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Introduction to PeVatrons

— .
Hillas criterion

1 Particle energy is changed by elec-
tric field:

Emax Y GSR

1 Conductivity of space plasma is
typically very large, thus

E=FxB

1 The energy gain at crossing the
source

Emax Y e,BBR

1= The Poynting flux carries a frac-
tion of the total source luminosity:

%8247rR2 = oL
47

i Maximum energy:

e?L
EmaxN\/U,B T
1/2 ,1/2+ 1/2
~ 50 /282112 PeV
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THE ORIGIN OF
ULTRA-HIGH-ENERGY
COSMIC RAYS

A. M. Hillas

Physics Department, University of Leeds, Leeds LS2 9JT, England

1. WHY BOTHER WITH ULTRA-HIGH-ENERGY
COSMIC RAYS?

(The maximum drop of electric potentialx
is, however, only one of the conditions

required for acceleration to this limit.

Other constraints include

1 Source age:

tacc < tage
i Confinement:

tacc < tesc
i Cooling:

tacc < teool

Non of these is a necessary condition —
one still needs an acceleration processes

kthaLt can operate with efficiency 7. )

(For efficient acceleration, one needs )
1 High luminosity, L
1= Fast outflow,
1= High magnetization, o
\(obviously) )

(Wang et al (2025)}
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Introduction to PeVatrons

=

(for
4

Acceleration time: tacc = E/ E

Magnetic field B doesn’t change
particle energy

Energy gain for a particle:

mc?y = qv€

Energy gain for ensemble of parti-
cles:

E = qv€

Acceleration efficiency is dimen-
sionless parameter:

tacc - ')’]I‘g /C
Naive algebra yields:

1 _ av€ E _ ¥&

M " =7E gBc — Bc
Typically £ = TB < B
Trajectories are not straight lines:
{,*_g"<< c&

Thus, we should expect n > 1
DSA 7= 2n(%)" = 2n($)())

v

Acceleration Efficiency

particle displacement d

particle traject

"/different electric)
field strength

L, o \
9

(different parti- )
\cle trajectories )

P ;

It looks an impossible task to get n — 1
under realistic conditions

EdN/dE (cm? s™)

Index

E2dN/dE (TeV cm~2s71)
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LHAASO: Large High Altitude Air Shower Observatory
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» Haizi mountain, Sichuan, China, 4410 m above the sea level

» LHAASO uses hybrid detector arrays: the square kilometer array (KM2A), the
water Cherenkov detector array (WCDA), and the wide field-of-view
Cherenkov telescope array (WFCTA)

> Full operation since July 2021



Air shower detection of cosmic rays

CATCHING RAYS

China’s new observatory will ~25 000 m —
intercept ultra-high-energy y-ray ’
particles and cosmic rays.

18 wide-field-of-view
air Cherenkov :

telescopes . 80,000-m? surface-

¢ 5,195 scintillator f ~water Cherenkov 1,171 underground
detectors 5 ~detector - water Cherenkov tanks




KM2A: Square Kilometer Array
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> 1.3 km? area covered by 5155 electromagnetic detectors, used for energy
and direction reconstruction

> 1188 muon detectors used for gamma/hadron separation

» Energy range: 10 TeV - 100 PeV
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WCDA: Water Cherenkov Detector Array

> 78000 m? water tank to detect Cherenkov light produced by air shower
particles in water
» Energy range: 0.3 TeV - PeV




WFCTA: Wide Field Cherenkov Telescope Array

> 18 WFCTA used to separate particles with different mass; each detector has
area of 4.7 m? each and covers a 16°x16° patch in the sky
» Energy range: 10s TeV - 100 PeV
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> Probe the origin of CRs, via precise measurements of spectra and anisotropies
> Study the UHE gamma-ray sky with unprecedented sensitivity (interestingly in
the KM2A energy range attenuation is important already on the Galactic scale)

> Search for new physics
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IACTs in LHAASO site (LACT)

Angular Resolution by Distance(Multiplicity >=3 )
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Number of sources

Kifune plot: the high-energv Universe
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LHAASO firmly opened the
era of PeV y-ray astronomy,
not just revealing a number
of PeVatrons, but finding a
few classes operating as very
efficient particle particle
accelerators.

Tibet ASy, HAWC,
LHAASO

ueba4 uayde)g Aq epew

13



How LHAASO can Study PeVatrons?

> Progress in cosmic ray > Progress in gamma-ray
measurements observations
® Spectra e Supernova remnants
e Composition e Pulsar wind nebulae and pulsar halos
e Anisotropies e Gamma-ray binaries

e Young massive star clusters

14



Cosmic ray spectra and <InA> around the knee
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Precise measurements of energy spectra and mass composition of CRs are key to
understanding the origin of the knee
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Spectrum of the proton component
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The combination of muon detectors and Cherenkov telescopes

LHAASO (2505.14447) gives ~90% purity of proton sample with ~25% efficiency .



Spectrum of the proton component

[~ Proton Spectrum
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LHAASO (2505.14447)

» Hardening ~340 TeV, with index
change ~ 0.2

> Softening (knee) ~3.3 PeV, with
index change ~ -1.0

» Slightly earlier break and
steeper spectrum above the
break than the all-particle one
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Wideband spectrum of protons
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Different source populations as indicated by spectral structures? Probably related
with gamma-ray source observations (SNRs, PWNe, pQs, ...)
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Spectrum of the helium component

» Hardening ~1PeV
» Sharp Softening (knee) ~8 PeV
» No clear rigidity depence

» Different sources contributing
close to the knee?
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Large-scale anisotropy of all particles
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» Energy coverage: 1.9 TeV - 2.7 PeV
» Amplitude peaks at ~10 TeV, reaches a dip at ~100 TeV; phase change smoothly from
~30° to 270° (Galactic center)

21



Short summary on CR

» LHAASO measures the all-particle spectrum and <lnA> in the knee region, finding
strong correlations between their energy evolution

» The all-particle knee is likely due to the breaks of light composition

» The proton spectrum in the knee region is measured with high precision, giving a
hardening at ~340 TeV and a softening at ~3.3 PeV

» Helium component is precisely measured in the knee region

» The proton and helium spectra show a complex energy dependence that does not
vanish after the rigidity correction

» Anisotropies at large and medium scales are measured, showing energy-
dependent evolution
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How LHAASO can Study PeVatrons?

> Progress in cosmic ray > Progress in gamma-ray
measurements observations
® Spectra e Supernova remnants
e Composition e Pulsar wind nebulae and pulsar halos
e Anisotropies e Gamma-ray binaries

e Young massive star clusters
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LHAASO catalog of VHE-UHE sources

>1 TeV WCDA - 1-25 TeV WCDA excessMap  LHAASO (2024, ApJS)
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> 90 sources as of Sep. 2022, 32 newly reported, 43 with >100 TeV emission
> 77% by WCDA, 83% by KM2A, 61% by both 24



Supernova remnants
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Historical SNR: Cas A
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Middle-aged SNR interacting with MCs: W51C
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» T-~18 kyr, d~4.3 kpc. Clear MC (molecular cloud) interaction, pion-bump seen by Fermi

> LHAASO detects an extended source coincident with Fermi and MAGIC

o

» The spectrum is consistent with a power-law-exponential cutoff at Ecut~60 TeV, suggesting a

cutoff energy in the spectrum of accelerated protons of at ~300 TeV
PeVatrons, but may not contribute significantly to CRs all the way to the knee

SNRs could be




Middle-aged SNR interacting with MCs: IC 443

LHAASO Col. (2025)
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» T-~3-30 kyr, d~1.5 kpc. Clear MC interaction, pion-bump feature seen by AGILE/Fermi

» LHAASO resolves two sources: a compact one (CO; pointlike) and an extended one (C1; R68~1°)

» (O is likely coincident with the pion-bump component by Fermi, and extends to 20 TeV without
clear spectral cutoff 95% lower limit of proton acceleration is 400 TeV

» (1 is coincident with Fermi extended source, may be from escaping protons or electrons
28



GB. [ degree ]

Middle-aged SNR interacting with MCs: W44
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» T-~20 kyr, d~2.9 kpc. Clear MC interaction, pion-bump feature seen by AGILE/Fermi
» LHAASO detects elongated emission associated with MC distribution

» Can be explained by protons escaping from the SNR and producing emission in the regions with
dense target
29



Middle-aged SNR likely interacting with MCs: G150.3+4.7
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» Two components by LHAASO: extended Src A (R68~1.9°) at ‘% '
low energy and a compact Src B (R68~0.33°) at high energy 31w,
(! _
> Src A likely coincides with the radio and GeV shell, thus it s
N . . = 1077L 3
could be due to leptonic emission 50 f
» Src B coincides with MCs, and it can be naturally explained 09| ]
by escaping protons that interact with target in MCs R O
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T~7 kyr, d~1.7 kpc, R~0.5°. Aweak PWN in radio and X ray

Three components by LHAASO: an extended Src A (R68~0.9°) at
low energy, an extended Src B (R68~0.4°) at high energy, and a
point Src C at low energy

Src A likely coincides with the radio and GeV shell, thus it
could be due to leptonic emission

Src B and Src C coincide with MCs, and they can be explained
by escaping protons interacting with dense target in MCs
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Middle-aged SNR likely interacting with MCs: y-Cygni

(e) 25-100 TeV

79 78 F I
T T LS S L S L B B 1L B R R R L
- 5 MAGIC J2019+408 T
1074k % Fermi-LAT e
— E ¥ LHAASOA
T C i LHAASQB
& " I H
o~
I_1073F E
£ - T . 0 a ;
(@) L -
> . \
Q I .
= 105; -y .
A L
= I .
© t
~ 1077 3 ¢
w E
10—8 2l (IR EETT] B R A R T R W R 1T S R W Lol SN
10° 10° 104 10° 10° 10/ 10°
E [MeV]

10°

31



Short Summary on SNRs

» LHAASO detects a number of SNRs with emission up to 100 TeV, most of the
sources show a complicated morphology and spectra

» Compelling evidence of hadronic emission with likely association with MCs has
been obtained, and indicating that SNRs can at least accelerate protons to sub-
PeV energies

» Proton spectral cutoff of hundred TeV is shown for some sources, suggesting
that they may not major contributor to CRs above the knee
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How LHAASO can Study PeVatrons?

> Progress in cosmic ray > Progress in gamma-ray
measurements observations
® Spectra e Supernova remnants
e Composition e Pulsar wind nebulae and pulsar halos
e Anisotropies e Gamma-ray binaries

e Young massive star clusters
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Bow Shock

PWN and pulsar halos

Stage 1 (t < 10 kyr) FS Stage 2 (t ~ 10 - 100 kyr)
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ISM density
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(in all 3 panels)
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Q term. shock
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Giacinti + (2020, A&A)
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Young PWN: crab nebula
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PSR J1849-0001: extreme accelerator
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» T-~43 kyr, d~7 kpc, L~10% erg/s

» Most energetic photon has an energy of ~2 PeV

108 1011 1014
E (eV)

maximum electron energy ~3.7 PeV

» Very extreme particle acceleration with n>1, challenging the particle acceleration in PWN

LHAASO (2025, submitted)
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Kargal

LHAASO J1740+0948: bow-shock PWN
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LHAASO (2025, The Innovation)

» Emission offset by ~0.20 from the pulsar, located at the extension of X-ray tail
» Emission may originate from reaccelerated electrons advected away from the bow shock tail
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Decl.
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Middle-aged pulsar halos
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Asymmetric morphology of pulsar halos suggesting inhomogeneous/anisotropic
diffusion in the vicinity of pulsars
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Decl.

PEANUT possibly associated with an MSP

PLC === |C-CMB —— = PP

E2dN/dE (TeV cm~™2 s71)
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Energy (TeV)

» P=2.3 ms, T<0.5 Gyr, d-3 kpc, L~2.4X 103> erg/s
» LHAASO detects peanut-shape emission (250 pc X 25 pc), with highest energy photon of 740 TeV
» The morphology may indicate electron diffusion along large-scale magnetic fields
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Short summary on PWN and pulsar halos

» PWN and pulsar halos are found to be a major class of sources emitting UHE
gamma-ray radiation

> Very high acceleration efficiency is revealed in young PWN

» Asymmetric morphologies for Geminga and Monogem halos have been found,
indicating inhomogeneous or anisotropic diffusion of particles

» PEANUT shape emission possibly associated with an MSP indicates interesting
particle propagation in the ISM

41



How LHAASO can Study PeVatrons?

> Progress in cosmic ray > Progress in gamma-ray
measurements observations
® Spectra e Supernova remnants
e Composition e Pulsar wind nebulae and pulsar halos
e Anisotropies e Gamma-ray binaries

e Young massive star clusters
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MICROQUASAR BINARY PULSAR

Cometary radio emmission

Relativistic jets

Compact object
of center

Ultraviolet and
optical emission

Accretion disk

i

Accretion, particle agceleration, and radiation in extreme environments
‘, Microblazar




Microquasars

Microquasar Distance LHAASO Source Significance Photon Index  Energy Range Extension® Flux®
(kpc) (0) (TeV) (Crab Unit)

SS 433 E. J1913+0455 9.9¢ 2.82+0.16 25 — 100 0.73° 4+ 0.07° 0.10
SS 433 W. 4.6 £1.33 J1910+0509 6.3¢ 2.94 4+ 0.38 25 — 100 o ' 0.082
SS 433 central JI911+0510 8.0 3.96 £ 0.25 100 — 630 0.32° £ 0.04° 0.32
V4641 Segr 6.2 + 0.7 J1819-2541 10.5 2.84+0.17 40 — 1000 0.33° £ 0.08° 2.6
GRS 1915+105 9.4 + 0.6 J1915+1052 13.9 2.64+0.14 25 — 1000 0.25° £ 0.05° 0.11
MAXI J1820+070  2.96 £ 0.333¢ J1821+0723 6.0 3.25+0.26 25 — 400 < 0.28° 0.02
Cygnus X-1 2.2 +0.2% J1958+3522 4.4 3.98 +0.40 25 — 100 < 0.22° < 0.01
XTE J1859+226 4.2 40.5% - 2.7 - E - < 0.02
GS 20004251 2.7+ 0.7 - 2.3 - - - < 0.04
CI Cam 4115338 - 1.6 - - - < 0.02
GRO J0422+32 2.49 + 0.3 - 0.7 - - — < 0.01
V404 Cygni 2.39 + 0.14% - 1.5 - - - < 0.03
XTE J1118+480 1.7 +0.14 - 0.4 - E - < 0.02
V616 Mon 1.06 £ 0.142 - 0.4 - E - < 0.01

From 12 microquasars in the LHAASO FoV, 5 were detected!

LHAASO (2025)
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» Detection of ultra-high-energy emission with significance with LHAASO

» The UHE emission is partly overlapped with HI cloud at the same distance, may hint for a

hadronic origin, although absence of spectral features favors a common origin

LHAASO (2025)

1000
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Other microquasars
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» Be companian, compact object with
unknown origin

» Orbital period: 26.4960 days
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» About 60 detection above 25 TeV
» Maximum photon energy ~200 TeV
» Hint of orbital modulation
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Short summary on binaries

» LHAASO detects UHE emission from 5 microquasars (out of 12 in the FoV), some
with maximum photon energy reaching ~PeV, indicating that microquasars are a
class of powerful accelerators of cosmic rays beyond PeV

» UHE emission from gamma-ray binary LS| + 61°303 has also been detected
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How LHAASO can Study PeVatrons?

> Progress in cosmic ray > Progress in gamma-ray
measurements observations
® Spectra e Supernova remnants
e Composition e Pulsar wind nebulae and pulsar halos
e Anisotropies e Gamma-ray binaries

e Young massive star clusters
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Young massive star clusters

Davies et al. 2011
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» About 20 YMCs in our Galaxy
» Dozens of OB and WR stars

» The wind power of a single young star
can be as high as 1037 erg/s

» Particle acceleration by stellar wind
induced shocks (continuous, high-
speed wind)

» Some have been found to emit UHE
photons
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Cygnus bubble: super PeVatron

LHAASO (2024, Sci. Bull.) 10°

m Entire Bubble

m LHAASO J2027+4119 (2" Gauss)
m CO Template

—— v from the entire bubble
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--—-- v from atomic gas
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Morphological and spectral decomposition: extended bubble w HI gas + hot spots w MCs
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W43: Galactic mini-starburst

W43 complex —

I LIS —

Yang & Wang (2020)

1 10 100
Energy(GeV)

> Contribute ~10% of the Galactic star
formation rate
» Huge HIl region excited by central

WR/OB cluster
Fig. 9. Artist view of the Galaxy seen face-on with the “long bar” out- _ :
lined by a red ellipse (Churchwell et al. 2009). W43 is located at the ex. > GeV gamma-ray detection

pected transition zone between the bar-dominated region (Rgc < 5 kpc)
and the normal Galactic disk.
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W43: Galactic mini-starburst
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» UHE gamma-ray emission reveal good correlation with dense gas
» Spectrum up to 400 TeV, with cutoff at ~30 TeV
» W43 can likely accelerate hadronic CRs to PeV energies

LHAASO (2025, SCPMA)
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Outline

> Introduction to PeVatrons
» LHAASO experiment
> Progress in gamma-ray observations

e Supernova remnants

e Pulsar wind nebulae and pulsar halos
e Gamma-ray binaries

e Young massive star clusters

> Progress in cosmic ray measurements

® Spectra
e Composition
e Anisotropies

» Summary
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Summary of the talk

» LHAASO is a km? scale, hybrid technique CR and gamma observatory started in
operation since July 2021

» LHAASO opens sucessfully the PeV window of the gamma-ray sky, and detects
dozens of PeVatrons which may closely related with the origin of CRs

» Precise measurements of the energy spectra of all-particles, protons, and
helium give new insights in understanding the knee problem and the origin of
CRs

> Anisotropies at different spatial scales, for different mass groups, as well as
time variations are very helpful in understanding the propagation of CRs
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Gamma-ray performance
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Gamma-CR discrimination
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