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New Perspectives in Gamma-Ray Astronomy and Particle Acceleration
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 Era of LHAASO/ALPACA and CTA in gamma-ray astronomy
 LHAASO observes mainly Galactic objects

e CTA not only Galactic, but also Extra-galactic (Vovk, Abe)

* Next generation: MeV (Yoneda, Yoshida, Mizumura, Odaka)
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Galactic

e Felix might comment on possible sources of Knee CRs,

See Khangulyan, Kimura, Tsuji

Young massive star cluster Micro QSO

above 100 TeV
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Felix’ s slides in LHAASO meeting

E dN/dE(erg s em™)

in the Bohm diffusion limit the peak should be around 20 keV but is detected

Very young SNRs as Super PeVatrons?

G1.940.3 - youngest (1@@yr-old) known SNR in Galaxy
with the current shock speed v = 14000 km/s

h IUITI ax

=~ 1 (Vg /3000 km/s)? ke V independent of B-field (!)

at 1 keV as SNR RXJ1713 (but with a speed = 4000 km/s)
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G1.9+0.3 does not operate as PeVatron (as many other young SNRs as well - Tsuji et al 2021) !
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very disappointing... should be taken seriously
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Summary:

Hyper-accreting Microquasars acting as SuperPeVatrons? yes

The major (only) feasibly option to explain GCRs well above 10 PeV: vyes (?)

Many galactic topics will be discussed, so | won' + need to talk a lot.



How 1o explain the first bump?

g - LHAASO Proton (This Work)
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(R/GV)?
1+ (R/R,)ST

D(R) = D,

e There are commonly bumps at
~500 GV in all kinds of CRs.

e Modulation of the diffusion
coefficient at 500 GV?

e This corresponds 1o a length
of 2 x 10 *pec,

e What is there at this scale?
 Ad hoc assumption,



Galactic Wind Effect on CRs
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Galactic wind modulates the CR spectra,

See Shimoda’ s talk
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Extragalactic 3-4 talks

e Centaurus A by Koichiro Yasuda
e Nearby Seyfert galaxies by Yoshiyuki Inoue, Alexander Kusenko (maybe)
e Fornax galaxy cluster by Alvina On

Exploring the dynamic X-ray Universe



UHECR source: Not Blazar Region
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e Gamma-ray emitting region

e Curved spectra (not cooling break)
in blazars suggest turbulent

acceleration rather than a strong
shock.

e Slow acceleration, suppressing
maximum energy

 FSRQ brighter, softer, rarer (not
compatible with dipole)

e Multiple zones?
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TeV gamma from FSRQ
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e Third component

e Probably a more extended emission
region (no vy - v absorption)

e LiKely leptonic (low density)
e UHECR source? But no smoking gun
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Seyfert Galaxy: Neutrino Source
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Murase et al v, + 7, o IceCube v, + 7, | Archival data

Inoue et al v, + 7, + 4FGL-DR2 MAGIC

" 1NGC1068 IceCube Collab, 22
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e Increasing significance of the
neutrino signal

e NGC 1068: Soft spectrum, no
TeV gamma implying compact
source near SMBH

e Flat(?) spectra for other
candidates, compatible with

the diffuse neutrino
background.

SKip this topic here, see Yoshida, Inoue



CR acceleration in accretion disks

Kawashima & KA 25 . . .
GRMHD sim.+Subgrid model of turbulence acc, ® Simulation data prowde d degree of

turbulence
e Follow trajectory of advected CRs

e Non-steady injection and acceleration
resulting in softer spectra

e Wind with CRs, no distinction of
Wind/corona

(c) Oufiow CRP (It was inflowing in early phase)

(a) Inflow CRP
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Neutrino emission from the simulated disk

Kawashima & KA 25
Neutrino spectrum
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LLAGN: Accretion rate ~10-2 Eddington
Mrk 421 -like

NGC 1068 -like sources

Accretion rate ~ Eddington Lio ~

- ¢ CR luminosity 10 ergs”

e Non-steady simulation can produce a
hard neutrino spectrum even with
turbulence acceleration

A combination of Soft type + Hard
type sources reproduces the IceCube
diffuse spectrum

non-negligible contribution

~5 % 107> Mpc ™
10% erg s !



Galaxy Cluster

IR (white) and radio (red) Image of Coma cluster o Diffyce synchrotron emission
O e SRy e Electron cooling time is short,
requiring continuous acceleration,

 Major merger induces turbulence,
which accelerates CRs in ICM

e Electrons may be hard 1o escape
from source galaxies

— e Secondary electrons from
Turbulence acc. accelerated protons are likely.

-On
* Possible GeV gamma-ray
detection (Adam+ 21) suggests
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U ARSI, LN hadronic processes,
! Nishiwaki & KA 25




Cluster Statistics

Cluster mass evolution Based on cosmological simulations, we follow the merger
oy T T T _ history of clusters,

CRs are injected proportional 1o SFR.

< = e Finite periods of turbulence acceleration by mergers
e ~ * Reproducing the radial profile of Coma Radio Halo.

Reproducing the radio LF and Mass-luminosity relation,
: Consistent with IceCube neutrino.
] e Finally, parameters are determined.
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Megahalo

ZwCl 0634.1+4750  Mpc extent of radio emission

/ S * CRs exist far beyond radio halos,
R « Secondary electrons?

Surface brightness Surface brightness [m)y/beam]
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CR protons are not cooled.
Continuous injection of secondary electrons,
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Tidal disruption events
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 Tidal disruption of a star by SMBH

e Emission from accretion disk with
L o t=5/3

e Several reports of HE neutrino
coincidence

» Model or energetics typically give
0.1-0.001 NU events

e TDE contribution 1o diffuse nu
should be below 30% (Stein+19)
e Delayed activity in radio (jet? ~
1000 days, AT2018hyz, Cendes+

22)
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Absolute magnitude

FBOT

-2 AT2018cow  Fast blue optical transient
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Ul+ra long GRB 250702B
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25)?
TDE of a white dwarf by an intermediate

mass BH (Eyles-Ferris+ 25, 0' Connor+
25, Li+25)?
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FXT with EP
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e Fast X-ray transients
detected with Einstein Probe

e X-ray Flash (XRF)

e Minutes to hours

o Off-axis GRB?

 BNS mergers?

« EP250108a associated with a

L

Ic-BL SN (Rastinejad+25)




Unified model for GRB/FXT

(B) t ~ 10" — 10%s: Jet-cocoon inside the CSM

(A) t ~ 0 —10s: Caollapsar jet inside the progenitor

Relativistic
Jet

GRB Progenitor
R, ~10"-10" ¢m \
M, ~20 M,

(C) t ~ 10%s: Breakout

Collapsar Jet

Early Afterglow: g
(~1 day; X-ray — IR)

Weak Prompt Emission
(soft X-ray)

! Weakened Jet

Rest-frame Time [days]

Hamidani+25
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Cocoon cooling
Supernova
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Phase I:
Jet aftergl
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Model for EP240414a
Extended CSM

Jets dissipate a fraction of
energy in CSM, producing
cocoons,

Weak prompt

Mildly relativistic jets produce
slowly evolving afterglows

Cooling cocoons emit late
afterglow

Depending on the CSM radius,

we obtain
GRB / XRF (Intermediate) /LLGRB



EP 250207b: BNS merger?
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Long GRB from BNS? GRB 230307A

R — o Levant24 .. «E;,=4.8X10%2erg (Moradi+24)
o = o Dim and red afterglow
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Flux (erg cm=2 s71)

GRB afterglow: Recent progress
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Wide: 0.1rad, T, = 20, E;;, = 10°3erg,
€. =0.1,p =28
Narrow: 0.015rad, I, = 350,
Eiso = 4 X 10°3erg, e, = 0.035,p = 2.3

Decelerating shock
propagating in CSM

TeV afterglow samples are
increasing

Synchrotron + Inverse
Compton

Variation in microscopic
parameters.c,, cg,p

Parameters are constant?

Two-component model:
Wide+Narrow jet—break

Main characters change
between the early and late
phases

Equivalent 1o parameter
evolution?



Energy flux [erg cm?s]

Spectral Index

BOAT GRB: 221009A

5&\&: /

* Jet Break
LHAASO c@l 23

e TeV afterglow detected with LHAASO

o =08 o Extremely bright E;., = 2 x 105%erg

e Early jet break suggests a narrow jet
with 6, = 0.8°(0.014rad)

e On-axis probability ~ 10~
e Typical jet opening angle is 2.5°(Wang+

18)

o Late-time hardening (turbulence
acceleration?)
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New model for BOAT GRB

6 Lorentz factor evolution
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Observed Time T [s]

Single component

Initially jet is accelerating by
magnetic force

Consistent with the early
increase

Finite thickness of the
ejecta—>transition phase

Flat density 10 wind density

Late phase: Self-similar BM
solution

Jet opening angle is > 1.7
degree



Shallow Decay Phase

Flux (erg-cm=2-s
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e Flat First 3000s

e Continuous energy injection may hinder
deceleration

e Alternative: Slow(r, ~ 30) ejecta in wind profile
(Dereli-Begue +22)

» This leads 1o a delayed onset of deceleration,

e Fermi-LAT GRBs tend 1o show no shallow
decay (Yamazaki+20)
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Fermi GRB 240529A with shallow decay

0.3 - 10 keV Flux [erg cm™2 s71]

Temporal index
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o Shallow decay with GeV
detection: very rare

e Energy injection model (high
") is oo hard in GeV, 100
bright in TeV

e Wind model

Io=30 E,=10"erg



Summary

e Stay tuned for talks on Galactic phenomena
e TeV component in FSRQ: another CR acceleration site

e Seyfert galaxies as neutrino sources
(disk / corona CR acceleration)

e Enigmatic electron injection in galaxy clusters BBH merger rate
 Various TDE events (FBOT, ultra-long GRB, WD) following SFR

1 = Star Formation (Arbitrary Norm)

* FXT with EP: Kind of GRB? BNS merger? - _ oo,
» GeV-TeV GRB afterglow: not so simple .

(CSM, ejecta thickness, magnetization) 2" m’

» Cosmological evolution of HE events wi o OWTC-40
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