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LHAASO & DAMPE CR spectrum
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e Hardening around 100 TeV
=> New sources at E > 100 TeV?

e The break energy in proton spectrum is consistent with that in all-particle one
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e Some SNRs are identified as PeVatrons, but many have soft spectra at E}, ~ 10 TeV

® The youngest SNR (Cas A) does not accelerate CRs up to 100 TeV?
® \We need another class of PeVatrons



UHE y-rays from X-ray binaries
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Stellar-mass Black Holes as PeVatrons
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3 states of black hole accretion  onus & vinesize 201

Hot Accretion Flow (RIAF) Standard accretion disk Slim disk + Jets
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3 states of black hole accretion  onus & vinesize 201

Hot Accretion Flow (RIAF) Standard accretion disk Slim disk + Jets
o @oepleemd L @l lgem) o @loxp)[gem]
80 ‘ 30
Hard/Quiescent state .
Isolated Black holes 13




3 states of black hole accretion

11

Ohsuga & Mineshige 2011

Slim disk + Jets
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UHE y-rays from Mlcroquasars

LHAASO 2025 w 1077

above 100 TeV LHAASO 2025 SS433 :
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e HAWC detection of 2 microquasars
SS433, V4641 Sqgr

e Extended morphology
=> extended jets?

e LHAASO detection of 5 X-ray binaries SESEHCEGREE] T m.{%ne.rg.y (Te\})oo o
SS433, V4641 Sgr, G1915+105,
Cyg X-1, MAXI J1820+070

e SS433, V4641 Sgr, G1915+105: ‘. %

significance

A

()
4
(@V)

o - N w e ()] (0]

Differential Flux (erg cm™s™)

A
=
N

HAWC 2024

—h

o
-
—h

V4641 Sqr -

- extended morphology c e
v W fa! Sor 1 0-12 i -
e MAXI J1820+070, Cyg X-1: §
- Point-source like morphology h

276 275 274
RA (%)

4 -32-1 01 2 3 45 6 7 8
VTS

Differential Flux (erg cm™s™)

(@ LHAASO 2025

A

-
o
w

1 OO 1000
Energy (TeV)

—l
-



13

HESS observation of SS433
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e Morphological change
- 1-5 TeV : Extended to e2 LW
- 10-20 TeV: Concentrated on e0 PP PP

Galactic Longitude Galactic Longitude

e Strongly supporting leptonic origin
Scenario C (Leptonic, Vaqy = Vj/4)

® Velocity: ~0.05-0.1cC 2 Total y-rays
— = - — Leptonic y-rays -
. . . . . . I y [ —— i s
e Our prediction in 2020 is consistent with g 1.7~ [*700C Fo° T
HESS analysis results in 2022 @ 0.
>
e B-field: 10 - 20 G to reconcile X-ray data — ;.
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W
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Super-Eddington micro-quasars

e Hillas Energy for SS433 jets: 105
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=> Micro-quasars can be super-PeVatron 10?1 W /
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e Luminosity of super-Eddington XRBs: o ?/Cen/
L~ 10°7 erg/s 5
&
_ 37 .
=> LCR,XI'b ~ 3 X 10 Gp,—l.S erg/s _: A NN NNAA .
e CR power necessary to explain PeV CRs: b P o
| U7 10 109 107 100 100
Lertot = Qcr,totVa =~ 1.5 x 107 erg s, 05 w02 100 1 1ot 17
B.T. Zhang, SSK, Murase 2025 BLk, 39

Wang et al. 2025
® A few to 10 super-Eddington objects suffices to explain PeV CRs ’



Shear Acceleration Scenario :: .. ss e 20
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e TeV CRs in our Galaxy are
re-accelerated by micro-quasar jets by shear acceleration
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PeV CR spectrum by shear acceleration
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e Monte-Carlo simulation for -
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(In(A))

e Re-acceleration of Galactic TeV CRs
by shear acceleration

e Our model prediction matches
both spectrum & composition

e Composition ratio by TeV CRs
=> He & Fe spectra
will give a robust test
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Shear acceleration In radio galaxies ss e .z

cocoon

e Same scenario applied to radio galaxy

=> We can explain UHECRSs

1026 | | | |
[ ¢ TA (2015, energy scale - 13%) —_—-—-—- Z=2
® Auger(ICRC 2015) —_— — — 3<=Z<=8
Gal O<=Z<=13 |
ExGal + Gal ool 14 <=7 <=19
ExGal —= == == - 20<=Z<=25 ]
1025 bkl Z7=1  sssssssssssssss 7 = 26 ]
RERE
1024 B ? |
o o ]
—_—— p— N .- -7 7= N
\¢/\ /"\\ N \
NS \
~ . R
i , K / '\/:'// \}\ . \f _
/ ’\0/ ,"/ '/ \s \‘ ....’0. \\ I
1023 . / \""/ J \ \ \ n"’ g I |
E / ",'\/‘/ \ \ \\ [S \\
: / ':' // \ \ \\“‘ \\
/ N
. / / ’, 7 “0\ \ \ \‘\‘ \
/o ROSEIAN | \
'/ o\ . \ \ \ \ %
1 O 22 / Jf'; ’ | “ \ | \ N “\ “g\
18.0 18.5 19.0 19.5 20.0 20.5

18



Global fit result

o E < 1PeV:
Supernova remnants

®1 PeV <E <0.3 EeV:
Micro—-quasars

e 0.3 EeV < E < 2 EeV:
Extragalactic component 1
(e.g., Galaxy clusters)

o 2 EeV < E:
Radio galaxies
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3 states of black hole accretion  onue & inesize 201
Hot Accretion Flow (RIAF)
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RIAFs around Black Holes

. ® X-ray binaries
® |ow-luminosity AGN _ y e | Done et al. 2007
Soft |
» — ultrasoft
VHS
oL _
~ USS
E B & — thermal dom
= /
x L LHS _
‘N g
é \ e * W ey high
__“;—/v . B il 'ow/hard
= 1 10 100 1000 Hard
EHT M&7 Energy (keV)

e Accretion rate is high (Mc? > 0.01Ly44) —> optically thick accretion disk + corona

e Accretion rate is low (Mc? < 0.01Lg44) —> only hot plasma surrounding the BH

® Coulomb timescale >> infall timescale —> non-thermal particle production?



SANE & MAD e

 Standard and Normal Evolution
(SANE)

M77 (NGC 1068)

10
IksCOSO

e Turbulence driven by MRI

« Weaker jets are launched
— related to radio-faint states

log(B~1)

(MAD)

M87 (NGC 44806)

IksCOSsO

« Strong and ordered magnetic fields

« Powerful jet can be launched
— related to radio-loud States

22
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« Magnetically Arrested Disk  Ripperdaetal.2020
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MAD formation in low-accreting objects

R |04 R ® Low accretion rate e.g.Esinetal. 1997
% —> Radiatively inefficient accretion flow (RIAF)
[/ / s ( Magnetic Fields ( e Comparison of infall and cooling timescales
2 Outflows
/\

/ AdvAection

« (

Magnetic Fields

2 — truncation radius Rimn ~104 Rg

Mass supply @ Disk winds from RIAF e.g. Ohsuga et al. 2011

- Large scale B-field with 5, ~ 10° — 10*
e.g2., SSK+ 2019 MNRAS

e Rapid advection in RIAF e.g.Cao 2011

—> carry global B-field to inner region
Blandford+ 1999

2

S
J

. v § 2 o Flux freezing + ADIOS: [, R~ 1> — R~

\

) Sp<1@R S 10R,

SSK, Sudoh, Kashiyama, Kawanaka 2021
H —> Formation of Magnetically Arrested Disk
R ~ 10R,

~ (MAD)
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Magnetic Reconnection & Turbulence Ripperdas 2022

Disk contraction & (2)
maghetic reconnection

MAD

SSK+ 2023 ‘ﬂ\

e GRMHD simulations revealed that
MADs release its magnetic energy
by magnetic reconnection

id
* ® Accretion process naturally induces
magnetic reconnection at the mid plane

® Reconnection induces turbulence
e VMIHD instabilities also drive turbulence




Particle Acceleration by Reconnection & Turbulence “

n/ng

e PIC for reconnection| ,, «/L=213 : e P|C with turbulence
Z L ;e 7 4.0 N
Zenitani & Hoshino 2001 v = - 2 Zhdankin et al. 2018 »
Sironi & Spitkovsky 2014 =, R Comisso & Siroml 2013
Zhang et al. 2021, 2023 g
Y ey
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...... Dot free ] 107 E
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. 10°[ ., W
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107 See also SSK+ 2019; Sun & Bai 2021 for MHD + test particle stmulations

® Reconnection & Turbulence in magnetized plasma lead to power-law distribution



MADs In Various Environments

« X-ray binaries » [solated Black Holes

Wikipedia ©Shigeo S. Kimura

SSK, Sudoh, Kashiyama, Kawanaka 2021 SSK, Tomida, Kobayashi, Kin, Zhang 2025
Kuze, SSK, Fang 2025 (ApJ submitted) SSK, Kashiyama, Hotokezaka 2021
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MADs In Various Environments

e X-ray binaries

Wikipedia

SSK, Sudoh, Kashiyama, Kawanaka 2021
Kuze, SSK, Fang 2025
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Qmescent State in X-ray Blnary

28
Done et al. 2007
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® X-ray binaries show various spectral state .
® Quiescent state: faintest state in X-ray binaries , |
o L, ~10°" — 10°° erg/s
—>Mc?* S 1077 = 107 Ly §
e Radio, optlcal, and X-ray signals are observed
—> calibrate parameters by opt & X data 2
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SSK & Toma 2020; Kuze, SSK+ 2022

M A D m O d e I SSK, Sudoh, Kashiyama, Kawanaka 2021

SSK, Kashiyama, Hotokezaka 2021

® Steady-state & one-zone approximation

® Proton-electron plasma

® Thermal & non-thermal components

® Transport equation for non-thermal components:

d [ ENE NE,
 dE, -

® Reconnection/turbulence produce power-law distribution:
N E..in] ~ N O(E /E cut) mjexp( E /E z,cut)

® Normalization for non-thermal electrons

tcool

[EiNE indE; = fientMc?

® Synchrotron dominates over the other cooling processes

aghetosphere

29



Photon spectra from MADs in X-ray Binaries

log(E\Fe,) [erg s™! cm~2]

® Consistent with opt/X-ray data for nearby objects
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e Optical: Thermal synchrotron

SSK, Sudoh, Kashiyama, Kawanaka 2021
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log(E%2®) [GeV s cm™2 sr1]
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Cosmic-Rays from MADs

-1
1 SSK, Sudoh, Kashiyama, Kawanaka 2021 Model A
‘ Model B
.2-§ Y IceTop (Proton) e ' tosoh
1 _ B’ 4 KASCADE (Proton) AgnEtosphet®
-——— [
2340 .. T — t  TALE (All particles)
"te., \\ }  Tibet-lll (All particles)

e Maximum energy. E ~ 1 PeV
(balance of escape & acceleration)

® Model prediction consistent with
L data within their uncertainties
L

IIT ™ o Model uncertainty mainly from

lllllll A A A A A LA

i
U
A
n_
I
n
3
—5

lllll A A A llllll A

number of X-ray binaries

e Future X-ray surveys will reduce
8 model uncertainty
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UHE y-rays from Mlcroquasars

e LHAASO detection of
Cyg X-1 & MAXI J1820+070

e Both sources are consistent with
point sources

significance
Dec (J2000.0) (degree)

Dec (J2000.0) (degree)

e Cyg X-1 in hard state
(Position offset ~ 1.60)

300.5 300.0 299.5

e MAXI J 1820+070 In gu lescent state R.A. (J2000.0) (degree) _ R.A. (J2000.0) (degree)
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above 25 TeV

\
b=3.5 deg

significance

299.0 298.5

(Position offset ~ 3.50) N .
1'_(,) . S 1'_(,) 10- [ ]
: o MAXI J1820+070 ; o : nus X-1
e Cyg X-1 detected in GeV y = 7 £ Cygnus X-1
. S 1073 O
=> jet component? g 3
- - = 5 10
® Can we explain these with T T
our hot accretion flow model? £ o 2
() ()
gq:’ (€) E 14
= U, = 10 Y
10 100 1000 10 100 1000

Energy (TeV) Energy (TeV)



Jet-MAD model

100GHz, X-ray,

Gamma-ray

Expansion

/

Lepton Loading

_I_ —_—
€
vx 37

BH &8

Reconnection

Kuze, SSK, Toma 2024
Kuze, SSK, Fang 2025

Optical, X-ra
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log(E,Fe)lerg st cm~2]

e Our model can reproduce
broadband features

Application to Cyg X-1

Kuze, SSK, Fang 2025

Cygnus X-1

Total — VY PQIrS memm =m0 Jet SSC MAGIC UL
-O0{ == == ==== Thermal electrons == 170 decay — o StQr Intrinsic X-ray
Proton synchrotron = =m 1 Jet Sync HAWC UL . LHAASO

Bethe-Heitler pairs

Thermal electrons

SiIlj,MAD — 121

Companion

E, max = 1.6 X 10° GeV

T Jet SSC f£,=0.3
| . T l
|
|
—pi— I , ’

:I\r\\.\‘.\’\\ R4

SN

VN |
' 8§ 9 10 11 12 13 14 15
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Neutrinos & Gamma-rays from X-ray Bianries

Diffuse TeV Gamma-ray Spectrum
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= Y3 e T |
| — lceCube 10yr E;?2  ————— KM3NeT 90% E 2 | e
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] ~| |
1 I‘~~~\I\\
| =
121

| = Gamma-ray: Hard
| == = Gamma-ray: Quiescent

=
W

log(EFg,)lerg s~ cm™2 str™!]

| ---- Power-Law
14 + LHAASO
log(E,)[GeV]
Galactic Neutrino
_ == Neutrinos: Hard KRA5S
|Og(EV)[GeV] -]_O : ’I;IOeutrinos: Quiescent KRA50
. . | _11-; \
e Strong B-field => pion synchrotron cooling |
-12:

=> neutrino production suppressed at ~ TeV
=> Unable to detect by near-future detectors

e Cumulative contribution to Galactic diffuse v/y
=>Possible significant contribution to v,
negligible contribution to v

log(E,Fg,)lerg s~ cm™2 str!]




MADs In Various Environments

e |solated Black Holes

©Shigeo S. Kimura

SSK, Tomida, Kobayashi, Kin, Zhang 2025
SSK, Kashiyama, Hotokezaka 2021
SSK, Murchikova, Sahu 2025
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N ew CIass Of U H E V-ray sou rceS? LHAASO lst catalog paper 2024

e | HAASO discovered sources in E, > 100 TeV
without detecting y-rays for E, < 25 TeV

® These objects are named “dark” sources

® What is the origins of the “dark” sources detected by LHAASO?

LHAASO 1st catalog 2024

Source name Components a2000 02000 Op,95,stat 739 TS No I TS100

1ILHAASO J000745659u KM2A 1.86 57.00 0.12 <0.18 86.5 0.33x0.05 3.10+0.20 43.6
WCDA <0.27

1ILHAASO J0206+44302u KM2A 31.70 43.05 0.13 <0.27 96.0 0.2420.03 2.62x0.16 82.8

WCDA <0.09
1ILHAASO J021244254u KM2A 33.01 42.91 0.20 <0.31 38.4 0.1220.03 2.4510.23 30.2
WCDA <0.07
ILHAASO J02164-4237u KM2A 34.10 42.63  0.10 <0.13 102.0 0.18%0.03 2.58=0.17 65.6 270 265 260

WCDA <0.20



Isolated Black Holes (IBHs)

o 0.1% of stars form BHs: Nppy ~ fapMNer ~ 3 X 10°
—> many IBHs wandering interstellar medium

e IBHs accretes ISM gas by Bondi-Hoyle-Littleton rate

22042

M, =~ \,
(G5 + ve)¥?

® Accretion onto IBHs depends on ISM phase
@ Wwallm medium: MC2 ~ 1032 el‘g/S nISM,—lvk,40km/s

® molecular clouds
v D 35
Mc= ~ 1077 erg/s Nrsag 2V 40km/s

® Hillas energy for isolated BH
=> E, .« ¥ éBR ~ 0.8L;%¢;/* PeV
IBHs as PeVatrons?

(Barkov et al. 2012; Ioka et al. 2017)

Astro-dic.jp
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Schematic picture of our scenario

SSK, Tomida, Kobayashi, Kin, Zhang 2025
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V-rays fro mm o I ec U I a r C I O U d s SSK, Tomida, Kobayashi, Kin, Zhang 2025

e Typical environment e Optimistic environment
10 10 JOOO0/74+5659u |
T d = 0.5 kpc Gamma-rays | — Y d =72 kpc — (GAMMa-rays
T I —— — — Neutrinos | IR — —— = Neutrinos
S _11_ \\leOMQ S _11_ \\\\MZZOMQ
IU’ -12-; NN LHAASO (1 yr) IU’ _12-; \I NN LHAASO (1 yr)
o o T R
U I . CT) ___vr_
/1-13‘5 ’ - — -13
g ‘ &
> i LL>_ _
% -14- Ryic =20 pc W -14- Ryvic =3 pc
S | nye=10°cm™ S | myc=10°cm™
2 ) TGeyT 0 2 3 4 5 6
09(Ey) [GeV] l0g(E,) [GeV]

e We cannot detect y-rays with LHAASO

e We cannot expect neutrino detection
even with future detectors

e Our scenario can explain LHAASO data

e Future detectors may be able to
detect neutrinos from “dark” sources



IBHs in Molecular Clouds as PeVatrons

® |[BHs in molecular clouds:
5
NBH,MC ~ 10 NIBH,SfMC,—B

o Lp ~ 1033€p’_2(M02)35 erg/s

~ - 1038
o Ler s ® Npumcler ~ 1077 erg/s

> Leg pey = 1.5 X 107° erg/s

® They can be source of PeV CRs

N
+ Molecular Cloud
o 19 20
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SSK, Tomida, Kobayashi, Kin, Zhang 2025

‘_|' -1 LHAASO (All particles) Y lceTop (Proton)

E m— g, =20 km/s, A, =0.1 A KASCADE (Proton)

N ) T o= 40 km/s, A, =0.1 +  TALE (All particles)

IE m— == 0g,=20 km/s, A, =0.3 } Tibet-1ll (All particles)

U | w—— g, =40 km/s, A, =0.3

T -3

g | /” — ~."\'.\

> - - — —

(), 4— - ” — ‘\

O i~ =

— ==

£ 5.

y

> | Nigh ot =6 x 108

.6 —
3 4 5 o 7/

log(E) [GeV]



Photon emission from IBH in dense clouds

=\ -
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JOOO7+5659u

_ —_— MAD attenuated
- MAD intrinsic

Jets

Molecular Cloud -4 -3 -2 -1 O 1 2 3 4 5 6 7 8 9

log(Ey) [eV]

e Simple test for our scenario: observe direct emission from MADs around IBH

e Column density for molecular cloud: Ny ~ 2 X 10%* cm™

—> Extinction [Ay ~ 10, exp(—7 .v) = 0.02 ] —> Hard X-ray (> a few keV) is necessary

e Contamination by protostars (similar L

opt & Ly) —> challenging to identify IBHs in clouds



Photon spectra from MADs around IBHs

Cold HI, M=10 M, d, =1500 pc
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—11-

Model prediction
— — — —  Thermal electrons
—12- Non-thermal electrons

_13- Thermal

ALMA
-15{ |
HI Cloud
—16 .
—2 0 2 4 0
log(Ey) [eV]
To avoid complication, other ISM phases are better Modified from SSK, Kashiyama, Hotokezaka 2021

Hot medium: too low accretion rate => warm & cold media are best
Gaia & eROSITA will detect nearby IBHs => provide a good test for IBH-PeVatron scenario
We are searching for IBH using optical-X-ray crossmatch catalog. Please stay tuned.



OGLE /

OGLE2011-BLG-0462

3%

MOA-2011-BLG-191 Sahu et al. 2022 o
OGLE-2011-BLG-0462 d A Danish 1.54m LuckyCam 1

13.5+ ;‘ ' 1 | MONET North 1.2m

|
. ulg 'i‘ Liverpool 2.0m
i : SAAO 1.0m | ]
- SAAO 1.0mV 1
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14.5¢ e I | Wise 0.46m

1111111111111111111111111111111111

HJD - 2450000

® | ens objects must be isolated BH
® First identification of isolated BHs
e M=7.1 Msun, d=1.58 kpc, v = 45 km/s

® \We can estimate the signals from MADs

K. Sahu®©



Prospects for detecting OGLE-11-0462

NisuAy, = 0.1 cm~3

-14 -

| |
- =
oy U

ALMA (10 h)

1 SSK, Murchikova, Sahu 2025

Current upper limits

v

«/HST (10 h)

v

Chandra (2 Ms)

log(VF,) [erg s~ 1 cm‘Z]
-
00

e Detection will be useful to calibrate emission model & number of IBHs found by Gaia

|
-
~

] vLA@aoh) .7

Rl

_AJWST (10

*/

/ \ —— ] A D
= Jets from MAD
\ — == (C|assical RIAF

SKA (1

8 9O 10 11 12 13 14 15 16 17 18 19 20 21 22
log(v) [HZ]

e \We submitted proposal for JWST observation of OGLE-11-0462.
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Summary

ldentification of Galactic PeVatrons is a hot topic owing to UHE gamma-ray observations
Canonical SNRs cannot be sources of PeV CRs

Micro-quasars became the leading candidate of PeVatrons
=> Shear acceleration scenario can explain super-Knee CR data

Hot accretion flows can accelerate CRs by magnetic reconnection or turbulence
=> XRBs in hard/quiescent states could be potential PeVatrons & LHAASO sub-TeV vy

Isolated black holes embedded in molecular clouds are similar to XRBs in quiescent state
=> potential PeVatrons and LHAASO unlD sources
& testable by searching IBHs using Gaia & eROSITA
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Thank you
for
your attention



