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| The Northern lights —also
| known as the aurora

Ct Ut - " borealis — dancing across
- ; _ the night sky in Alaska.

Background credit: The National Geographic’s Short'Film Showcase by Alexis Coram
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The Fornax cluster - optical

nearby, z = 0.0046
~ 390 member galaxies
low total ~ 103 solar masses
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The Fornax cluster optlcal

nearby, z = 0.0046
~ 390 member galaxies
low total ~ 103 solar masses
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The Fornax cluster - radio linear polarised intensity
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Figure 3. The local root-mean-squared (RMS) noise in the pe: kPmap This is supplied in lieu of the peak-P map itself, which renders point sources effectively invisible for our
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ASKAP POSSUM survey
“polarised intensity” map
747 - 1027 MHz

~ 25 RMs per square degree
~ 870 linearly polarised
background sources (black
dots) with a median fractional
polarisation 4.8%

white box: analysis region
inner circle: 1-degree angular
radius

outer circle: 705 kpc virial
radius of cluster

(Anderson+ 2021) 5
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The Fornax cluster - “missing” polarised sources?
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Figure 3. The local root-mean-squared (RMS) noise in the peak-P map. This is supplied in lieu of the peak-P map itself, which renders point sources effectively invisible for our
high-resolution, large area map. This RMS map was generated by running a square sliding window of width and height both equal to five synthesised beamwidths over the peak-P
map and calculating the RMS values of the pixels inside the window. The image shown here has a square root stretch applied. Linearly polarised radio sources are visible as a
marked increase in the local RMS value. In source-free regions, the RMS is typically ~30 Jy beam™, except at the mosaic edges, and in the vicinity of bright sources, where the
faint imprint of the synthesised beam manifests as narrow, diagonal fan-like structures. The centre of the Fornax cluster is indicated with a red cross-hair. Fornax A is partially
visible in the bottom-right corner of the map, where six beams are missing due to beamforming errors. The white dashed box approxi indicates ion sh inFigure8.
The white dashed line indicates an angular radius of 1°, while the white dotted line indicates the 705 kpc (1.96°) virial radius of the cluster.

(Anderson+ 2021)



The Fornax cluster - “missing

empty
by eye

“patches”
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Figure 3. The local root-mean-squared (RMS) noise in the peak-P map. This is supplied in lieu of the peak-P map itself, which renders point sources effectively invisible for our
high-resolution, large area map. This RMS map was generated by running a square sliding window of width and height both equal to five synthesised beamwidths over the peak-P
map and calculating the RMS values of the pixels inside the window. The image shown here has a square root stretch applied. Linearly polarised radio sources are visible as a
marked increase in the local RMS value. In source-free regions, the RMS is typically ~30 Jy beam™, except at the mosaic edges, and in the vicinity of bright sources, where the
faint imprint of the synthesised beam manifests as narrow, diagonal fan-like structures. The centre of the Fornax cluster is indicated with a red cross-hair. Fornax A is partially
visible in the bottom-right corner of the map, where six beams are missing due to beamforming errors. The white dashed box approxi indicates th: ion sh inFigure8.
The white dashed line indicates an angular radius of 1°, while the white dotted line indicates the 705 kpc (1.96°) virial radius of the cluster.

(Anderson+ 2021)



Faraday rotation - schematic
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Measuring the invisible

Faraday rotation measure (RM) at radio wavelengths is commonly used to
diagnose large—scale magnetic fields.

observed
rotation measure wavelength

e
N R = (Ap)A™% = (¢ — o)A~
/ \

observed polarisation angle intrinsic polarisation angle



Rotation measure (RM)

In the context of polarised radiative transfer

distance between the source and the observer

|
R(s) = 0.812 / 3 (:)i' ("’ th(s')) (BL(S/) ) rad m >

5 cm 3
\ —— B-field strength
thermal electron along line-of-sight

number density

assuming:
no absorption, no synchrotron emission, no Faraday conversion
only thermal electrons are present
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Beyond galactic scales - Coma cluster
Magnetic fields are relatively weaker and more difficult to be observed

radio synchrotron emission and Faraday rotation measures as probes
Colour: RM  Contour: total radio intensity 1.4 GHz
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The Fornax cluster - “missing

empty
by eye

“patches”
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Figure 3. The local root-mean-squared (RMS) noise in the peak-P map. This is supplied in lieu of the peak-P map itself, which renders point sources effectively invisible for our
high-resolution, large area map. This RMS map was generated by running a square sliding window of width and height both equal to five synthesised beamwidths over the peak-P
map and calculating the RMS values of the pixels inside the window. The image shown here has a square root stretch applied. Linearly polarised radio sources are visible as a
marked increase in the local RMS value. In source-free regions, the RMS is typically ~30 Jy beam™, except at the mosaic edges, and in the vicinity of bright sources, where the
faint imprint of the synthesised beam manifests as narrow, diagonal fan-like structures. The centre of the Fornax cluster is indicated with a red cross-hair. Fornax A is partially
visible in the bottom-right corner of the map, where six beams are missing due to beamforming errors. The white dashed box approxi indicates th: ion sh inFigure8.
The white dashed line indicates an angular radius of 1°, while the white dotted line indicates the 705 kpc (1.96°) virial radius of the cluster.

(Anderson+ 2021)
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The Fornax cluster - X-ray and RM observations

contours: X-rays colours: RMs

(anything < 200 rad? m™ masked as black)
magenta: ROSAT (1 - 2.4 keV)
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Is there truly a deficit of polarised sources?
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Is there truly a deficit of polarised sources?
Yes
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Comparing the RM grids - MeerKAT vs ASKAP surveys

contours: X-rays
e-ROSITA (0.2 - 2.3 keV)

extended radio sources included
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Comparing the RM grids - MeerKAT vs ASKAP surveys

contours: X-rays
e-ROSITA (0.2 - 2.3 keV)

extended radio sources included
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shock passage

sloshing motion

Possible scenarios for Mpc-scale depolarisation

Stripped ICM eddies
+turbulence |

Contact discontinuity
N

Detached bow shock
™~

(Anderson+ 2021)



Building a conic shock model

the large-scale shock compresses the gas and amplifies the magnetic field

shock front

conic shock

opening half-angle = ©t/3

symmetry axis

Zone A —undisturbed ICM
Zone B - shock compressed ICM
Zone C — post-shock ICM

thermal electron number density
follows a beta model

B-field strength in B is twice of A

A and C have the same number of
thermal electrons

C has twice the number of
non—-thermal electrons than A

cluster temperature 107 K

(On, Chan, Lai and Wu, MNRAS, under review) 49



Synthetic radio maps of our shock model at 0°

full polarised radiative transfer calculations of 1024 background point sources

total intensity degree of linear polarisation
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Synthetic radio maps of our shock model at 60°

full polarised radiative transfer calculations of 1024 background point sources
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total intensity
inclination = n/2
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Synthetic radio maps of our shock model at 90°

full polarised radiative transfer calculations of 1024 background point sources
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Synthetic radio maps of our shock model at 90°

full polarised radiative transfer calculations of 1024 background point sources
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Larger fraction of point sources being enhanced

many point sources are initially fainter or comparable to the diffuse ICM
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Figure 7. Left: The ranked distributions for Stokes total intensity I of the background point sources (black dotted line) and of the diffuse ICM for a galaxy
cluster containing a large-scale shock (see Figure 6), viewed at three different inclination angles 0 (blue solid line), 7r/3 (violet dashed line) and 7r /2 radian (red
dash-dot line). Right: The corresponding ranked distributions for the ratio between the observed DOLP and the source DOLP.

(On, Chan, Lai and Wu, MNRAS, under review) o4



the intracluster shock has a larger degree of linear
polarisation than the sources and the ambient medium

25



the intracluster shock has a larger degree of linear
polarisation than the sources and the ambient medium

one of the essential conditions for polarisation
enhancement to occur

26



Scatter of observed DOLP vs. total intensity / at0°
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Figure 8. The scatter of the observed DOLP of each background point source in the intracluster shock model plotted against its intrinsic total intensity (left
column) and its observed total intensity (right column) viewed at O (top row), r /3 (middle row) and 7 /2 (bottom row) radian. From the top row, the vertical red
dashed line marks the median total intensity of the diffuse medium at Iy = 3.03 x 10718, 1.13 x 1078, and 7.47 x 10" P ergs™! cm™2 Hz ! str™!. There is a
higher fraction of enhanced sources at lower inclinations, arising from the larger projected filling factor of the shock, whereas at higher inclinations, more point
sources become depolarised due to LOS field cancellations in the ambient medium.

(On, Chan, Lai and Wu, MNRAS, under review) o7



Scatter of observed DOLP vs. total intensity / at 60°
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Figure 8. The scatter of the observed DOLP of each background point source in the intracluster shock model plotted against its intrinsic total intensity (left
column) and its observed total intensity (right column) viewed at O (top row), r /3 (middle row) and 7 /2 (bottom row) radian. From the top row, the vertical red
dashed line marks the median total intensity of the diffuse medium at Iy = 3.03 x 10718, 1.13 x 1078, and 7.47 x 10" P ergs™! cm™2 Hz ! str™!. There is a
higher fraction of enhanced sources at lower inclinations, arising from the larger projected filling factor of the shock, whereas at higher inclinations, more point
sources become depolarised due to LOS field cancellations in the ambient medium.

(On, Chan, Lai and Wu, MNRAS, under review) »g



Scatter of observed DOLP vs. total intensity / at 90°
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Figure 8. The scatter of the observed DOLP of each background point source in the intracluster shock model plotted against its intrinsic total intensity (left
column) and its observed total intensity (right column) viewed at O (top row), r /3 (middle row) and 7 /2 (bottom row) radian. From the top row, the vertical red
dashed line marks the median total intensity of the diffuse medium at Iy = 3.03 x 10718, 1.13 x 1078, and 7.47 x 10" P ergs™! cm™2 Hz ! str™!. There is a
higher fraction of enhanced sources at lower inclinations, arising from the larger projected filling factor of the shock, whereas at higher inclinations, more point
sources become depolarised due to LOS field cancellations in the ambient medium.

(On, Chan, Lai and Wu, MNRAS, under review) »g



the observed DOLP of background sources is modulated by
the shock orientation and hence its projected filling factor

30



Changes in polari

60°

90°

DOLPops, s
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sation statistics with viewing angle
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0.30

DOLPobs, s

fractional increase in enhanced
sources towards lower inclination,
arising from the larger projected
filling factor of the shock

more point sources are depolarised
at higher inclinations due to more
line—of-sight cancellations in the
ambient medium

red line: median total intensity of
the ICM

(On, Chan, Lai and Wu, MNRAS, under review) 31



Not all point sources are created equal
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Figure 8. The scatter of the observed DOLP of each background point source in the intracluster shock model plotted against its intrinsic total intensity (left
column) and its observed total intensity (right column) viewed at O (top row), r /3 (middle row) and 7 /2 (bottom row) radian. From the top row, the vertical red
dashed line marks the median total intensity of the diffuse medium at I, = 3.03 X 10718,1.13x 10718, and 7.47 x 10719 erg s"lem™2Hz !str™!. Thereis a
higher fraction of enhanced sources at lower inclinations, arising from the larger projected filling factor of the shock, whereas at higher inclinations, more point
sources become depolarised due to LOS field cancellations in the ambient medium.

(On, Chan, Lai and Wu, MNRAS, under review) 35
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Carrying out a FLASH MHD cluster merger simulation

5:1 mass ratio, 8 Mpc simulation box
initial tangled B-field, power-law spectrum cutoffs at 43 kpc and 500 kpc

plasma beta =100

Zoomed in to the Center

| Sloshing

y (Mpe)

(Liou, On, Yang and ZuHone, ApJ, under review) 33
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Polarisation signatures of shock and sloshing cold front

using 3D FLASH MHD simulations of a cluster merger scenario

total radio intensity degree of linear polarisation
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(Liou, On, Yang and ZuHone, ApJ, under review) 34



Enhancement in RMs after a shock passes by

using 3D FLASH MHD simulations of a cluster merger scenario
cyan contours: projected X-ray emission
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Comparing between the features in our simulation and

the Fornax observations

POSSUM RM map our simulated RM map
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Decrease in RMs near the sloshing cold front

using 3D FLASH MHD simulations of a cluster merger scenario
cyan contours: projected X-ray emission
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Comparing between the features in our simulation and
the Fornax observations

POSSUM RM map our simulated RM map 4
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Summary

no clear explanation for the lack of polarised radio sources in the Fornax cluster

faint sources are more easily depolarised or
enhanced by the intracluster shock, whereas the
polarisation of bright sources is largely
unaffected

enhanced local RMs behind the shock front on
Mpc scales, due to the compression of hot gas
and magnetic field lines

decrease in RMs near the cluster center, as a
result of field cancellations driven by sloshing
turbulence

wishlist:

keep the (full) Stokes
polarisations

search for any radio
halo/relic in the Fornax
cluster
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