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*We consider the Milky Way Evolution based on the ISM physics*
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(Galactic) Cosmic Rays & Galaxy Evolution (=baryon cycle)

The energy spectrum of CRs
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> Galactic CRs are accelerated at
supernova shocks.

> Supernova shocks are important
drivers of the Galactic matter cycle.

— *Continuity* of the Star Formation

will be a novel concept.
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(Galactic) Cosmic Rays & Galaxy Evolution (=baryon cycle)

The energy spectrum of CRs
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*Continuity* of the Star Formation

To explain the star formation history of

MW, the effects of CRs can be important.
(JS & Inutsuka 2022: JS et al. 2024, JS

& Asano 2024)



"Puzzling” Star Formation History
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» From the context of Cosmology ...
1. The total mass of baryon may be ~ 10!' M .

2. Why is a half of baryons converted to the stars?
3. Why dose the only ~1 % of baryon remain in the disk?



"Puzzling” Star Formation History
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> From the current MW ...

1. The gas should be depleted within ~ 1 Gyr !
2. Replenishment of gas is required.
3. Galactic halo (CGM) may be a dominant gas reservoir.
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; ;] Consequent star formation at the disk ‘

) v' Almost constant SFR
oo el — quasi steady-state
— SFR ~7 M, /yr —4 M /yr ~3 M, /yr
JS, InuTsuka & Nagashlma (2024).
The constant SFR is explained by the balance between...
Mass accretion from halo and

Galactic wind from the disk (this talk).

See also, Hopkins+2018, Armillotta+2024, Habegger & Zweibel 25, and so on (too many papers!)
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Metal Mass Inferred by the Star Formation History
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» ".-. Plateau

7 (Gyn)
Xing & Rix (2022, by Gaia)

* *Total Metal Mass* ejected by Supernovae
SFR ~ 3 Mo/yr
Salpeter IMF — Massive Star Formation Rate ~ 0.1 Mo/yr
— ~ (SFR) x (Massive Star fraction) x (CO core mass fraction) x (14 Gyr)
~ (3 Mo/yr) x (0.1) x (3 Mo/8 Mo) x (14 Gyr)

* Galactic Disk
Total Gas mass ~ 10° Mo

Significant fraction of the metals must be removed
from the disk continuously.

— Galactic Wind driven by CRs can achieve this!

— CRs regulate the metal mass (=building blocks of
the planets & life) in the disk. :




Essence for the Galactic Wind (SJ & Inutsuka 2022)
Radiative cooling & CR heating

CR (Shapiro & Field 76)

—h
o
s
e

}
Heating by CRs— Comparable with Radiative cooling!
CEY

!
\ N N
= CES rj CRs scattered by 0 B
: Uty CR

Sl —Momentum transferred to 0 B
//"/;} l % \ \\\ /B‘\/ — 0 B grows

0 —dissipation of 0B
—Thermal gas heated

| B- f'%ﬂd %\ s v ‘1.;) [' = |VAVP| (erg/cc/s) (e.g., Kulsrud 2005)

Radiative cooling — I'< T vir — wind never launching

BRdmdt

Clddft ldg dmkt ’I’I,2A n 5/2 B -1 Pcr -1
e = T e Ak 20.91( ) 0
\ | Xj E | Qw 10-3 cm—3 1 uG 0.3 eV cm—3
\ '

H A
Yaru < . 20
; te | 8 (10 kpc) (10_22 erg cm3 s—l) 20)




Evidence of Galactic Wind:
Metal polluted halo of external galaxies

Cosmological accretion flow (IGM)
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The CRs can drive the wind from the *bottom of Milky Way halo™.
We must understand the wind from the *disk™ (to remove

the metals).




Fermi & eROSITA Bubbles: Byproducts of Galactic Wind

CR
A

Predehl+20

Breitschwerdt+91

Usefull Hints of the disk-halo interaction:

T ~ 0.1 keV (~virial temp. of the MW)

—eROSITA bubble (X-ray) is consistent with the wind scenario.
—Fermi bubble (gamma-ray) is not clear.

If we apply the wind scenario for the MW evolution...



Fermi & eROSITA Bubbles: Byproducts of Galactic Wind
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Assumption:
~5-10 % of SNe energy is consumed for launching the wind.
—The bubbles & MW evolution can be explained simultaneously.

*Further investigations of the bubbles are going on w/ Takeishi-san, S.

Abe-kun, Mizuno-san for gamma-ray observations & w/ Inamoto-kun for
theoretical study. *Hadronic y -ray scenario Doyt Pas — 27,V



Problem: ~5-10 7% of SNe energy
w/o CRs (Oku+22)l

- i «—So-called *feedback* study for Galaxy formation/evolution

1 T Supernovae: One of The Most Energetic Events
i Limited at ~50 pc << disk thickness

— Too weak feedback (for wind)
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Problem: ~5-10 7% of SNe energy
w/o CRs (Oku+22)
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Expectations for CRs: ~5-10 % of SNe energy

The energy spectrum of CRs
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e.g., Ferrier+01

Typical ISM (volume average):

10 102 10"“ 10% 10® 10®

Density ~ 0.1 /cc,
Temperature ~ 10* K,

disk thickness ~ 300 pc
— Internal Energy ~ 10! erg (n/0.1 cm-3)(T/104 K)(r/300 pc)?

If CRs can transfer their energy to
the ISM, the energetic outflow can be
launched from the disk.




Cosmic Ray Hydrodynamics

Hydrodynamics (thermal plasma)
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Follow ~10 Myr evolution of fluid & CRs
« ~10 Myr is average residence time of

CR at the disk.

« The CR momentum distribution is

considered (new).



CR Pressure [eV/cc]

Gas Temperature [K]
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Cosmological accretion flow (IGM)

How much work do CRs have? T

/ :' ~4 M,/yr by SNe & CRs
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~1000 Mo is removed from the disk by CRs
—Mass loss rate of the disk ~ (1000 Mo)*(SN rate) ~ 10 Mo/yr (SN rate/0.03 yr!)

We should examine as next steps:
1) Observational Counterparts
2)Acceleration of the removed gas at the disk-halo interface




(Galactic) Cosmic Rays & Galaxy Evolution (=baryon cycle)

E2dF/dE [ eV /m2s sr]

The energy spectrum of CRs
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> Galactic CRs are accelerated at
supernova shocks.

> Supernova shocks are important
drivers of the Galactic matter cycle.

— *Continuity* of the Star Formation

will be a novel concept.



JWST bubbles: Evidence of the Matter Cycle
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JWST bubbles: Evidence of the Matter Cycle
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JWST bubbles:

Evidence of the Matter Cycle
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JWST bubbles: Evidence of the Matter Cycle
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Local Bubble : *Local* Evidence of the Matter Cycle

Y (pc)

. : IR Bl The star forming regions are located at
Loca, bubb|e (Zucker+22) : ; 8 The Local Bubble shell (Zucker+22).
: ‘ B The solar system is centered on the
bubble.
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* How about CRs & Gamma-rays ?
8 Local Star Formation Time ~ 1-10 Myr
3 Residence Time of CRs ~ 1-10 Myr.,




UCL born

Local Bubble: Star forming Regions

UCL = Upper Centaurus Lupus
we LCC = Lower Centaurus Crux

born
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everal (~10 times) SN events occurred around there and
form the Local Bubble (Zucker et al. 2022)
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Pacific Ocean Crust : Nearby SNe History
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Cosmic Ray Hydrodynamics

(the same as the previous one)

Hydrodynamics (thermal plasma)
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Follow ~10 Myr evolution of fluid & CRs

~10 Myr is average residence time of

CR at the disk.
The CR momentum distribution is

considered (new).
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Gas Temperature [K]
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400

Observational Counterparts

60Fe (half-life, 2.6 Myr) & 1°Be (1.4 Myr)
@Pacific Ocean crust

: : : Solar system
Local bubble (Zucker+: 2)
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SNe History is also consistent CALET collabo.

with Cosmic Ray observation 10"
Hint 2: Cosmic Ray °Fe (half-life, 2.6 Myr) SRR
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CR *age*: ~6 Myr -3 Myr Observational Counterparts
I e SFe (half-life, 2.6 Myr) & °Be (1.4 Myr)
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Summary

SFR ~ 7 Mo/yr - 4 Mo/yr ~ 3 Mo/yr
4 Mo/yr can be determined by the CRs

We should examine as next steps:
1) Observational Counterparts

*WANTED* °Be (beryllium 9) in stars,

spectroscopy of external galaxies, and so on.

*Big Bang—7Be (half-time 53 days)—"Li
*Triple alpha—8Be (half-time 6.7e-17 s)+*He—12C
*Cosmic Ray Nuclear Spallation—2°Be (stable)

2) Acceleration of the removed gas at
the disk-halo interface

Cosmological accretion flow (IGM)

~ T M,/yr

/ :l ~4 M,/yr by SNe & CRs
g3

Galactic disk ' J .
(~10kpc) | ' :

Virial radius™,
(~300 kpc)

~1000 Mo is removed from the
disk by CRs

—Mass loss rate of the disk

~ (1000 Mo) x (SN rate)

~ 10 Mo/yr (SN rate/0.03 yr)






Supernova remnants w/ prompt injection
(injection only at very early stage)
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The Ejecta are heated/disturbed
at ~ several kyr.

Some CRs remain inside the

remnant.
Hadronic gamma-rays are not so

bright due to the small density of
ejecta.

Detailed theoretical models &
calculations may be required.



Supernova remnants w/ prompt injection
(injection only at very early stage)

CR Intensity [GeV m2s!srl]
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CR spectrum @r =1 pc

The Ejecta are heated/disturbed
at ~ several kyr.

Some CRs remain inside the
remnant.

Hadronic gamma-rays are not so
bright due to the small density of
ejecta.

Detailed theoretical models &
calculations may be required.



Cosmic Rays

CALET collabo.

Hint 2: Cosmic Ray Fe (half-life, 2.6 Myr) = O
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Cosmic Rays

Hint 3: Low-Energy CR (| protons)
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