opaque Region

o Target photons: X-ray (~ 1 keV)

€x

T, ~

o eolp R o 105<
o ‘yy €x Lx —

drc

e Host galaxy : Unlikely

e X-ray binaries: Not enough
(see Swartz+’11, YI+'21)

e Seyfert Corona (~10-100 R;) : Most Likely
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Fs1 (m]y)

ALMA Observations toward the NGC 1068 core

mm excess Is there

(c) PL + corona + dust

101k

10°F

— - dust grey-body (logMyyst/Mo = 3.8)

— = corona SSA (Sy,, Vssa) = (15m)y, 134 GHz)

=mmm total (absorbed)

. I 0

10°

101

107 10°
Frequency (GHz
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Michiyama, YI, + 2023

Based on our analysis
(YI+’20; Michiyama, Y1+2023; See
also Mutie+'25)

Corona Size: ~10-30 rs
Coronal B-field: ~20-100 G

More ALMA data would be necessary
to clarify coronal property.
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o Type-2 Seyfert NGC 1068 is reported at 4.2-0.

o Ifthesignalisreal, corona may be a plausible

neutrino production site
(Murase+’20; Kheirandish+’21; Anchordoqui+’22;

Eichmann+’22; Fang+’23; Hooper+’23; Ajello+’23).



Coronal cosmic-ray power?

¢« Many models are proposed for Seyfert
neutrinos (specifically NGC 1068).

Y1+'20; Murase+’20; Kheirandish+’21;
Anchordoqui+’22; Eichmann+’22; Fang+'23;
Hooper+’23; Ajello+'23

e We assume the cosmic-ray power.

e Neutrino flux ~ 0.1 cosmic-ray power.
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How high CR power is required?

Efficient particle acceleration in AGN corona region?

NGC 1068: a cosmic obscured accelerator

10—10
_ -i THIS WORK o gbyﬂ +17M(1-5 — 15 TeV) ~ 4 x 107! erg/cm?/s
CLU) 10—11 3
| ) (1) L ..(1.5=15TeV) ~ 10%
E’ . F‘f%’_’ﬁ'}” e L, +yﬂ( 5 —15 TeV) ~ 10™ erg/s
= L - = [ (> 10 TeV) ~ 10 erg/s
B 1013 MAGIC

e Note:L, ~3—7x10% erg/s
102 T T
10° 10° 10°

E GeV (1) Y. Inoue et al., ApJL'20
© IceCube naEy [GeV] (2) K. Murase et al., PRL'20



Upper limit on cosmic-ray power in AGN coronae

Accretion dynamics constrains the coronal CR power (Y, Takasao, Khangulyan '24)

e CR pressure can be expressed by Gas pressure Hot Accretion Flow Temperature Profile
Pcr = 0 ﬁ_l pgas

o CRvs magnetic pressure ratio: 6 = per/ppae < 1
o Plasma beta: f = p,,o/Pae

e Coronal Gas Pressure?

o Hot accretion flow = Two-temperature plasma |,

E 0 =0.3, m=0.17a2, f=0.58

o Doas X NkpT; = TxkpgTi/R o L a=0.1, m= 0 1002, f=0.86
2L sl AR AR T B AT
5 Ty ST 107 10° 10
m) VCcr ~ kpT; r=R/R,

P Reor Kafexhiu + ‘19



Upper limit on cosmic-ray power in AGN coronae
Yl, Takasao, Khangulyan ‘24

Requirement: L, > 10% erg/s
e Energy density and pressure [ lecube . 21 Bt bt

e Lamastra et al. 2016:y
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Summary

e Coronal magnetic activity in Seyfert galaxies have
been now observed by ALMA

e Coronal magnetic field is ~10 G at ~30 Rq
e Non-thermal particles exist in the BH corona
e Corona could explain the neutrino signals

e But, IceCube flux of NGC 1068 would be too high for
corona models, IF corona is high-[3 plasma.




